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MULTIVARIATE EXPONENTIAL-TYPE DISTRIBUTIONS

By SuEELA BIiLpikar! axp G. P. PaTIL

McGill University and The Pennsylvania State University

1. Introduction and summary. Let x and 6 denote s-dimensional column vec-
tors. The components 2; , 2, - - - &, of X are random variables jointly following
an s-variate distribution and components 6;, 6, , - - - , 8, of 8 are real numbers. The
random vector X is said to follow an s-variate Exponential-type distribution with
the parameter vector (pv) 8, if its probability function (pf) is given by

(1.1) f(x,8) = h(x) exp {x'6 — ¢(0)},

xeR;and 8¢ (a,b) C R, . R, denotes the s-dimensional Euclidean space. The
s-dimensional open interval (a, b) may or may not be finite. 4(x) is a function of
x, independent of 8, and ¢(6) is a bounded analytic function of 6; , 6, , - - - 6, ,
independent of x.

We note that f(x, 0), given by (1.1), defines the class of multivariate expo-
nential-type distributions which includes distributions like multivariate normal,
multinomial, multivariate negative binomial, multivariate logarithmic series,
etc.

This paper presents a theoretical study of the structural properties of the class
of multivariate exponential-type distributions. For example, different distribu-
tions connected with a multivariate exponential-type distribution are derived.
Statistical independence of the components z; , z; , - - - , x, is discussed. The prob-
lem of characterization of different distributions in the class is studied under
suitable restrictions on the cumulants.

A canonical representation of the characteristic function of an infinitely
divisible (id), purely discrete random vector, whose moments of second order are
all finite, is also obtained.

@(t), m(t), k(t) denote, throughout this paper, the characteristic function
(ch. f.), the moment generating function (mgf), and the cumulant generating
function (cgf), respectively, of a random vector x. The components ¢; of the
s-dimensional column vector t are all real.

2. Preliminary discussion. The mgf of a random vector x with pf f(x, @),
defined by (1.1), can be obtained as

m(t, 0) = exp {g(6 +t) — q(8)},te(a — 0,b — 0).
Therefore the cgf of x becomes

k(t,8) = q(6 4+ t) — g(6).
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Let (R.) denote the following recurrence relation between the cumulants
Nriirg.--r, (8) of X with pf f(x, 0):

Aoy ritlirigrsee s (8) = (8/00:) Ny rgee,r, (0) (R.)

foralli = 1,2, ---  sandall7; = Osuch that > 3r; = 1.

Patil [11] has shown that (R.) holds between the cumulants of x if and only if
f(x,0) is given by (1.1). He has also shown that the cgf of x in this case is given
by
and that

(2.1) Nryirgeeeer, (8) = TTica (97/06%)q(0).

Since ¢(0) is analyticin 6, it follows that the cumulants \,, s, ....»,(8), of all orders
are analytic functions of 8. Therefore we can obtain the Taylor series expansion
of Nr,ry,..r,(8) in the neighborhood (nbd) N(6,) of some 8, ¢ (a, b)as

o

(2.2) My () = 2070 Do irbighertiymi Mepti rabig.eeerocis

“(80) (61 — B0)™ (2 )" -+ (8, — o) (3, 1)
for all 6 £ N(0).

We assume, henceforth, that the random vector x follows s-variate exponential-
type distribution given by (1.1) and that (R.) holds between its cumulants. The
result (2.2) provides a leading argument in the proofs of most of the lemmas and
theorems of this paper. Certain results of a similar nature for the uni-variate case
are available in Bolger and Harkness [3].

Lemma 2.1. If m(t, 8) is degenerate for some 6, € (a,b), then m(t, 8) is degenerate
forall & (a, b).

COROLLARY. If Njry,...r,(8) s positive for at least one 6oe (a,b), then
Nr1ira,-eery(0) 8 positive for all 8 £ (a, b).

Lemma 2.2. If m(t, 8) corresponds to normal distribution for some 6, ¢ (a, b),
then m(t, 8) corresponds to normal distribution for all ® & (a,b).

3. Statistical independence of the components.

THEOREM 3.1. Let x = (z1, x2)" be a bivariate exponential-type random vector
with parameter vector & = (6; ,6;)’, then x; , x» are independent if and only if they are
uncorrelated.

Proor. If 2, , 2, are uncorrelated, we get their covariance ui(8) = A\1(6) = 0.
Since the cumulants follow (R.), Mi1(8) = 0 implies that \,,,,(0) = 0 for all
r1, r2 = 1. Therefore the cgf

Bt , ) = 2271 2orirgmr Meyrg (0)870 772 (ry Uy 1)
becomes ’
E(t, ) = 2.5 M o(0) 0 ()™ 4 Do N, 72(0)8728™2(r 1)

= k(tl ) 0) + k(Oy t2)y

from which follows the theorem.
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TuroreMm 3.2. The random variables x; , %z , « - - , &5 following jointly an s-variate
exponential-type distribution are mutually independent if and only if they are pair-
wise tndependent.

Proor. The cgf of the random vector x is given as

k(t) = :O=1 Zrl+"'+7‘a=7‘ xrl,rz‘...,rs(e)irtlntzrz [P tsrs(rl ! r2! ce e 7 1)_1_

The pairwise independence of the variables wx;, @, ---, x; implies that
Myrgeerr(0) = 0 where 7; = Qor 1 for7 = 1,2, ---, s such that D= 2.
Therefore, by (R.) among the cumulants, we have A\, r,,...,,,(6) = 0 for all

r, Ty, -+, 7s = 0such that at least two of 71, 72, - - -, 75 are nonzero and that
s
Zl i ; 2.

B(t) = D5t [Dr21 Nosoyeeers,0,0,0(0) 7387 (5 7.

The fact, that (a’”‘/aei’"‘)xo,o,...”,o,...,O(e) = O forall 7 > jand all £ = 1, implies
thﬁ,t )\0,0,...1j,0,...,0(0> = )\o,o,...rj,oy...,o(ej) for all] = 1, 2, crc, S,

k(t) = Z;=l [Zr,gl )\o,o,.‘.rjyoy...,o(aj)irjtjrj(Tj !)_1]
k(t.,0,---,0) +k(0,¢,0,---,0)+ -+ +Kk(0,---,0,¢)
k(t) = 21 ki(t)

where k.(f;) denotes the cgf of a univariate exponential-type distribution with
parameter 6; . From this follows the statement of the theorem.

(3.1)

4. Distributions derived from an s-variate exponential-type distribution. Let
u and A denote the mean vector and the variance co-variance matrix of the ran-
dom vector x. Therefore u = (uy, - -+ ,us) and A = (Ni;) with wi = Ao, 01,....0(0)
(with 1 in the 7th position) Ni; = No,... 0,1,0,-+,0,1,0,---,0(8) for ¢ = j (with 1 in the
1th and jth positions) and Ni; = No,... 0,2,0,.-.,0(0) for¢,j7 = 1,2, - -+ | s (with 21in
the ¢th position ). Let the vector x be partitioned into vectors x = (x;,X,)” where
x1= (21, ;2,),p <s,andxs = (Tpr, -+ ,2)

Let the corresponding partitions of w and A be w = (w , w:)” and

(Au Am)
A= .
A A

TuEOREM 4.1. If a random vector X with pv 6 follows s-variate exponential-type
distribution with the mean vector w and the variance co-variance matrix A, then the
marginal distribution of any set of components of X is again multivariate exponential-
type with the mean vector and the variance co-variance matrix obtained by taking
proper components of u and A. )

Proor. Let x, u and A be partitioned as indicated in the beginning of the
section. ,

If k(ty, t2, -+, t;) denotes the cgf of x, then the cgf of x; is obtained as
k(t17t27"' ylpy 0y et 70)
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k(t17t27"'7t11707“'70)

= Z:‘LI [ZT1+"'+1‘p=T )\Tl,...,fp,o,...,o(ﬁ)irtlrl e tprp<7’1 le.. Tp 1)_1.

The cumulants M\, ry,... r.0,.-.,0(0) obviously follow (R.); therefore, the cgf
E(ty, to, -+, tp, 0,--+, 0) corresponds to the p-variate exponential-type
marginal distribution of x; . It can be seen, by a similar argument, that the rest
of the theorem holds true.

THEOREM 4.2. If x = (X1, X;)' follows s-variate exponential-type distribution
with pv 8, then the conditional distribution of X1 given X, is p-variate exponential-
type with pv 6y .

TuEOREM 4.3. Let x = (%1, X2)' have an s-variate exponential-type distribution
with the mean vector u and the variance-co-variance matrix A. Then X, is independent
of X, if and only if each covariance of a variable from x, and a variable from X, s
zero.

Proor. Necessity of the condition is obvious. The sufficiency can be proved as
follows. By assumption we get M\y,rp,....r,(8) = O where r; = 0 or 1, for
1= 1,2, ... ,ssuch that > Fri=1and > ¢ i = 1.Since the cumulants follow
(R.) the cgf of x becomes

k(t) =k(t19"'7tp707"';0)+k(07“'707t11+17"'7t8)
kl(tl)+k2(t2)

where ki(t;) and k.(t;) denote the egf’s of the marginal distributions of x; and x, .

CoroLLARY. If x follows s-variate exponential-type distribution with pv 6 and
if a set of components of X is uncorrelated with the other components, then the marginal
distribution of the set is multivariate exponential-type with the parameter vector ob-
tained by taking proper components of 0.

5. Characterization of a class of exponential-type distributions. In this section,
first we obtain the characterization of a class of univariate exponential-type
distributions and then extend the argument to the s-variate case. We may re-
mark that we establish here a conjecture made by C. R. Rao [12] while studying
certain discrete models arising out of methods of ascertainment.

TuEOREM 5.1. Let \(8) and N2(8) denote the first two cumulants of an exponential-
type random variable x with the parameter 0, then the relation N\(8)/M(6) =
1/(1 + dé®), where d is some real number, holds true if and only if the corresponding
distribution is either binomial, Poisson or negative binomial. Further, the distribu-
tion s binomial, Poisson or negative binomial according as d is positive, zero or

negative.
Proor. Let the pf of « be given by
(5.1) f(z, 8) = h(z) exp {20 — q(6)}.

The characterizing relation can, therefore, be written as

(5.2) (d*/d6%)q(8)/(d/d8)q(8) = ¢"(6)/¢'(6) = 1/(1 + deé’).
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We note that (5.2) holds true for binomial, Poisson and negative binomial with
d = 41, 0 and —1, respectively.

Tet ¢"(8)/¢'(8) = 1/(1 + de’) be given. We consider two cases, d = 0 and
d # 0.

Case1.Ifd # 0, ¢(6) = (k/d) log (1 + dé’) + ¢ where k > 0 and ¢ are con-
stants. Therefore the ch.f. will be

(5.3) o(t, 0) = &0 (pe™ 4 ge)M
= (1) -u(2)

where p = de’/(1 + de’) and ¢ = 1/(1 + de®) such that p + q =1, and
ei(t) = ™" denotes the ch.f. corresponding to a degenerate distribution.
Following Lukacs [8], we note that

(a) When p and ¢ both are positive, ¢,(¢) is a ch.f. if and only if k/d is a
positive integer. Therefore d is positive and ¢ (¢, 6) denotes the ch.f. of a binomial
distribution.

(b) When p and g are of opposite signs, ¢,(¢) is a ch.f. if and only if k/d is a
negative real number. Therefore d is negative and ¢(¢, ) denotes the ch.f. of a
negative binomial distribution.

Case 2.Ifd = 0, ¢(0) = ke’ 4 ¢’ where k > 0 and ¢’ are constants. Therefore
the ch.f. ¢(t, §) = exp { —ke’ + ke’™*} which is the ch.f. of a Poisson distribution.

We, now, obtain the multivariate analogue of the result proved in Theorem 5.1.

THEOREM 5.2. Let x be an s-dimensional exponential-type random vector with
pv 0. Then the relation,

Dot Dia N/ 2t = 1/(1 4+ d(Xie®))

where d ts some finite real number, holds true if and only if the corresponding dis-
{ribution s multinomial, multiple Poisson or multivariate negative binomial.
Further, it is multinomial, multiple Poisson or multivariate negative binomial ac-
cording as d is positive, zero or negative, respectively.

Proor. Follows on the lines similar to those of Theorem 5.1.

6. Characterization of multivariate normal distribution. An exponential-type
random vector with pv 0 is said to follow s-variate Normal distribution if its
ch.f. is given by

o(t, 0) = exp {it'u — Lt'>t)

where the components u;of u are functions of 8 and = = (oy;), with ¢ constants,
is positive definite or semidefinite. Therefore the cgf of x is k(t, 8) =
ity — L'zt ' .

THEOREM 6.1. An s-variate exponential-type distribution is s-variate normal if and
only if all the cumulants of order 3 are zero.

Proor. Straight forward.

REMARK. We define an s-variate distribution to be symmetric if all the cumu-
lants of odd order =3 are zero. We note, here, that in the class of s-variate ex-

’,
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ponential-type distributions s-variate normal distribution is the only symmetric
distribution.

TureoreEM 6.2. Let f(x, 0) denote the (pf) of a bivariate exponential-type random
vector x and pv 0. Then f(x, 0) s the pf of a bivariate normal distribution if and only
if following conditions are satisfied:

(i) The regression of one of the two variables on the other is linear.

(ii) The marginal distribution of any one of the two variables is normal.

Proor. See the proof of the next theorem.

TureoREM 6.3. The pf f(x, 0) of an s-variate exponential-type random vector X,
with pv 0, is the pf of an s-variate normal distribution if and only if following con-
ditions are satisfied:

(iii) The regression of one of the variables on the rest is linear.

(iv) Rest of the (s — 1) variables are distributed normally in pazirs.

Proor. The necessity of the conditions is obvious. By condition (iii) we get

E(m |2y, 25, -+, %) = ogs + a3 + -+ + s + 6.

ag, -+, as are nonzero real numbers and @ is some real number. In general
putting 8 = 0 and taking the expectation wrt z,, 3, - - , z; , we get

(6.1) )\1,0,...,0(9) = ag)\o,l,oy...,o(o) + 0[3)\0,0,1,0,...,0(9) + e + as)\o,...,o,l(ﬂ).
By condition (iv), we know that

(6.2) N, 72, - ,7(0) =0 for D.sr;=3 with r,---,r, = 0.

It can be verified, with the help of (6.1), (6.2) and the fact that the cumulants
Nryrareeor () follow (R.), that all the cumulants N\, s,,...,»,(8) of order =3 are
zero. The statement of the theorem follows from Theorem 6.1.

TuEOREM 6.4. The pf f(x, 0) of a bivariate exponential-type random vector X with
pv 0 s the pf of a bivariate normal distribution if and only if following conditions are
satisfied:

(v) The regression of one of the two variables on the other is linear.

(vi) The distribution of x; + x, is univariate normal.

Proor. The necessity of the conditions is obvious. To prove their sufficiency,
we note that condition (v) implies that the cumulants ., .,(0) of x satisfy
Ami1,2(0) = aAm.ny1(0) where a is the regression coefficient. Now let

Bt 1) = 227 [ ritramr Mepra(0) 867" (ry L 1) 7]
denote the cgf of x. Also, the cgf k(¢) of 2; + . is obtained from k(¢ , &) by
substituting ¢, = &, = .
k(t) = T:l [Zr1+r2=r )\rl,rz(o)irtr(ﬁ ! T2 ')_1]

By condition (vi), we know that the cumulant of order 2 of x; + , is positive
and all the cumulants of z; + x, of order >3 are zero.

)\30(0) + 3)\21(0) + 3)\12(0) + )\03(0) = O,
(1 4+ a)0(0) =0  where a # —1.
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Therefore A\30(6) = 0 and consequently all the cumulants of order 3 of f(x, 0)
are zero. Hence, by Theorem 6.1, it follows that f(x, ) is the pf of a bivariate
normal distribution.

7. Infinitely divisible distributions. Dwass and Teicher [4] have discussed
the following canonical representation of an id ch.f. as follows:

The function ¢(t) = @(t1, ta, -+, t;) is an id ch.f. if and only if it can be
written as

(7.1)  o(t) = exp {at'y — Lt'=t
+ e, (™ — 1 — it'x(1 + [z[)) (L + [«[*)[«| 7 dG(x)}

where y and t denote the s-dimensional column vectors with the components
Yi,%Y2,  ,¥sand &y, &, - -+, i, real numbers. Z denotes the positive definite
or semidefinite matrix and pe(4) = f 4 dG(x) is a finite Lebesgue Stieltjes meas-
ure on the Borel sets of R, such that pg(A) = 0for A = {x | [z| = 0}. |z| denotes
the Euclidean length of the s-dimensional vector x. The representation (7.1) is
unique. The first factor in (7.1) is obviously the ch.f. of an s-variate normal dis-
tribution and the second factor corresponds to the ch.f. of an s-variate Poisson
type distribution.

P. Lévy [7] has shown that every id s-dimensional random vector x ~ x; + X,
where x, represents the discontinuous part of x and x; represents the continuous
part and depends upon Gaussian law, besides being independent of x, . Therefore
the ch.f. of an id purely discrete random vector x can be written as

(72) o(t) = exp {[r, (" = 1 — adt'x(1 + [«[)7(1 + [[") ]2 dG(x)}.

We shall now obtain the canonical representation of the ch.f. of id, purely
discrete bivariate random vector, whose moments of second order are all finite.
Then we extend the result to the s-variates, s > 2.

THEOREM 7.1. The function ¢(ty , t2) is the ch.f. of a bivariate, purely discrete, id
random vector x with all the moments of second order finite if and only if it can be
written as

o(ts, ta) = exp {i'B + [r, (e** — 1 — it'’x) dF (x)/ (21 + 22)°}
where = (81, Bs)" with By , By real. pp(A) = f 4 dF (x) is a finite Lebesgue Stieltjes
measure on the Borel sets of Ry such that pp(A) = 0 for A = {x||z| = 0}. The
representation s unique.
Proor. By assumption the moments of second order of x are finite. Therefore
the cumulants Ny , i1, Aoz are finite and the cgf k(¢ , &) can be partially differ-

entiated twice. Assuming that ¢(t , t2) has the representation (7.2) with s = 2,
we form the second central difference quotient

A"k (0, 0)/(2h1)°
wrt t; and conclude that

(7.3) limy, 5o [A2"%(0, 0)/(2h)*] < ce.
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Noting the fact that ¢(# , ;) admits the representation (7.2) and using (7.3), we
obtain

Jrs (1 + [2) e[ dG(x) < .
Similarly, using the fact that \; and Ny, are finite, we obtain
Jro@(1 + |2)[2]?dG(x) < o and [r, 2°(1 + ||| dG(x) < <.
Thus, it can be seen that the integrals,
[ (1 + |2*) dG(x) and [ o2 + 2wy + 2°) (1 + |2) |2 dG(x),
are finite. Also, the integrals fR2 x; dG(x) and sz X2 dG(x), are finite. Therefore

writing '3 = sz it'’x dG(x), where 8, , 8. are real numbers, the representation
(7.2) of o(t; , t;) can be written as

o(t, ) = exp {it'8 4 [r, (™™ — 1 — it'x) dF (x) /(21 + )"}

where pp(4) = [4dF(x) = [4 (2" + 20@ + 2°) (1 + [2)|z[? dG(x) is a
bounded, non-negative, countably additive set function which is uniquely deter-
mined by ¢({; , t;) and is such that

ur(A) =0 for A = {x]||z|] = 0}.

ReMmaRrK 1. The function ¢(t) is the ch.f. of an s-dimensional, purely discretes
random vector, whose moments of second order are all finite, if and only if it can
be written in the form

(7.4) o(t) = exp {3 + [o, ("™ — 1 — it'’x) dF (x)/(2 1 w:)°

where § is the s-dimensional column vector with 8; real for< = 1,2, --- , s and
ur(A) is a finite Lebesgue Stieltjes measure on the Borel sets of R, such that
pr(A) = 0for A = {x||z| = 0} and that it is determined uniquely by ¢(t).

ReMARK 2. Noting the fact that [, (1 + [z[*) dG(x) is finite, we define
uw(A) = f 4 dk(x) = f 4 (1 + [z[)) dG(x). Therefore the canonical representa-
tion of the ch.f. of an id, purely discrete random vector, with all the moments of
second order finite, becomes

o(t) = exp {it'8 + [r, e** — 1 — it’x) dk(x)/|z["

where p;(A) is a finite Lebesgue Stieltjes measure on the Borel sets of R, such
that w{x | x| = 0} and such that it is uniquely determined by ¢(t).

We note that this form is analogous to the Kolmogorov cononical representa-
discussed by Lukacs [9], p. 90.

THEOREM 7.2. If o(t) is the ch.f. of an id, purely discrete random vector x, whose
moments of second order are all finite, then

=22 My 201 8%/08F + 20k 8°/0t:085] log o(t)

is also a ch.f. Y Nri,rg,oeor, denotes the summation over all the cumulants of x of
second order.
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Proor. Follows immediately from the canonical representation (7.4) of o(t).

8. Characterization of bivariate Poisson-type distribution. The ch.f. of a
bivariate Poisson vector x with parameters a; , az, a1z is given by

ex(t) = exp {a(e™ — 1) + ax(e™ — 1) + (e — 1)},

For a; = a; = 0, ox(t) = exp {an(e™* — 1)} represents the ch.f. of two
Poisson random variables with means, variances and co-variances equal to a .
Consider, in such a case, the linear transformation y = Ax — b where

A - <a1 0)’ b - <bl
0 [¢2 by

with a; , as , b1 , bs real numbers such that a;a, > 0.
(8.1) s gy(t) = exp {an(ef T — gt'c — 1)}
where
¢ = ap-b.
We define y to be bivariate Poisson-type if its ch.f. is given by (8.1). The mgf of
y will be
m(t) = exp {ap(e"™ ™ — t'c — 1)}.

LEmMmA 8.1. If m(t, 0) s the mgf of a bivariate Poisson-type distribution, for
0 c (a, b), then m(t, 0) is the mgf of a biwariate Poisson-type distribution for all
0c(a,b).

Proor. Given

Mo — M/a
m(t, 00) = exp !()\11/0/1(12)(6“(”-”2“2 _ 1) + t/< 10 11/ 2)}
. L N — )\11/0,1

where the cumulants N\, Mo, A are functions of 8, and a; , a» are nonzero real
numbers. We also know that

Mepra@ = 0@ Ni(00) = 0 forall r,m =0
such that ry 4 7. = 2. Therefore if we show that
Meiyra(0) = a1 e A (60) for all ¢ (a, b),

then the statement of the lemma will follow. This can be proved by induction.
LeMMA 8.2. Let o(t, 00) denote the ch.f. of a bivariate, purely discrete, id random
vector x and let the following relation

Nrpra(80) = " a \u(00) 0 for 2= 141 £ 4,

P
hold true; then ¢(t, 80) represents the ch.f. of a bivariate Poisson-type random vector.
Proor. We know by hypothesis that

(9.2) &(t,00) = — (EAE(80))7'[0°/0t:" + 20°/0t:0t, + 8°/t:"] log o (t, 00)
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A20(0p) Au(60)\ /1
EAE(6) = (1 1) <
Mi(09)  Ne2(80)/ \1
represents the ch.f. of a certain distribution function F(x, ).

Let w and 2 denote the mean vector and the variance co-variance matrix, re-
spectively of F(x, 6,). It can be verified

Mepore(80) = @1™ @™ Aia(0o), 2 n+nrn4

a 00
u= and X = .
(2] 0 0

Thus &(t, 8,) represents the ch.f. of a degenerate distribution with one mass
point a = (ay, az)’; and the lemma follows after same argument.

TaEOREM 8.1. If ©(t, 80) s the ch.f. of a bivariate, purely discrete, id random
vector x whose cumulants follow the relation, Ny, (00) = @™ a2 "\1(80) = O for
2 21+ 1 £ 4, then o(t, 0) is the ch.f. of a bivariate Poisson-type random vector
forall 0 e (a,b).

Proor. Follows from the Lemmas 8.1 and 8.2.

THEOREM 8.2, If Ay ry(8) = & -0 A (8) = 0 for (11, m) = (2,0),(0,2)
and (2, 2) and for all 8 £ (a, b), where \,,,(0) denote the cumulants of a bivariale
exponential-type random vector x, then x follows bivariate Poisson-type duistribution.

Proor. We can show by induction that

>\r1+1,r2+1(0) = a1"~a2”)\11(0) for T1, T2 g 1,

Art1,0(0) = aiMas Au(8) for =

where

that

1
)\0,72_*.1(0) = 0272(11_1)\11(0) for rp, = 1.
)\71172(0) = Tt 12_1)\11(0) forall r,7n =0

such that r; + r» = 2. Therefore the cgf of x becomes

Ao(0) — )\11(0)az_l>

_ 105 =1/ it’'a __ it
k(t,0) = Mu(0)(a1a2)” (e 1)+ it <)\o1(0) — Mu(0)as™

Therefore ©(t, 8) = exp {k(t, 8)} determines the distribution of x to be bi-
variate Poisson-type.
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