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THE PERFORMANCE OF SOME SEQUENTIAL PROCEDURES
FOR A RANKING PROBLEM'

By M. S. SrivasTavAa AND J. OGILVIE
University of Toronto

0. Summary. Srivastava (1966) has proposed two classes of asymptotically
efficient sequential procedures for selecting the population with the largest mean
when nothing is assumed about the form of the distribution functions except for
the finiteness of unknown variance. In order to choose between these two classes,
it seems desirable to study the performance of these two classes of sequential
procedures for moderate sample sizes. In this paper, assuming that these popu-
lations are normal, the average sample sizes and the error probabilities actually
obtained are computed to compare the two procedures. Results of calculation
show that Procedure B (see Section 2) is better than Procedure A in that the
average sample size is smaller while the error probabilities are almost the same
(the superiority of procedure B was suggested by Srivastava (1966) for a different
intuitive reason). At the same time the calculation helps to show the closeness of
the error probability (both cases) to a. The calculation is on the lines of Ray
(1957) and Robbins (1959) by generalizing a problem of the latter. Starr (1966)
has recently carried out calculations to study the performance of a sequential
procedure for finding fixed-width confidence bounds for the normal mean (see
also Chow and Robbins, 1965).

1. Introduction. Consider k normal populations Iy , I, , - - - , I ; I N (us, o),
where N (u;, ¢°) denotes a normal distribution with mean u; and variance o".
We assume that uy , us, -+ - , px , o are unknown parameters, and the best category
is the one with the largest u. Denote the ranked u’s by

(1.1) B = pp = S M-

The problem is to select the best category IIy , i.e., the category with mean
uix so that in each case the probability of making the correct decision exceeds a
specified value (say, 1 — «) when the greatest mean exceeds all the other means
by at least a specified amount (say, d2"). Here d and a are constants which are
specified by the experimenter in advance of the experiment on the basis of prac-
tical considerations. For this problem, ‘known as a ranking problem’, Srivastava
(1966) has proposed two asymptotically ‘efficient’ sequential procedures; both
satisfying

(1.2) limgo Pleliminating Ty | — se—n = 2] £ a
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PERFORMANCE OF SEQUENTIAL PROCEDURES 1041

In order to compare these two classes of sequential procedures we compute for
both procedures

(1.3) e(\) = Pleliminating Wy | upy — pp—y = d2Y,

the error probabilities actually attained. Also, we compute the average sample
size.

Corresponding to these two classes of asymptotically efficient sequential
procedures (see Section 2) we obtain two Stein’s (1945) two-stage procedures;
one of them has been proposed by Bechhofer, Dunnett and Sobel (1954 ). Another
sequential procedure has recently been proposed by Paulson (1964 ). Thus in all,
we have five sequential procedures for the problem. The latter three procedures
require a first stage sample to estimate the variance o”; the subsequent
observations are not utilized in estimating o’ It seems intuitively ineffici-
ent not to utilize all of thesample. Thus, it would be desirable to compare
these five procedures. Since no explicit formula of average sample size is avail-
able for Paulson’s (1964 ) procedure, a comparison is not possible. Also, there is
an arbitrariness in the choice of ‘A’ in Paulson’s procedure and it is not clear what
considerations, if any, one should use in choosing ‘N’. Of the four remaining
procedures only the two asymptotically efficient procedures proposed by Sriva-
stava (1966) will be compared. The two based on Stein’s two-stage procedure
are asymptotically less efficient (Seelbinder (1953)). Also Starr (1966) has
pointed out that a poor guess of initial sample size can be very costly in number
of observations with a two-stage procedure while a sequential procedure is
always reasonably efficient.

In the present investigation, the computation has been carried out for & = .05
and k = 2,4, 6. For k = 2 the two asymptotically efficient sequential procedures
are identical.

2. T - two procedures. Let X'” denote the sth observation from category
I (¢=1,2,---,kand s = 1,2, --.). We assume throughout the paper that
(X} is a sequence of mutually independent random variables. The random
variables X, are assumed to be normally distributed with mean u; and variance
o 2. Let

X9 = (1/n) 2ia X,
2.1) Vo= /mk) 2 fa Dt (X, — X, n>1,
m=mn — 1. /

We now describe formally the two procedures.

ProcepURE A. Forz > 0, let
22) @(—z) = @)} [,

Bin(—z) = [[ G hm + 1))/ Gomr)'T Glm)] [Z5 (1 + &/km)~ %m0 g,
Suppose constants a and a. are chosen so that

(2.3) ®(—a) = a/k — 1), Pm (—akm) = a/(k — 1).
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TABLE 1

Error probabilities and average sample numbers for k = 2 where the two procedures
are identical

A error probability average sample number

e(\) o)
0.75 .0150 3.01
1.00 .0347 3.85
1.25 .0509 5.00
1.50 .0610 6.51
1.75 .0661 8.42
2.00 .0677 . 10.74
2.25 .0671 13.48
2.50 .0655 16.63
2.75 .0635 20.16
3.00 .0616 24.07
3.25 .0599 28.33

TABLE 2

Comparison of error probabilities, e(\), and average sample numbers, O(\), for
Procedures A and B

k=4 k=6

* ea) eB(\) 040 [0F:10] ead) eB(\) 04 (:10N)

.75 .0275 .0283 3.68 3.44 .0345 .0350 4.00 3.65
1.00 .0504 .0496 5.38 5.00 .0515 .0505 6.20 5.65
1.25 .0591 .0576 7.78 7.22 .0529 .0521 9.22 8.42
1.50 .0589 .0577 10.86 10.09 .0506 .0504 12.97 11.88
1.75 .0562 .0554 14.57 13.57 .0493 .0493 17.38 15.97
2.00 .0537 .0533 18.85 17.61 .0489 .0490 22.47 20.67
2.25 .0522 .0519 23.70 22.17 .0489 .0490 28.22 25.98
2.50 .0513 .0511 29.10 27.24 .0490 .0490 34.65 31.91

2.75 .0509 .0506 35.06  32.85 .0494 .0492 41.63 38.42
3.00 .0505 .0504 41.57 38.97 — — —
3.25 .0503 .0502 48.66 45.63 — — — —

Then
(24) M G = @,

and the sequence {ai»} determines a member of the class @ of sequential pro-
cedures defined as follows:

(I) Sample one observation at a time from each population and stop accord-
ing to the stopping variable N defined by

2.5) N = smallest n > 1 such that V, £ d*n/apm,

where m = n — 1.
(IT) When sampling is stopped at N = n, select the population with the largest
sample mean as the best category.
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Procepure B. For z > 0, let
(26) Gi@) = @r) * 2 det2)? [T, [T -+ [Tuexp Bu'Z Ul duy - - - duss
@) (2, ([257 &  at) e de,

where U' = (Uy, -+, Up) follow a joint distribution with zero means and
covariance matrix Z,

It

1§ - 4
z=[? 1!
Py
and; let
p (x) _ 2(k—1)12r(%(km + k — 1)) +x/+x /+I
fom ER(Emkm)EDRT (3km) Vo S 0

420k — D)(Em)T (6" —2/(k— 1)
(2.7) D ici b tj)]_g(kmﬂc"l) dty -+ db—

= oyl [ ][ (/ e e_‘2’2dt>k_l

—52]2 2 /o \km/2—1 —u?[2
e dz]u(u/Z) LT R g

where T = (T, ---, Ts1) follow a joint multivariate ¢-distribution. Suppose
constants ¢ and ay, are chosen so that

(2.8) G@*) =1—a  Gm@) =1—a

Then

2.9) iMoo G = @™

The Steps (I) and (IT) for Procedure B are the same as for A except that in (2.5)
axm is replaced by Qim

3. Preliminaries for procedures A and B. Define
U = (X — w)/o, i=1,2,k j=12-",n,
@1) YO =0+ -+ U= UGG+ D), =120 — 1,
Yn(i) — ,n—%(Ul(i) o+ Un(i)> — n%(Xn(l) _ IJ«i)/O'-

Then U;? are independent N (0, 1) and since the transformation to the Y,

j =1,2,.--,n,is orthogonal, the same is true of Y. From (2.1) it is easily
seen that
(3:2) Vo= (0*/km) Zia 25 Y™, m=mn-—1,

where Y5 * are independent chi-square with one degree of freedom. V, can also
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be written as

(3.3) Va= (26°/km) X psZs, m=mn—1,
where Zg’s are independently and identically distributed with density
(3.4) {1/T (k/2)}2"* e, z> 0.

For computational convenience, we will consider in this paper the case when &
is of the form

(3.5) k=204 1), r=0,1,2 -

Consequently from (2.5), N is the first positive integer n = m + 1 > 1, such
that

(3.6) SV Zs £ 4+ 1)(m + D)m/Ntim = i,
where
(3.7) N=o/d,  bupsr= 4+ 1)m + 1)m/Nain .
Let pm (N, 7, k) be the probability that mn is the first positive integer for which
3.8) Zi+ o o E bngien

Then, from a generalization of Robbins’ (1959) result (see Srivastava (1967)),
we have

(3.9) Pm = Fu(0) — Fupi (=),
where
(3.10) Fi(o) =
Fr(») = e"”" @@+ 1)) 25T e (bm), m z 2;
(3.11) m(zx) = 2,
I (@) = 2r5 7 (@ = b)) T R (b)), % Z bw,m =2,3, -,

where i (bn) = (d°/dz’)hm ()] o=, -

In the expressions (3.9), (3.10) and (3.11), for convenience of notation, we
have omitted the arguments \, 7, @im .

For computational purposes, we need to simplify (3.11) further for

m =23+ ,bp=zzandr = 0,1, 2.

Forr =0
(3.12) (@) = 22550 (6 = b0) (G1) ey (0n);
forr =1

(3. 13) b (@) = D72 (@ — bu)"1(2)Y P (Bm)
+ D2 (@ = b)) P1@F 1) e ()
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forr = 2
b (@) = 2275 (@ = b)) (35) ) h (b))
(3.14) + 2005 @ = b)Y+ D, ()
+ 20 @ = b)) PG 4 2) TR, (b).

To solve (3.13), a recurrence relation similar to (3.13) is needed for #,,". Tt
can be obtained by differentiating (3.13). Similarly to solve (3.14), the recur-
rence relations needed for h,,(z) and £, (x) can be obtained by differentiatin @
(3.14) twice.

4. Evaluation of error probabilities ¢(\) and average sample number. Let 6.
denote the parameter configuration upy = pp—y + d2% and let 6" denote the
parameter configuration w = u; + d2° for J=12 -k — 1. It is obvious
from the symmetry of the sequential procedure that

(4.1) e(\) = P [incorrect decision |8,
= P [l is eliminated |8,

Let

(4.2) peo= b A2 v =12 e k=1,

N = o/d,
43) puN, 7 tem) = PN =m+1);  p. 0 ai) = Pu(N =m + 1),

where P, and P denotes the probabilities under Procedures A and B respectively .
Then (see Srivastava (1966)) for procedure A\, ¢, (N, 1) is given by

ea(\ 1) = (b — DPIN'(Xy™ — Xy — 4,2))/02) £ —dN /o | 8.7
(b — 1) 2omaa Pl 4 1) (X — X0 — 4,28 /o2
—d(m + 1)/o| 65 N = m + 1pu (N, 7y @)

(I — 1) Domet P O\, 7, )P (— (0 4 1)¥/N),

since (X, — X,) is independent of V,_, .
Similarly, for Procedure B, ez (), ) is given by

es(\, 1) £ PIN* (X" — X% 4+ 4,2H/02° > dNY/s for all
4.5) v=1,2, -,k — 1]8%
= 1= 20 O 7, al)G(On 4 1Y),
& and G have been defined by (2.2) and (2.6) respectively.
The average sample numbers for the two Procedures A and B are respectively

given by

(4.6) Oa(N 1) =14 Do ympu(\, 7, Qi)

=14+ 20 Fun (=)

(4.4)

A

I
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and
4.7) Os(\ 1) = 14 Do mpn™ (N, 7, Gem)
=1+ D> Fras().

5. Computational procedure. First the values of aim and airn were obtained
for r = 0, 1, 2 and for m = 1, 2, , 65 with @ = .95. There are no special
problems in calculatlng Ctom -« The im Were obtained by mverse iteration using
the secant method with an absolute error criterion of 107, Starting values were
taken from the table given by Dunnett (1955) to minimize the number of iter-
ations. In calculating Gin(x) Romberg integration (see, e.g., Ralston (1966))
was used for the two outer integrals. The innermost integral is a normal error
function and a rational approximation was used. The maximum limits for the
outer most integral were 0 and 17 with a convergence criterion of 107° relative
error. The limits for the second integral were —7.5 and 7.0 with a relative error
criterion of 107", In both cases the limits were reduced automatically as long as
the function value was less than 10~°

The polynomials %, (x) were calculated recursively. The values increase rapidly
with m and require scaling. The original scaling is easily recovered when calcu-
lating the Fm,-x (). The individual terms of the series defining the h.n(x) being
of the form (v — b,)’/j! have to be computed logarithmically to avoid overflow.

The number of terms required to compute ex (N, r) and O, (A, 7) was found to
depend primarily on X. The series oscillate when 7 is 1 or 2 so that a certain
amount of trial and error was needed to determine the appropriate number of
terms. The final choice was 20 terms for \ less than 1.5, 40 terms for A between
1.5 and 2.0 inclusive and 65 terms for N greater than 2.0. The values in the table
forr = 2, N = 3.00, 3.25 were omitted because of the overflow problems that
were encountered despite scaling.

The numerical accuracy of the computation was tested by perturbing the
b N by a rectangularly distributed random relative error in the interval (—10~*
107™) for N = 1.0, 2.5 and r = 0, 1, 2 for both procedures. The maximum effect
of the perturbation on the values of es and O, was 1 in the fifth significant digit.
The results of the computation are therefore probably good to 4 digits and
certainly to 3.
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