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ON A CLASS OF ALIGNED RANK ORDER TESTS IN TWO-WAY
LAYOUTS!
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1. Summary and introduction. The present investigation is concerned with
the formulation of a multivariate approach for the construction of a class of
aligned rank order tests for the analysis of variance (ANOVA) problem relating
to two-way layouts. The problems of simultaneous testing and testing for or-
dered alternatives based on aligned rank order statistics are also considered.
Various efficiency results pertaining to the proposed tests are studied.

Let us consider a two factor experiment comprising n blocks, each block con-
taining p(= 2) plots receiving p different treatments. In accordance with the
two-way ANOVA model, we express the yield X;; of the plot receiving the jth
treatment in the 7th block as

(11) Xii=“+a’i+7j+€ij7 i=17"'7n7j=17"'7p;

where p stands for the mean effect, aa, ---, a, for the block effects (may or
may not be stochastic), 71, - -+, 7, for the treatment effects (assumed to be
non-stochastic), and e;;’s are the residual error components. It is assumed that
e = (€a, -, €p), 1 = 1, ---, n are independent and identically distributed
stochastic vectors having a continuous (joint) cumulative distribution function
(edf) G(x1, ---,x,) which is symmetric in its p arguments; (this includes
the conventional situation of independence and identity of distributions of all
the np error components as a special case). We may set without any loss of
generality 2> 7 7; = 0, and frame the null hypothesis of no treatment effect as

(1.2) Hyimm= - =1, =0.

The usual ANOVA test based on the variance-ratio criterion is valid only when G
is a p-variate (totally symmetric) multinormal edf. For arbitrarily continuous
cdf G(21, « -+, 2p), intra-block rank tests are due to Friedman [7], Brown and
Mood [3], and Sen [21]; generalizations of these tests to incomplete layouts are
due to Durbin [6], Benard and Elteren [1], and Bhapkar [2]. Hodges and Lehmann
[9] have pointed out that intra-block rank tests do not utilize the information
contained in the interblock comparisons, and hence, are comparatively less
efficient. They have suggested the use of ranking after alignment and also con-
sidered the Wilcoxon’s and Kruskal-Wallis tests based on aligned observations
whose asymptotic efficiency have been studied very recently by Mehra and
Sarangi [14]: (After the first draft of the paper was submitted, the author came
to know through the editor about the paper by Mehra and Sarangi [14], submitted
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1116 PRANAB KUMAR SEN

earlier to the Annals. In view of this, the overlapping part is not considered
here.) The object of the present investigation is to formulate briefly the theory
of rank order tests based on observations after alignment and through a mul-
tivariate approach to justify the validity and efficacy of the proposed tests
(which include the earlier works as special cases).

2. Preliminary notions. Let us define the aligned yields and errors by
(21) Yy = X laciXa, eij = D FacCien, cii = 6 — 1/p,

fori=1,---,n,j,l =1, ---, p, where §;;is the Kronecker delta. By definition
(en, -+, €ip), 1 = 1, ---, m, are n independent and identically distributed
stochastic vectors having a continuous cdf G*(xy, -+ -, ¥,) which is also sym-
metric in its p arguments. Thus, if Hyin (1.2) is true, Y = €i5,5 = 1, ---, p,
are interchangeable random variables for each (= 1, ---, n). On the other
hand, if Hyis not true, Y;; = 7; + es;,j = 1, -- -, p, are interchangeable only
after shift in locations. Thus the test for the null hypothesis (1.2) reduces to
that of testing the interchangeability of (Y, -+« , Yip), (£ =1, .-+, n) against
shift alternatives.

In this paper, we shall specifically consider the case p > 2. For p = 2, the
problem reduces to that of the one sample location problem to which known
solutions exist (cf. [22]). Let us arrange the N(= np) observations Y.;,j = 1
-+-,p,%7 =1, .-+, nin order of magnitude, and let R;; be the rank of Y,; for
j=1,---,p,i=1,-++,n. (Since,ex, - - - ,€i are interchangeable random vari-
ables it follows that if their joint distribution has the rank >1 (or is absolutely
continuous), ties among Y;’s may be neglected, in probability. In the sequel
(cf. after (3.8)), it will be assumed that the rank of this distribution is >1.)

For every N, we define a sequence Ey = (Eyi, -+, Eyn) of rank functions
where
(2.2) Exe = Jy(a/N), 1=a=N;

the function Jy being defined in accordance with the Chernoff-Savage [4] con-
ventions, and it satisfies the conditions (¢.1)—(c.5) of Sen [19]. Thus, it is assumed
that limy..Jx(u) = J(u) exists for all u: 0 < u < 1 and is not a constant.
Besides, among other conditions it is also assumed that |J7 (u)| = |(d"/du”)J (u)]|
< Klu(l — )]0 <u < 1), forsomes >0, K < wandr =0,1. We
define Zy, = 1, if the ath smallest observation among the N values of Vs is
from the jth treatment and let Zi, = 0, otherwise, forj = 1, -+, p, a = 1,
---, N. We shall be working then with the class of statistics Ty = (Tw,;,

-++, Tx,) where .
(2.3) Ty; = (1/n) 2% ExoZi2, Ci=1,,p

Our proposed test-statistic is a quadratic form in Ty and the same is formulated in
Section 3.

3. The test-statistic and its rationality. Under the null hypothesis (1.2)
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the joint edf of (Y, -+, Yip) remains invariant under the p! permutations of
the coordinates among themselves, for each 7(= 1, - -+, n). Thus, there exists
a group G, of (p!)” intra-block permutations which maps the sample space onto
itself and leaves the distribution invariant (under Hy). Thus, conditioned on the
n sets of ordered observations (Y;ay, -+, Yiw),? = 1, - -+ , n, the conditional
distributionof (Y, -+ ,Ysp),2 =1, - -+ ,n,over the (p!)" intra-block permuta-
tions will be equally likely, each having the common permutational (conditional)
probability (p!)”. Let us denote this permutational (conditional) probability
measure by ®, . Then, by simple arguments, it follows that

(31)  EBo,(Tw;) = By = (1/N) X4 1Bxa, forj=1,---,p.

Let us also define

(3.2) Exp. = (1/p) 20 Ewnyy fori=1,---,n;

(3.3) (@) = {1/n(p — 1)} 28 20 {Ewryy — Ewe, ).

Then by routine computations we have

(34) Covg, (Tw,i, Txx) = [(6ap — 1)/nple’(®.) for j, k =1, ---, p.

Thus considering the quadratic form in (Ty;,j = 1, .-+, p — 1) with the
inverse of the permutational covariance matrix as its diseriminant and finally
symmetrizing it we obtain the test-statistic

(3-5) Sy = nZ]P-ﬂ {T‘v,j - EN}z/UZ(G)n)-

For small values of n (and p) the exact permutation distribution of Sy can
be computed (by reference to the (p!)" equally likely intra-block rank per-
mutations), a task which becomes exceedingly laborious for large values of n
or p. For this we consider the following large sample approach.

No matter whether Hyin (1.2) holds or not, we define by F;1(z) and Fi; (2, y)
as the marginal c¢df of Yi; and (Y;, Vi), respectively, and let
(3.6) H(z) = (1/p) 2 Fuy(x);
(3.7) H*(z,y) = (1) Lizicezs Frim(z, v).
Further, let
a0’ (®n) = (n(p — 1)) i 22 (J(Ry/N + 1) — p ' 2 PaJ(Ra/N + 1)},
and

(3.8) 8 = [3J5w) du — [ [ JH(2)JIH(y) dH*(z, ).

We also assume that if p > 2, the rank of the distribution of {J[H(Y )],
j=1,---,p}is >1; (for p = 2, the rank will be exactly equal to 1, and the
results of [20] will apply). ,

THEOREM 3.1. Under the assumed conditions, both a*(®,) and o’ (®,) stochasti-
cally converge to &, which is strictly posttive.
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The proof of this theorem is a direct adaptation of Theorems 4.1 and 4.2 of
[19], and hence is omitted.

TureoreM 3.2. Under the conditions (c.1)—(c.5) of [19], the statistic Sy has
asymptotically, in probability, (under ®,) a chi-square distribution with p — 1
degrees of freedom (d.f.).

Proor. By virtue of (3.1), (3.3), (3.4), (3.5) and Theorem 3.1, it is sufficient
to show that for any non-null 8( L1, = (1, ---,1)), n!%- Ty has asymptotically a
normal distribution (under ®,). Using the condition (c.2) of [19], we can write
nf8- Ty = n 2 20 {2080 (Riy/N)} + 0,(1).

Now, under @, , Uy = 2 74 8;J(Ri/N +1),4 = 1, --- ,n are all independ-
ent random variables, each having p! equally likely realizations (obtained by
intrablock rank permutations). It is also seen that under @, ,n™* > iy U, has
mean 0, variance oo (®y) - 2= 87 and (1/n) D rwy Bo {|Und ™'} < 0,5 > 0,
(8’ £ 6), uniformly in R; = (Ra, --+, Ryp), 7 = 1, ---, n (by virtue of the
growth condition (¢.3) imposed on J(u): 0 < u < 1). The rest of the proof is
then completed by Theorem 3.1 and the use of the Berry-Esseen theorem (cf.
[13], p. 288) (which is also applicable for double sequence of random variables).
QED.

By virtue of Theorem 3.2, we have the following test function:

(39) ¢(Sy) is 1 or 0 accordingas Sy is = or < Sy,

where Sy, asymptotically equals to x5_1,e , the 100e % point of the right hand tail
of a x* variable with (p — 1) d.f.

4. Asymptotic efficiency of ¢(Sy). For this study we shall consider a sequence
of shift alternatives specified by

(4.1) Ky:rj=mx=N7%;, j=1--,p; 276 =0,
#’s being all real and finite. Thus, under { Kx}

(4.2) Fip(z) = Fiyn(z) = F(z — N7%)), Jj=1-,p,
(4.3) Fum(x,y) = Fumn(z,y) = F*(x — N7%;,y — N7%,),
forj # k =1, ---,p, where F and F* are some continuous cdf’s. It also follows

from (3.6) and (3.7) that H(z) and H*(z, y) then converges to F(z) and F*(x, y),
respectively, as N — «. We assume that F(z) is absolutely continuous and it
satisfies the conditions of Lemma 7.2 of Puri {16]. Let then

(44) B(F) = [Z,(d/dz)J[F(z)]dF(x);
(45) A= [5J%u) du.— [[5J(u) dul®,
(4.6)  ps = A% [2u JIF(@)JIF (y)1dF* (2, y) — ([3J(u) du}?).

Then on expressing Ty,; (j = 1, --+, p) in the Chernoff-Savage integral form
(cf. [4], p- 973), adapting the same line of proof as in Theorem 5.1 of [19] and
avoiding the details, we arrive at the following.
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TuroreM 4.1. Under the sequence of alternatives { Ky} in (4.1), i (Tw,; — Ex),
j =1, .-, p] has (jointly) asymptotically a multinormal distribution with a mean
vector [p20;B(F),j = 1, - - - , p] and a covariance matriz with the elements (1/p).
(6ﬂcp - 1)A2(1 - pJ):j; k = L., p.

Again it follows from (3.8), (4.1), (4.2), (4.3) and (4.6) (through some
simplifications that) under {Ky}, 6°, defined by (3.8), converges to A*(1 — p;),
as N — . Hence from Theorem 3.1 we obtain that

(4.7) ' (®,) —p A*(1 — ps), under {K,}.

From (3.5), (4.7) and Theorem 4.1, we readily obtain the following.

TarorREM 4.2. Under the sequence of alternatives {Ky} in (4.1) and subject to
the conditions of Theorem 1 of Chernoff and Savage [4] and of Lemma 7.2 of Purt
[16], Sy, defined by (3.5), has asymptotically a noncentral chi-square distribution
with (p — 1) d.f. and the noncentrality parameter

(4.8) As = [(1/p) 227« 671 {B(P)IP/A* (L = on)},

where B(F), A* and p; are defined by (4.4), (4.5) and (4.6). Thus, under H, in
(1.2), Sy has asymptotically (unconditionally) a chi-square distribution with

p — 1ddf.
Now, if the error component e;;in (1.1) has a finite variance o.” and if (e;;, ex)
have the correlation pforallj # k = 1, - - - , p, it is well-known that the classical

ANOVA test (actually (p — 1)Fp1,m-1yw—1)) has asymptotically a noncentral
x" distribution with (p — 1) d.f. and the noncentrality parameter
(4.9) Ar = [(1/p) 2214 671/a(1 — po).

Hence from Theorem 4.2 and (4.9), we arrive at the following.

THEOREM 4.3. For the sequence of alternatives {Ky} in (4.1), the asymptotic
relative efficiency (ARE) of the Sy-test with respect to the classical ANOVA test vs
gwen by

(4.10) e({84, {F}) = o’(1 = p)[BIF)/A' (1 = py).

Now, it follows from (2.1) that the variance of e;; is nothing but the variance
of the marginal cdf F(z) and is equal to

(4.11) ol = al(p — 1)(1 — p)/p.
Hence, we may rewrite (4.10) as

(412)  e({Ss}, {8}) = {p/[(p — D1 — p)B o BF)I/4%,

which is independent of o.. Let us then consider the following two lemmas.
LeMMma 4.4. If the cdf G(ay, -+, ) of X = (Xy, -+, Xp) ts symmetric in
its p arguments and the univariate marginal cdf F(z) (corresponding to G) is non-
degenerate, then p; , defined by (4.6),1s =—1/(p — 1).
Proor. We define the random variable Z = D%~ J[F(X;)], which has the
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variance
(4.13) o =pAll + (p — 1)p] 20

where A% = [ZoJF(2)]dF (z) — [[Z»J[F(2)]dF(z)]* > 0 since J(F) is
not a constant (0 < F < 1) and F is non-degenerate. Hence, p; = —1/(p — 1).

Lemma 4.5. If G(zy, - - - , x,) 18 a totally symmetric continuous p-variate (p > 2)
singular distribution on the (p — 1)-flat > P ix; = 0, while there is no lower
dimensional space containing the scatter of the points of G, then

pr = —1/(p — 1)

iff J[F(x)] is a linear function of x with probability one.

PRrROOF. o> = 0 iff Z = D _PuJ[F(X.)] is a constant, with Probability 1
ie., D2 JIF(X,)]is a constant for all X such that >~ X; = 0, with Proba-
bility 1. The if part of the proof is obvious. To prove the only if part, suppose,
J[F(X;)] is not a linear function of X;. Then > 2 J[F(X;)] = constant along
with D 74 X; = 0 (with Probability 1), implies that the scatter of the cdf G
is really contained in a (p — 2)-dimensional hyper-space, which contradicts the
hypothesis that the rank is p — 1. Hence the lemma. (Note that for p = 2,
JIF (z)] may not be linear in z, viz., J[F(z)] = a + ba’.)

By virtue of Lemmas 4.4 and 4.5, we have from (4.12)

(4.14) e({Sv}, (5}) z o [B(F)I/47,
where the equality sign holds iff J[F(z)] is a linear function of x, with Proba-
bility 1.

We shall now consider two specific types of rank order tests, namely, the normal
scores and the rank-sum tests and study the resulting ARE. Let #(z) denote the
standardized normal cdf, ¢(z) the corresponding density function, and let
@uo be the expected value of the ath smallest observation of a sample of size N

drawn from the cdf ®(z), for « = 1, ---, N. For the normal scores (£x-) test,
we use
(4.15) Eyo = Qya  forall a=1,---,N,

and the corresponding ARE reduces to
(4.16) e({€x}, {F}) = [p/(p — 1)(1 — py)]

Ao %0 (f(2) /6(7'[F (2)])) dal’)
where f(z) = F'(z) and p, is the value of p, in (4.6) when J(F(x)) = & F (2)].
Consequently from (4.14) and (4.16), we have
(4.17) e(fen, (5)) = olf%0 (1*(2) /6(87F (2)])) da’,

where the equality sign holds iff & '[F(2)] is a linear function of z i.e., F(x) =
®(az + b) (with real and finite a, b) is also normal. Since o is the variance of
the cdf F(z), using the well-known result of Chernoff and Savage [4] on the
efficiency of the normal scores tests, we obtain that the right hand side of (4.17)
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is =1, where the equality sign holds iff F(x) is a normal edf. Since, e;; is a linear
function of (en, - -+, €p), this means that F(x) is normal iff the cdf G(z,,

-, xp) of (€a, -+, €ip) 18 also multivariate normal. Thus, referred to the model
(1.1), the normal scores (Ly-test) is asymptotically at least as efficient as the classical
ANOVA test; they are asymptotically equally efficient iff the errors are mormally
destributed.

Let us then consider the rank-sum (Hy_) test for which Ex, = a/(N + 1)
fora = 1, ---, N. In this case, (4.12) reduces to

(4.18) e({H¥}, {5)) = /(p — (1 — p){120."J 2 f' () da]),

where p, is the grade correlation of any two variates of F(x;, ---, z,), (for
definition see Hoeffding [10], p. 318). Now, from (4.14) and (4.18), we have

(4.19) e({Hy}, {F)) = 126 2o (x) da]’.

Proceeding then precisely on the same line as in Hodges and Lehmann (8],
it is easily seen that

(4.20) infeeg, 120,720 f1(x) dz]’ = 0.864,

where ¥, is the family of all univariate continuous cdf’s. Hence, the lower bound
(0.864) to the efficiency of the rank-sum test (for one eriterion ANOVA problem)
with respect to the classical ANOVA test, proved by Hodges and Lehmann (8],
also remains valid for the aligned rank-sum test in two-way layout (even under a
somewhat more general situation where the errors are symmetric dependent).
However, it is to be noted that by virtue of (4.14), the strict inequality in (4.19)
holds unless F is a uniform cdf. But for a uniform cdf, the lower bound in (4.20)
is not attained. Hence, e({Hy}, {&}) can not attain its lower bound 0.864. Fur-
ther it is conjectured that there can not be any cdf G(e) of & (in (1.1)) for which
the corresponding cdf G*(e) of e; (in (2.1)) has univariate marginals all uniform.
If the errors e;;’s have normal distribution, it is well known that p, = (6/7)Sin™
(p/2), (where p is the product moment correlation), and hence, (4.18) reduces to

(4.21) (3/m)-(p/(p — DL + (6/x) Sin™" (3(p — D)) = e (say).

It may be noted that for p = 2, e, is equal to 3/x, (the efficiency of the usual rank
sum tests by Wilcoxon or Kruskal and Wallis for one criterion variance analysis),
while for p > 2, e, is strictly greater than 3/x. It may also be noted that the
ARE of Friedman’s [7] test with respect to the S-test is equal to 3p/{(p + 1)=},
which is strictly less than 3/x. Since, the comparisons of these ARE’s are already
tabulated in [14], to avoid repetitions, the details are omitted. Note that the
tabulated values of e, in [14], though related to mutually independent errors, are
shown here to be true also for intra-block symmetric-dependent errors.

5. Some additional remarks on aligned rapk order tests in two-way layouts.
We may consider the more general case where the jth treatment is applied to
m;(=1) plots within each block, for j = 1, ---, p. Let M = >y m; and
N’ = nM. Thus after alignment (ignoring treatment), to the N’ observations N’
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rank scores {E;ra = Jy(a/N'),1 £ a £ N'} will correspond. The average of the
nm; rank scores for the jth treatment is denoted by Tw;,5 = 1, ---, p. The
(pooled) within block mean square of the rank scores (c*(®,)) is defined as in
(3.3) with p replaced by M. The permutational-invariance of Section 3 also
holds with p replaced by M. This yields that Eg,(Tx ;) = (1/N') D25 Exr o =
Ey,j=1,---,p,and

(5.1) Cove, {Twr iy Tws} = (@) (85 — my)/(Mmun), j,k=1,---,p.
This leads to the test statistic
(5.2) Swru = [0/ (®n)] i mil T s — B,

It can be shown similarly that under H, in (1.2), S, has asymptotically, in
probability, (under ®,) a chi-square distribution with p — 1 d.f., and it follows
by straightforward extensions of Theorems 4.1 and 4.2 that for the sequence of
alternatives in (4.1) (with N replaced by N') Sy has asymptotically a non-
central chi-square distribution with p — 1 d.f. and non-centrality parameter

(5.3) Ay = (M7 2 Pami(6; — M7 2P nud)*H{B(F)*/A*(1 — ps)},

where F(z) is the marginal cdf of an aligned error component. Comparison with
the parametric ANOVA-test again leads to the ARE considered in (4.10) and
(4.12). Hence, the bounds obtained in Section 4 also remain true in this more
general case (with p replaced by M).

Secondly, we consider the problem of testing Ho in (1.2) against the ordered
alternative Hy:my < -+ £ 7, (where at least one strict inequality holds). When
the errors e;’s are independent and identically distributed, asymptotically dis-
tribution-free rank tests for this problem have been considered by Hollander [12]
and Doksum [5], and their generalizations are due to Puri and Sen [17]. The
aligned rank order statistics considered in this paper provide very simple tests
which are valid even in the more general case where (e, - - - , €;p) are exchange-
able, for each 7 = 1, - - - , n. Define

(54)  Tx* = (120)) X2 (G — 3(p + 1) T/ (o’ (@2)p (0" — D}

Using the proof of Theorem 3.2, it follows that under @, , T’ » has asymptotically,
in probability, a standard normal distribution, and the test procedure consists in
rejecting H, in favour of H; when 7' v exceeds the upper 100e % point of a stand-
ard normal distribution. Again, using Theorem 4.1, it follows that under (4.1)
(and subject to H,), Tx* has asymptotically a normal distribution with unit
variance and mean p [B(F) 2.7 (j — (p + 1)/2)85]lc*(®.) (p° — 1)/12]%.
The classical parametric test. for this problem is based on the treatment means
{X.; — X.x,j <k} and is considered in detail in [5], [12], [17]. Again, on noting
that even for symmetric dependent errors, X, —X.),j=1,---,p, are
asymptotically normally distributed having’ the common correlation coefficient
—1/(p — 1),the ARE of T v with respect to the parametric test can be shown
to be given by (4.10) and (4.12). Hence, the same efficiency bounds are also
applicable in this case.
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Finally, we consider the problem of simultaneous testing all paired differences
i —m,j #k =1, .-+, p. The existing rank procedures include (i) treatments
versus control multiple comparison sign test (ef. [23]), (ii) simultaneous sign-
test (cf. [15]), (iii) simultaneous rank -sum test based on intra-block ranks (cf.
[15]) and (iv) treatments versus control multiple comparison signed rank test
(ef. [15], [11]). The sign-tests are usually of considerable low efficiency. Also the
rank-sum test, like Friedman’s [7] x.-test, does not utilize the information on
inter-block comparisons, and hence, appears to lose some efficiency. The treat-
ment versus control procedures depend on the other hand on the choice of a
control when a natural one may not exist. A procedure free from all these draw-
backs is sketched below. Define Ty and o*(®,) as in (2.3) and (3.3) respectively,
and let

(5.5) Wy = maxi<jcrsy 0 |Tw; — Twil/o(®a)].

Also, let Ry, be the upper 100 % point of the distribution of the sample range of
a sample of size p from a standard normal distribution. Since, under @®,,
n(Ty; — Ex),j = 1, ---, p are equicorrelated and asymptotically, in prob-
ability, normally distributed random variables (cf. Theorem 3.2), we readily
arrive at the following.

TrEOREM 5.1. Under ®, , the upper 100e % point of the permutation distribution
of W, converges, in probability, to R, .

Again, using Theorems 3.1 and 4.1, it can be shown that the upper 100 %
point of the null (unconditional) distribution of Wy also converges to R,,. as
n — . Hence, we have the following simultaneous test procedure.

In the model (1.1), regard those pairs (rj, ) j # k to be significantly different
from each other for which

(5.6) W Ty — Twil = 0(®a)Rpe for j#=k=1---,p.

By a straightforward extension of Theorem 4.2, it can be shown that the ARE of
the simultaneous test in (5.6) with respect to Tukey’s T-method (cf. [18], p. 74)
is again given by (4.10) and (4.12). Consequently, all the efficiency results of
Section 4 also hold for the above simultaneous test procedure.

Acknowledgment. Thanks are due to the referee for his useful comments on
the paper. ‘
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