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ON THE NUMERICAL REPRESENTATION OF QUALITATIVE
CONDITIONAL PROBABILITY'

By R. DuncaNn Luce

Unaversity of Pennsylvania

1. Introduction. Let 4, B, C, and D be events from some algebra &, and let
A |B » C|D signify that “the occurrence of event A conditional on B having
occurred is judged as qualitatively at least as probable as the occurrence of C
conditional on D having occurred.” Were the rest of the ordering uniquely defin-
able in terms of its unconditional part (obtained by restricting B and D to the
universal event X ), just as conditional probability is uniquely defined in terms of
unconditional probability, then we could simply attend to unconditional order-
ings. That no such definition can be given is shown by the following example of
two probability measures that induce the same unconditional ordering but dif-
ferent conditional ones:

{1,2,3} {1, 2} {1, 3} {1} {2, 3} {2 {3}

P 9/9 8/9 6/9 5/9 4/9 3/9 1/9
P* 9/9 8/9 7/9 6/9 3/9 2/9  1/9

P({3}1{2,8}) = + <& = P({2} [{L, 2})
P*({3}1{2,3}) = 3 > % = P*({2} | {1, 2}).

Thus, one is led to ask: what properties of the events and of > are necessary
and/or sufficient for there to be a unique, finitely additive probability measure
P that is order preserving in the following sense:

A|B » C|D ifandonlyif P(A nB)/P(B) = P(C n D)/P(D)?

The question is surely of logical interest for a personalistic theory of probability,
especially since the most easily elicited judgments of qualitative probability
are conditional ones: is red on a roulette wheel (given that the wheel is spun)
more likely than heads on a coin (given that the coin is flipped)? To formulate
such choices in unconditional form demands some artifice.

The only published work on this problem of which I am aware is Koopman
[4], [5], and [6]. The related work of Copeland [1], Csészér [2] and Rényi [10]
is also of interest. Those who have examined Koopman’s axioms seem agreed
that they are somewhat awkward, that several are not as intuitively compelling
as one would like, and that their relation to those for qualitative (unconditional)
probability (de Finetti [3], Luce [8], and Savage [11]) is not transparent. Al-
though, to a considerable degree, these are really criticisms of his exposition,
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482 R. DUNCAN LUCE

nonetheless, the system given here seems somewhat more satisfactory on all
three counts. A detailed comparison of the two systems is given in Section 2.

More striking is the difference in the proofs. As was done for unconditional
probability in [8], the problem is reduced to one in the theory of extensive
measurement. The relevant results, which are proved in Luce and Marley [9],
are summarized in [8], to which the reader is assumed to have access. Matters are,
however, considerably more complicated for conditional than for unconditional
probability because we must contend both with the additivity of P and with
the division structure of the representation. The axioms are sufficiently strong
so that an unconditional probability P can be constructed from the unconditional
qualitative probability on & The main task then is to show that the remainder
of > is compatible with the numerical conditional probability that is induced
by P.

2. Axioms and representation theorem for conditional probability. In formulat-
ing the axioms, we begin with an algebra & of subsets of a given set X (i.e., & is
closed under complementation and union), a subset 9t of & that identifies the
null events (i.e., those that will have probability 0), and a relation 2 on
& x (& — N). (Clearly, the relation cannot be on & x & if we are to avoid con-
ditioning on null events.) As usual, > means > but not <, and ~ means both
2, and X. It will prove convenient to denote a typical element of & x (& — 91)
by A | B, where A ¢ & and B ¢ & — 9, and to make the convention that symbols
appearing just to the right of | are always from § — 9.

DeriniTION 1. Suppose that X is a non-empty set, & an algebra of subsets of
X, C &, and > arelationon & x (& — 9t). The quadruple (X, &, 91, >) is called
a system of qualitative conditional probability if the following six axioms hold:

Axrtom 1. > s a weak ordering of & x (& — 9N), i.e., it ¢s reflexive, transitive,
and connected.

Axtom 2. X g9, and A eNifandonly if A | X ~ & | X.

AxioM3. X |X > A|Band X|X ~ A|A.

Axiom 4. A|B ~ AnB]|B.

Axiom 5. Suppose that AnB = A'nB = F. IfA|C > A'|C and B|C
> B'|C',then Au B|C > A" u B'|C’; moreover, if either hypothesis is >, then
the conclusion s >.

Axiom 6. Supposethat A C B < Cand A’ € B' © C'. If either A|B x> A’ | B’
and B|C > B'|C" or A|B > B'|C'and B|C » A'|B', then A|C > A'|C;
moreover, if any of the hypotheses is >, then the conclusion is > .

The system is Archimedean if, in addition, the following axiom holds:

Axiom 7. Any sequence Ay C Ay C - C A; C -+, A;e8& — N, for which
AilAi-H ~ A1|A2 < XIX, 1 =1,2, -+, 18 finite.

Given the desired respresentation, it is not difficult to see that all seven axioms
are necessary properties. For example, the last one follows from the fact that,
: since 41 £ & — fﬂ,P(An) = 1, andAi|A,-+1~A1|A2,

0 < P(4:) = P(A,)/P(As) = [P(A1)/P(A)I[P(As2)/P(4s)] ---
[P(4s1)/P(44)] = [P(41)/P(42)]"".
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Since 4;]| A2 < X | X, P(A1)/P(A:) < 1, and so n must be bounded.

The counter-example of Kraft, Pratt, and Seidenberg [7] for unconditional
probability leads one to suspect that these seven axioms are insufficient to prove
the desired representation; however, no counterexample yet exists. We show that ‘
the representation follows when the following non-necessary property is added
to the system.

Axiom 8. Suppose that C < D and Ce& — 9. If A|B > C|D, then there
exist ¢’ and D’ suchthat C < ¢', D' c Dand A|B~C' |D ~C|D".

We say that a system of qualitative conditional probability is regular when
Axiom 8 holds. It simply states that the events are sufficiently finely graded so
that an inequality of the form A | B > C | D can be converted into an indifference
either by augmenting C' or by diminishing D. Note that C must be non-null for
the diminishing of D to work. Intuitively, this seems closely related to the
assumption made by Koopman and others that, for any integer n, some event
can be partitioned into n equally probable events, and, as we shall see from the
proof, in the presence of the other axioms, regularity almost implies this property.

At first glance, Koopman’s [4], [5] system and this one appear rather dif-
ferent, but in fact they have much in common. Perhaps the simplest way to
see the relations is to state what in his system corresponds to each of the above
axioms.

Axiom 1: He postulates a quasi-order rather than a weak order, but he points
out that were he to add the connectivity assumption then his Axioms P and S,
which have no counterpart in this system, would be theorems.

Axiom 2: Since he assumes that & is the only null event, he has no need for
this axiom.

Axiom 3: This is given, in a somewhat different and stronger form, in his
Axioms V and I.

Axiom 4: Although he uses this property throughout, he treats it simply as a
“notational convention” that does not need to be listed explicitly as an axiom.

Axiom 5: This is not stated as an axiom, but is proved as a theorem. Its
role is played by his Axiom A, namely that if A | B > C| D, then C|D x» A|B,
which we derive as Lemma 7.

Axiom 6: His Axiom C is the same as the first part of our axiom. (In [5] the
statement is as given here; in [4] it appears to be more complex since he does
not assume A C B € C and A’ € B’ < (’.) His Axiom D, which he calls a
quasi-converse of C, corresponds to our statement that if any of the hypotheses
is >, then the conclusion is >.

Axiom 7: There is no counterpart to this axiom in his system, which was
intentional since he only wanted to prove that A | B > C'| D implies P(A n B)/
P(B) =z P(C n D)/P(D) and not the converse.

Axiom 8: As I noted earlier, the closest counterpart is his “assumption” (it
is 1ot listed among the axioms) that, for each positive integer 7, some non-null
event can be partitioned into # equi-probable events, but they are by no means
the same assumption.
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As was mentioned, he has two further axioms which become theorems when
2 is connected.*

It is clear that his system is not a special case of this one since he does not
require > to be a connected relation. From our proof, it will become clear that
this system is not a special case of his because two examples, corresponding to
probabilities of just 0 and 1 and just 0, 4, and 1, fulfill our axioms but fail to have
the property that some non-null event can be partitioned into n equi-probable
events.

TrEOREM 1. Suppose that (X, &, 9N, >) is a regular, Archimedean system of
qualitative conditional probability, then there exisis a unique real-valued function
P on & such that

(i) (X, &, P) is a finitely additive probability space'
(i) A e N if and only of P(A) = 0;

(iii) A|B 2 C|D if and only if P(A n B)/P(B) = P(C n D)/P(D);

(iv) the range of P 1s either {0, 1}, {0, %, 1}, or includes all rationals in [0, 1].

CoroLLARY. The following properties are equivalent: A |B~A|X, B|A ~
B|X,A|B~A|B,B|A~B|A,P(AnB) = P(A)P(B).

Obviously, the corollary formulates the concept that A and B are independent
events.

As our proof of Theorem 1 depends upon a concept and a theorem (from the
theory of extensive measurement) which, apparently, have not been published
previously, the next section is devoted to this preliminary work. These results
are of interest beyond the fact they are used to prove Theorem 1.

3. Systems of positive differences. Perhaps the simplest interpretation to
motivate the following system of axioms is the comparison of lengths of intervals
on a line when the intervals are identified by their end points. Let @ denote a set
of points lying on a straight line. Each pair of points a, b ¢ @ identify an interval,
which we may denote either as ab or ba. If, however, we view the points as
ordered, then by convention one of the two identifications will be positive and
the other negative. Let @* € @ x @ denote the set of positive intervals. One
task of the axiomatization is to capture just what we mean by ‘“‘positive.” In
addition, we suppose that > is an ordering of @* such that ab > cd means that
the positive interval ab is at least as long as the positive interval cd. A very
natural notion of concatenation exists for “adjacent” intervals. Suppose that ab
and be are both positive, then it is clear that ac should be treated as positive and
that ac = abo be. Slightly generalized, this is the definition of concatenation.

DerinitioN 2. Let @ be a non-empty set, @* a non-empty subset of @ x @,
and > a binary relation on @*. The triple (@, @*, >)is called a system of positive
differences if, for all @, b, ¢, d, @', b’, ¢, d’ ¢ @ the following six axioms hold:

Axiom D1. > is a weak ordering of @

Axtom D2. If ab, a't’, be, b'c’ e @*, ab zZ a't’, and be z b'c, then ac, a'c' e @*

‘and ac x> d'c’.
Axtom D3. If ab, bc £ @, then ac > ab and ac > be.
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Axiom D4. If ab, ac, bd, cd £ @* and ab ~ cd, then ac ~ bd.

Axiom D5. If ab, cd e @* and ab > cd, then there exist ¢, d' ¢ @ such that
ac’, c'b, ad', d'b e @* and ad’ ~ ¢'b ~ cd.

Axtom D6. Suppose that ab, cd e @*. If a;e @, ¢ = 1,2, ---, are such that
@i0i € @F and aipa; ~ ab, then the set {n|n eI and cd ¥, a.a} is finite.

Keeping in mind the interpretation of a “positive difference” as an interval
of length on a straight line, these axioms need but little comment. The first is
the usual ordering assumption. The second embodies both the concatenation of
adjacent intervals and the preservation of inequalities under that concatenation.
The third says that @* really does include only positive differences. The fourth
is a form of commutativity of concatenation. The fifth is a solvability require-
ment that imposes a certain density of end points. And the sixth is an
Archimedean condition.

Note that if ab e @*, then ba £ @*. For suppose that ba £ @*, then by Axiom
D2, aa ¢ @, which with ab ¢ @* implies, by Axiom D3, that ab > ab, violating
Axiom D1.

In order to reduce this system to an extensive one, we must define what is to
be meant by concatenation. This we do next.

DerFINtTION 3. Suppose that (@, @, >) is a system of positive differences,
then

® = {(ab, cd) | ab, cd £ @*, and there exist o, b’, d’ & @ such that

b, b'c e a* o'’ ~ ab, and b'd’ ~ cd}
oon ®:if (ab, cd) € ®, then abocd ~ a'd’.

It is evident from the definition of ® and Axioms D1 and D2 that - is well
defined. Moreover, the definitions of & and o seem plausible since a’d’ = a'd’ o b'd’
is beyond question, and if ab ~ a'd’" and c¢d ~ b'd’, simple substitution analo-
gous to Axiom D2 suggests our definition, abocd ~ dd.

TueoreM 2. If (@, @, >) is a system of positive differences and if there exist
ab, cd & @ such that ab > cd, then @* ®, 2, °) s an extensive system with no
mazimal element (Definition 3, [8]).

CoroOLLARY. If, in addition to the hypothesis of the theorem, for a, be @, @ #= b,
either ab or ba & Q*, then there exists a real-valued function ¥ on G such that ¢(ab) =
¥(a) — ¥(b) is an extensive representation of @* ®, 2z, o) and ¥ is unique up to a
positive linear transformation.

4. Proof of Theorem 2. Throughout this section we assume that (@, @*, >)isa
system of positive differences and that there exist ab, cd ¢ @* for which ab > cd.
Moreover, whenever we write (ab, cd) ¢ ® we implicitly assume that ab, cd € a*.
Many of the simpler proofs are omitted.

LemMa 1. ® is non-empty.

LemMma 2. If ab, bce Q¥ then ac ¢ @*, (ab, bc) € ®, and ac ~ ab o be.

"Lemva 3. If (ab, cd) e®, ab ~ a'V', and cd ~ ¢'d’, then (a'b’, ¢'d’) e® and
abocd ~ a'b' oc'd.
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LemMA 4. If (ab, ef) ¢ ® and ab > cd, then (cd, ef) e ® and ab o ef 2 cdoef.
Proor. There exist a’,b’,f’ such that ab ~ a'b’ Zcdand ef ~ b'f’. By Lemma 3,
we may suppose a'b’ > cd, and so by Axiom D5 there exists ¢’ such that ¢'b” ~ cd
and ac’ ¢ @*. By Lemmas 2 and 3, (¢'t’, b'f') e ® and (cd, ef) ¢ ®. Moreover,
using Axiom D3 and Lemma 3, aboef ~ a'c’ oc’f > cf ~ b ob'f ~cdo ef.
QED

Lemma 5. If (ab, cd), (a'd’, b'd’) ¢ ®, and abocd ~ a'b' o b'd’, then ab ~ a't’
if and only if cd ~ b'd’.

Proor. Suppose that ab ~ a'b’ and b'd’ > cd, then there exists d” such that
b'd" ~ c¢d and d"d’ e @*. By Axiom D2 and Lemma 3, a’d’ ~ a'b'o b'd’ ~
abocd ~ a't'ob'd" ~ a'd". By Axiom D3,a'd ~ a'd" o d"d’ > a'd", a con-
tradiction. The other cases are similar. QED

LemMA 6. If (ab, cd) ¢ ®, then (cd, ab) ¢ B and abotd ~ cd o ab.

Proor. Since ab ~ a'b’, cd ~ b'd’, then a’d’ ~ a'b’ob'd’ > b'd’ ~ cd. There
exists ¢’ such that a’c’ ~ b'd’ ~ cd, and ¢'d’ ¢ @*. Thus, by Axiom D4, ¢'d’ ~
a'b’ ~ ab. So by Lemmas 2 and 3, (cd, ab) ¢ ®, and abocd ~ a'd’ ~ da'c’ o c'd’
~ cdoab. QED

We turn to a proof of Theorem 2. By hypothesis, @* is non-empty and, by
Lemma, 1, so is ®. So we need only check the axioms of Definition 3 in [8]. Of
these, only 2 and 6 cause any problems.

2. Suppose that (ab, cd) and (abo cd, ef) € B. By definition of ®, there exist
o, b, d,d",d", f" such that ab ~ a'd’, cd ~b'd’, a"d" ~a'd ~abocd,d"f" ~ ef.
By Axiom D3, a”d" ~ @b’ ob'd" > b'd’ ~ cd, so by Axiom D5 there exists ¢’
such that ¢'d” ~ cd and a”¢’ ¢ @™, Since abo cd ~ a"d” ~ a"¢'oc'd”, Lemma 5
implies ab ~ a”¢’. By Lemmas 2 and 3, (cd, ¢f) ¢ ®. Similarly, (ab, cd o ef) ¢ ®.
Moreover, (abocd)oef ~ a’f" ~ a”c’oc'f" ~ abo (cdoef).

6. Supposen > 1 and cd > n(ab) ~ ef. Then exists a; such that cay ~ ef > ab.
So there exists @ such that asa; € @*, asa; ~ ab, and cas ¢ @*. Proceeding induc-
tively, we may construct a sequence that, by Axiom 6, must terminate. There-
fore, {n|n eI and cd > n(ab)} is finite.

Turning to the corollary, we know by Theorem 2 of [8] that there exists an
extensive representation ¢ of (@, ®, >, o). Fix ao¢ @ and define

¥(a) = o(aay)  if aaoe @
= 0 ifa = Qg

o(aa) if maea®

This can easily be shown to satisfy the properties listed. QED

6. Preliminary lemmas about qualitative conditional probability. The com-
mon hypothesis of the following lemmas is that (X, §, 91, > ) is a system of qualita-
tive conditional probability; Axioms 7 and 8 are not used. Some of the simpler
proofs are omitted.

" Lemma 7. If A|B > C|D,then C|D > A |B.

CoroLrArY 1. A |B > & | X.
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CoroLLARY 2. J |4 ~ & | X.

CoroLLARY 3. If A [ X ~ A|X and B|X ~ B|X, then A| X ~ B| X.

Lemma 8. If A D B,then A|C >, B|C.

Lemma 9. (i) & e 9t.

Suppose that A € N, then
(i) A2y,

(iii) ¢f A D B, then B e 9t;

(iv) if Be9, then A u B e 9;

(v) fBedt,then A|B~ & |X ~ & |B.

Lemma 10. Suppose that A D B, then A | C ~ B | C if and only zf
(A—B)nCexn.

Proor. Since A D B, Axiom 4 yields A [C~AnC|C~[(A — B)nClu
(BnC)|C.If (A — B) n C &£ 9, then by Lemma 9(v),(4 — B)nC|C~ & |C.
By Axioms 4 and 5, A |[C~[(A — B)nClu(BnC(C)|C~BnC|C~B]|C.
Conversely, if (A — B) n C 29, then by Axiom 6 and Corollaries 1 and 2 of
Lemma 7,(A — B)nC|C > & |C. By Axioms4 and 5,A[C ~ AnC|C >
BnC|C~ B]|C.

LemMma 11. Suppose that A D B and that A 2 N, then A — B e N if and only
if B|A~ X|X.

Proor. Supposethat A — B ¢ 9t. By Lemma 9(v) and Corollary 2 of Lemma
7, (A —B)|A~ &|A.So0,by Axiom 5, A |[A~ (A —B)uB|A ~ B| A, and
the conclusion follows from Axiom 3. Conversely, suppose that X | X ~ B | 4.
By Axiom 3, A|A ~ B| A, and so by Lemma 10,4 — B = (A — B) n A e 9.

QED

Lemma 12. A |B > An B|X.

Proor. Assume the contrary and use Axioms 4 and 6 to show & | X > & | B,
which is impossible by Corollary 2 of Lemma 7. QED

6. Proof of a non-additive representation. Define
*={AB|A,Be& — N, ADB,and A — Be§ — q)}
>*on@*:AB >»*CD ifandonlyif D|C > B|A.

TaeoreM 3. If(X, &, N, ) is a reqgular Archimedean system of qualitative con-
ditional probability, then (8 — N, e¥, 2,*) 18 a system of positive differences
(Definition 2).

Proor. We verify the six Axioms of Definition 2.

D1. Obvious.

D2, Suppose that AB BC, A'B’, B'C' ¢ @*, that AB >* A'B’, and that
BC >*B'C’.Clearly, A D C. A — C £ 9 sinee if not then, by Lemma 9(iii),
A-Be €n, Whlch is impossible. Sumlarly, A'> ¢ and A" — ¢’ g9 Thus, AC
and A'C’ ¢ @*. Using Axiom 6, AC > A'C.

+ D3. Suppose that AB and BC ¢ @* Asmpart 2,AC ¢ @*. Because A D BD C,
B|A >C’[A(Lemmg,8) Since B — C'gf)'c LenunalOunphesB[A>-C’lA
and so AC >* AB. Suppose that BC >* AC, then C|4 > C|B. Since 4 | X
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>B|XandA — B¢9, Lemma 10 yields A | X > B| X. Therefore, by Axiom
() C|X > C|X, which is impossible.

D4. Suppose that AB, AC, BD, CD ¢ Q* and AB ~* CD. Suppose that

C|A~D|B. SmceDlCNBIA Ax1om 6 yields D| A ~ D| A, which is im-
possible. So AC ~™ BD.

D5. Suppose that AB and CD ¢ @* and that AB >™ CD. By Axiom § there
exist ¢’ and D’ such that B D', ' € Aand D'|A~B|C' ~ DIC To show
that AC C'B, AD', and D'B ¢ @*, it suffices to show that A — C’, ¢’ — B,
A—D', andD —Bzi)‘c IfA— C ¢ 91, then by Lemma 10, C’ [XNA[X
Since B | C'~D|C > B|A, Axiom 6 yields B |X > B| X, which is impossible.
IfC' — Bew, thenbyLemma 11, X|X~B|C'~D|C,and so C — Dewx,
which is impossible. The rema.mlng two cases are similar.

Dé. Suppose that AB,CD ¢ @* and that A, & & — 91 are such that AMA ea”*
and A.1A; ~* AB. By definition 4, C 4, C --- C 4A: C - Ai|Aia ~
B|A ~ A;|A4:.Moreover,since Ay — A8 — N, Lemma 11 1mphesX | X >
A;| Aipr . Therefore, by Axiom 7, {n|n el and CD =™ A,A4} is finite. QED

CoroLrary. If (X, &, 9, >) is a regular Archzmedean system of qualitative
probability, then there exists a function Q from & into the real interval [0, 1] such that

(i) Q(F) = 0and Q(X) = 1;

(i1) A e 9t if and only of Q(A) = 0;

(i) A|B % C|D if and only if Q(A n B)/Q(B) = Q(C n D)/Q(D);

(iv) If Q' is any other function satisfying (i)-(iii), then there exists a > 0
such that Q' = Q°.

Proor. If, for all A ¢§&, either A or A ¢, then define

Q(A) =0 fAexn
=1 if Aeot.

Clearly it fulfills the assertions. ) )
Next, suppose that whenever both A and A & — 9, then A | X ~A | X. If A
and B are two such elements and A n B #91, then since AnB D Aand A ZqN,

Lemma 9(iii) yleldsAnBzi)l Thus, AnB|X ~ ~AnB | X. By Corollary 3 of
Lemma 7, B| X ~ A n B|X. Since B D A n B, Lemma 10 implies

B — (An B) &9, and so by Axiom 4 and Lemma 11, A|B~AnB|B~X|X
If An Bedx, then A |B ~ | X. This then shows that, for 0 < ¢ <1,

Q(A) =0 fAex
q ifA, Agx
1 ifAex

fulfills the assertions.

, Finally, suppose that there exists an A with A Aece —qand A|X > A|X.
Thus in @*, XA >* XA. By Theorem 2, @* generates an extensive system
with XB = X A o AB when AB ¢ @,*. By Theorem 2 of [8] there exists a positive
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ratio scale ¢ on > * such that o(AB) = ¢(CD) if and only if AB >* CD and, for
ABe@* o(XB) = o(XA) + ¢(AB). Define

Q(A) =0 if Aeat
= exp [—¢(XA4)] if A, Azt
=1 if Ae9t.
This funetion has the asserted properties, as can be shown without great difficulty.

QED

7. Proof of an additive measure on &.

Lemma 13. Suppose that (X, &, N, > ) is a system of qualitative conditional prob-
ability for which Axiom 8 holds. If A €& and B e& — 9, then there exists C € &
suchthat C D AnBand A|B~C|X.If A|X > B| X, then there exists B’ C A
such that B'| X ~ B | X.

Proor. Obvious.

TaeorEM 4. Suppose that (X, &, N, >) vs a regular Archimedean system of
qualitative probability. There exists a unique real-valued function P on & such that

(i) (X, &, P) is a finttely additive probability space;
(i) A e of and only of P(A) = O;

(iii) A|X > B|X if and only if P(A) = P(B).

Proor. By Lemma 9 and Theorem 1 of [8] it is sufficient to show that the
order > on & defined by

A > B ifandonlyif A|X > B|X

satisfies the axioms of a regular Archimedean system of qualitative probability.
Axioms 1-3 are trivial, 4 is an immediate consequence of Lemma 13, and 5 is
shown as follows:

Suppose that A;, 4,’, --- is a standard series relative to A > &. Let
A; = Ay ~ A. Since 4, | X > A:|X, there exists by Axiom 8, 4, D A, such
that A;]X ~ A4, |X. By induction, we may construct the standard series
ALC A, C -- CA;C - suchthat A, ~ A and Aiy — Ai ~A e&— N
Consider, A; | As, Az | Ay, -+, Asi | Agi+r, ---. Observe that Asi+1 =
Asi U (Agi+1 — Asi),that the two factorsare disjoint, and that Agi+1 — Agi~ Ag:i .
By Lemma 12, Ai | Asi+1 > Az n Agi+1| X, and so by Axiom 8 there exists
a C; such that Asi|Asi+r ~ C;|X. Since

C—',-lX ~ A—zi |A2i+1 = (Agi+1 — Agi) |A2i+l ~ A | Agi+r ~ C; | X,

Lemma 8 yields C;| X ~ C;| X. Therefore, Ay | Agi+1 ~ A1 | A,. Since Agi+1 —
Azi D Agi+i €8 — 91, Lemma9 implies Agi+1 — Agi € & — 9. And since 4, — 4, ¢
& — 91, Lemma 11 implies A; | 42 < X | X. Therefore, by Axiom 7, the sequence
Ay, Ay, -+, Asi, --- must be finite, hence the given standard series must be
also.

8. Proof of Theorem 1. We begin with the following preliminary result.
Lemma 14. Suppose that (X, €, 9, > ) is a regular Archimedean system of qualita-
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tive conditional probability, that @ and P are the functions described, respectively,
in the corollary to Theorem 3 and in Theorem 4, and that TI C [0, 1] <s the image of
P. Then 11 has the properties that

(i) 0,1¢1I;

(i) fe,yelandz = y, then x — y e I;

(iii) f z, yeland x + y < 1, then x + y eIl
The function f defined by Q(A) = f[P(A)] for A ¢ & has the properties that

(iv) f s strictly monotonic increasing;

(v) f(0) = Oand f(1) =

(Vi) fx,y, 2,2, y,d e, 2,2 0,22 +y andd =2 + ¢, and if
f()/f(z) = f(«")/f(2") and f(y)/f(z) = §(¥)/f(Z), then f(z + y)/f(z) =
&'+ o)/f(Z). .

(vil) o m and n are positive integers such that m < n and if x £ II is such that
0 <z = 1/n, then mz and m/n e I and f(mz) = f(nx)f(m/n).

Proor. Parts (i) —(vi) are simple to prove. To show (vii) we use induction.
For n = 1, the result is obvious, so we assume n > 1. Let A be an event such
that P(4) = z < 1/n. Since

PA)=1—-PA)z (n—1)/n2 l/n = P(A),

A|X » A|X. By Lemma 13 there exists A, C A such that 4] X ~ A |X
and
P(A — A;) = P(A) — P(A;) = (n — 2)/n.

We proceed inductively to construct A = A;, A, ---, A, such that
A;|X~A|Xand, foris=j,A;nA; = &.Let B = Ui, A;. Clearly, P(B) =
nP(A) = nz > 0. By Lemma 13, there exists C such that 4 | B ~ C'| X. Since
Aju A2 |B > A|B ~ C| X, Axiom 8 implies that there exists C; D C such that
Aju Ay | B ~ C;| X. We claim that (C; — C) | X ~ A, | B, for otherwise C' | X
~ A | B implies, by Axiom 5, that C;|X = (C, — C) u C|X ~ A, u A,|B,
contrary to choice. So, (C: — C) | X ~ C|X. We proceed inductively to con-
struct C, D Cpey D -+ D Cy = C D Cy = & such that forz = 1, -+, n,
(Ci — Cim) | X ~ C| X. Note that

Ca|X ~ UL 4;|B~B|B~X|X
and so C, ~X Thus
1= P(X) = P(C,) = Z”_IP(C — Ci) = nP(C),

ie., P(C) = 1/n.Since A [B ~ C|X and A C B, the Corollary to Theorem/3
vields

f(@)/f(nz) = fIP(A))/fIP(B)] = Q(A)/Q(B) = Q(C)/Q(X)
= fIP(O)/AIP(X)] = f(1/n)/f(1).

Since this holds for n = 1 and since 1 =< m < n, afiniteinduction on property (vi)
yields
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f(mz)/f(nz) = f(m/n)/f(1).

The result follows from property (v). QED

Proor or TueEorREM 1. If for every positive integer n there exists an z ¢ I such
that 0 < ¢ £ 1/n, then by Lemma 14 (vii), m/n ¢ I for m =< n. Thus, all
rationals in [0, 1] are in II. Let » = m/n and s be any two rationals in [0, 1],
then x = s/n is rational and # < 1/n, so by Lemma 14 (vii), f(rs) = f(r)f(s).
It is well known that the only strictly monotonic increasing (part (iv)) solution
to this equation is f(r) = 7% where @ > 0. Furthermore, since the rationals are
dense in IT and f is strictly increasing, it follows that f(z) = z* for z ¢ II. So the
theorem is true in this case.

We therefore assume that there is some smallest = such that for all z ¢ II
withz > 0,z = 1/n. For some z, ¢ Il with 2, > 0, zo(n — 1) < 1, since otherwise
all z = 1/(n — 1), contrary to the choice of n. By Lemma 14 (i)-(iii),
1 —ax(n —1)eMand so 1 — z(n — 1) = 1/n, whence either n = 1, and so
II = {0, 1}, or 2y = 1/n. Clearly the theorem holds in the former case, and in the
latter y = 1/n e II. Let m be any integer < n, so 1/n < 1/m. By Lemma 14
(vii), 1/m eIl and so by part (ii), I/m — 1/n = (n — m)/mn ¢ II. Thus
(n — m)/mn = 1/n, and so n = 2m which is possible for all m < = only if
n = 2. So by Lemma 14 (ii), II = {0, %, 1} and for some «, f(3) = (})% QED
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