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ERGODIC THEORY WITH RECURRENT WEIGHTS!

By KennNETH N. BERK

Northwestern University

It has generally been possible to prove ergodic theorems on continuous flows
as corollaries of their discrete analogs, the idea being that a continuous average
can be approximated by a discrete average. This method is no longer available,
however, if the continuous average uses nonuniform weighting. Here the weighted
average comes from the Lebesgue-Stieltjes measure generated by a solution v
of the renewal equation v = 1 4 v xw, where v * w is the convolution of v with
a probability distribution on the positive reals. The formulation has the ad-
vantage of including the classical discrete and continuous averages as special
cases. Also included are the recurrent averages for the discrete case introduced
by Baxter [1], [2], [5].

1. Statement of results. Let w be a probability measure on [0, ) with
w{0} < 1 and let v be the unique nondecreasing right continuous solution [7] to
the renewal equation

(L1) v(a) =1+ [oav(a —B)w(ds),a =20, v(a)=0a<0O0.

Suppose that there is a Lebesgue measurable set V such that the sum of two
members of V isin V and such that [y dv = 0, where V' is the complement of V.
Since w is absolutely continuous with respect to the measure generated by v,
we have w(V') =

ExamprEs 1.1.

(a) w(dB) = ¢ PdB, v(a) =1+ afora =0,V =10, ©);

(b) w{l} = Lv(a) =[a] + 1fora=0,V ={0,1, ---};

(¢) w{l} = w, w{2} = wy, ---, where ws + wy + --- = 1, v(0) =
v(n) =1 + ’U)ﬂ)(’n - 1) + .- +wnv(0)7 V= {07 17 }

We shall be concerned with a o-finite measure space (S, Z, u) and a semigroup
of positive linear operators {T%, a ¢ V}, T® = I, T*T® = T*** on the equivalence
classes of real integrable functions L;(S, Z, u) such that [ T°|f|du < [ |f| du,
fe L. We require that 7" be strongly measurable [6]; that is, for each fe L,
there exist a real valued g(a, s) measurable with respect to the product of
Lebesgue measure on V with (8, Z, u), such that g(e, -) is in the equivalence
class T°f for each a ¢ V. The integral 23(s; f) = f[o 81 (T%)(s) dv(e) is given
meaning by reference to [1o, 8) g(a, s) dv(a). (Here and elsewhere integration
over [0, 8] means integration over [0, 8] n V).

Then we can state
TrEoREM 1.2. If fe Ly, pe Ly, p = 0, then
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limg.,e 25(s; f) /26(s; p) = Q(s)

exists and 1s finite for almost all s in the set {s: supq 24(s; p) > 0}.

A wealker version of this theorm (with different proof) appeared in the author’s
Ph.D. thesis at the University of Minnesota.

To discuss the limit Q(s) we need a new positive linear operator 7' defined by

(1.2) Tf = [10.m T°f dw(e);
note that ||T]|; £ 1. The space S splits [9], p. 196, into two parts C, conservative

and D, dissipative, such that for any p > 0, p e Ly,
(13) € = {s: 2imo (T'p)(s) = =}, D = {s: 2 (Tp)(s) < oo}.

The subsets C; of _C for which the indicator funetion I, is invariant on C under
the adjoint N of T form a s-algebra @. Now consider the operator B, defined
for A ¢ Z by

Buf = Juf + JuTTaf + JuTT0TTaf + -+~

where J4 is the operator that multiplies by I, . If f is a probability density
and 7 is a Markov operator then Bf is the density for first entrance to the set A.
TuroreM 1.3. The limit Q(s) in Theoren 1.2 7s given by

Q(s) = E(B.f|C)/E(Bp|€) on Cn {s: supaza(s; p) > 0}.

This generalizes a result of Chacon [4], [8]. (see Example 1.1(b)).
TaEOREM 14. If Z(s; ) = Dm0 (T™)(s), and if f, peLs(S), p = 0,

limyo e Ek(s,f)/ék(S, p) = liMasw 24(8;][)/24(8; p)

for almost all s in {s: supy Z(s; p) > 0} = {s: sup.2.(s; p) > 0}.

This result follows from Theorem 3.4 and Theorem 1.3 and Chacon-Ornstein
theory [4], [8].

Now define H, to be the adjoint of B,. If T is a Markov operator then
(H4h)(s) is the expected value of h when entering A, having started at s.
Letting e, = H4I, we have (see Brunel [3] and Meyer [8])

LeMmMA 1.5. If B e 2 is a subset of S on which sup.z.(s; f) = o, f & Li(s),
then [esfdu = 0.

Section 2 is devoted to proving the lemma, which is used in Section 3 to prove
Theorems 1.2 and 1.3.

2. Proof of Lemma 1.5. If B is a measurable set of the type specified in the
lemma, then 2,(s) = 2.(s; f) — « for se B. For each t > 0, let M (¢, s) =
Supgeqo, 25(s), and define '

(2.1) r(s) = inf{ael0, f]:za(s) > M(t, s) — '), seB, M —t' >0,
= —1, otherwise

so that z, is nearly the supremum M (z is right continuous). The following are
easily checked:
Prorosition 2.1. (i) M(t, s) and r(s) are u-measurable for fized t.
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(ii) r(s) T wast T o, for each s & B.

(iii) 2r,0(8) > 2a(8) f 0 = a < r(s).
Then designate, for 0 £ a £ ¢t < o,
(2.2) B(a,t) = {s:a = r/(s)}
with the following properties:

ProposiTioN 2.2. (1) Ip(,u(8) is for fixed t measurable with respect to the product
of (S, Z, u) with Lebesgue measure on [0, t].

(1) Ipw,pn(s) T Is(s) ast T o, for each s.

Lemma 1.5 will be proved by first proving that [b(0, {)fdu = 0, where
b(0, t) is a bounded function such that b(0, t) — ez as { — . Define,
for0 = a £ ¢,

(2.3) bla,t) = Do (JorayNe)In@,y where N, is defined by
(24) (Nh)(a) = [10.-a1 N°h(a + B)w(dB).

That b(e, ¢) is bounded by 1 and nonincreasing in « may be ascertained by
induction on the partial sums b"(a, t) of (2.3), since b"™(a, t) = Ip@n +
I 5,y Nb"(a, t). It is apparent, taking limits, that

(2.5) b(a,t) = In@y + Jor@olNd (o).

ProprosiTioN 2.3. lim,,b(a, t) = e5.
Proor. If h(a 4+ B,s) T g(s) e Lo(s),asa T «,thenast T o, by (2.4)

(Nh)(a, 8) T Jro.00 Ngu(dB) = (Ng)(s).
This fact shows by induction on 7 the truth of the following limit:
(26) 2o Un@oN) Iswn 1T 2ho(JaN)Is, as ¢t T o,

since the formula’s truth for n = 01is given by Proposition 2.2(ii). Thus, denoting
by b"(e, t) the left side of 2.6,

liM e (0, £) = liMyse liMpaw ™ (a, ) = liMysew lim,., 0" (a, t)
= ZI?—O (JBN)kIB = Hpl = ep

(see definitions following Theorem 1.4). The interchange of limits is permissible
because b"(a, t) is nondecreasing in n and in ¢.

Prorosrtion 2.4. If B C C, the conservative part of S, then

(i) Nes = ez,

(ii) Hc@B = ¢ép,

(iii) es = I5, where B s of minimum measure among members of © that con-
tain B,if C is all of S.

These properties are proved by Meyer [8].

Now define

(27) T(e,t,8) = Do) = [w,-a1 Nb(a + 8, Yw(d)], 0= a =t
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It follows from (2.5) that
(28) P(a) 2 S) = b(a) L 8) - f[O.t—a] Nﬁb(a + ﬁy t)'l,l)(dﬁ), 0=a=t

LemMA 2.5. The two measures on Lebesgue measurable subsets A of [0, t] given
respectively by [4d(v — Ij0,..y) and

ffa.hggA dv(a)w(dﬁ) = faEA U)(da) f atpeca d?)(ﬁ)

are equal.

Proor. It is sufficient to establish the equality for intervals, for which the
equality follows from the renewal equation (1.1) which defines »:

[omd® = Tnw) = o) = 1 = Jomu(da)(y — o)
= Jom w(de) [arpenm dv(B8).

In the following, dependence of I' on s is suppressed.
Prorosition 2.6. (i) f[o,,] N°T(a, t) dv(a) = b(0, 1),
(ii) T'(a, t) is nondecreasing on [0, 7], for fixed t,

(iii) T'(e, t) = 0, a & (74, 4.

Proor. Property (i) follows from (2.8), using Lemma 2.5:

Jo.0 N°T(a, t) dv(ax)
= [10.a N°b(e, t) dv(a) — [10.0 N*dv(a) [0,0-a1 N°b(a + B, t)w(dB)
= Jo.uNb(a, t)do(a) — [atpero,a N“Pb(a + 8, t) dv(a)w(dB)
= Ju.aN(e, t) dv(a) — [J10.a Nb(a, ) do(a) — b(0, )]
= b(0, ¢)

Property (i) follows from (2.7) and (2.2) and the fact that b(e, ¢) is nonin-
creasing in a.

Property (iii) follows from (2.7) and (2.2).

Finally Lemma 1.5 can be proved. Since ¢ is the limit of b(0, ¢), by Proposition
2.3, it will be sufficient to show that f b(0, t)f du = O for each t. First by Propo-
sition 2.6,

500, O)f dps
(29) = [duf foaNT(a, O)do(a) = [wu[dufNT(a, t)dv(a)
= o [duT(a, )T dv(a) = [dp [wraT(a, )T do(a).

In order to show that the inner integral is nonnegative, we approximate
I’ by a continuous nondecreasing @, for which integration by parts is valid [6],
p. 154. That is, if G is continuous, nondecreasing, nonnegative, we have

f[O.rzl Gdz
= G(r)ze,+ — G(0)zo- — f[o,”]sz = 2z, f[o,rtldG + 2., G(0) — f[o,msz
= 2.G(0) + [(0.r1 (2, — 22) dG(a) 2 0
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since z,, is nonnegative and z,, = z. for a < r;, by Proposition 2.1 (iii). Now
T'(e, 8),0 £ a < r;, is the pointwise limit of such G’s, so we find

0= f[o,,-t] Tdz = f[(),”] T(a, s)T“fdv(a).

3. The limit of the ratio. The first theorem of this section ties together the
averages of the semigroup of operators 7% and the operator T, facilitating use of
the established theory of the latter. Then the fact that, if p = 0, { ¥, T*p > 0}
= {[ T*pdv(a) > 0}, combined with Meyer’s technique [8] and Lemma 1.5,
yields proofs of Theorem 1.2 and Theorem 1.3.

LEmMA 3.1. If 2, = 24(s; f) then

(3.1) 2a = [+ Jw.a T%apdw(B).
Proor. We have
f{o,oq Tﬁza—ﬁ dw(B)
= [w.a1 TP dw(B) [10.aepy T dv(v) = [10.01 Tfd(B) — Io.)(B)] = 24 — f,

using Lemma 2.5.
Lemma 3.2. The equation

(3.2) g9(a) = f(a) + Ju.a Ty(a — B) dw(B),

g:[0, ©) — Li(8, Z, u), has only one solution that is bounded on each finite interval
wn Ly norm.

Proor. The previous lemma provides existence. If ¢;(a) and gs(a) are bounded
and satisfy (3.2), then their difference g(a) satisfies (3.2) with f = 0. Let w(8o) <
1 and let Mo = supo<a<s, [|g(e)]- Thenif 0 < a < Bo,

||g(a)|[1 = ”f[(),a] Tﬁg(a - B) dw(ﬁ)”l = f[o,«] Hg(a - ﬁ)”l dw(B) = w(Bo)Mo.
Thus Mo < w(Be) M, and we see that M, must be zero. In this way we can show

that g(a) = 0,60 £ a £ 28y, ete.
LemMma 3.3. If f = 0 and we define z.' = f,

(3.3) za =+ [wa T2 dw(B), k=12 -,

then zo* is nondecreasing in a« and in k and zo* T zaask T o.

Proor. An application of (3.3) to an induction argument shows that z. is
nondecreasing in « and in k. Another induction argument using (3.1) and (3.3)
shows that z.* £ z,. Then we let & go to « in 3.3 and get

(3.4) limeze' = f + [0, T°(limg 2.") dw(B).

Thus, by Lemma 3.2, lim; 2o" = 24 .

THEOREM 3.4. If f = 0, then Sup Zr = SUDa 2a; that s, Qo Tf =
10,0y T% dv(a), with  permitted as a value for the equality.

Proor. We proceed by induction to show that z,° T Z asa T , for all k.
We have z." = f = % ; and if lim,2a" © = %1, then

limaz." = lim, (f + [10.01 T%55w(dB)) = f + [t0.00 P21 w(dB)
=f+4 Tor = 2.
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Cdmbining this with Lemma 3.3,
SUDaZa = SUPaSUDkZa’ = SUD; SUDa Za' = SUpkZ.

Lemma 3.5. If p = 0 and p e Li(S), fe Li(8S), then lim supe.«za(s; f)/
2a(8;p) < oo for almost all s such that supaz.(s; p) > 0.
Proor. According to Theorem 3.4,

(3.5) {s: supaz«(s; p) > 0} = {s:supsz.(s; p) > 0} = U, {s: T"p > 0}.
Nowifa > 0
{s: im SUpa 2a(f)/2«(p) = =, T"p > 0}
C {s: lim supa z«(f)/2a(p) > a, T"p > 0, supa z«(f) = =}
C {s: lim supa z.(f — ap) = », T"p > 0}.
Calling the first set A, the last B, using Proposition 2.4(i) and Lemma 1.5,
0= [(f—aplesdu = [ (f — ap)N"epdp = [ (T"f — aT™p)es dp.
Thus
[1fldp = [ Tfesdp = [aT pesdp Z JeaT™pdu = [4aT "pdy,

which can hold for all a only if u(B) = 0.

Proor oF THEOREM 1.2. Without loss of generality assume f = 0. By Lemma
3.5, where z.(p) is bounded so is z.(f) and both numerator and denominator
have limits. Otherwise, if ¢ < b, on

B = {lim inf z.(f)/2(p) < a < b < lim sup z.(f)/2.(p),
T"p > 0, supa2a(p) = »},

we have lim sup z.(f — bp) = « and lim sup z«(ap — f) = «.Then by Lemma
1.5 and Proposition 2.4 (i),

[ esT*(f — bp)du = [es(f — bp) du =
[esT*(ap — f)dp = [es(ap — f) du

o o

v

so that
[ esT"(ap — bp) = 0,

which implies u(B) = 0. We again use (3.5).
TuEoREM 3.6. If f = 0 and h = B.f then Da = z4(h)/2.(f) — 1 on
C n {sup« 2.(f) > 0}.
Proor (half). To see that the limit is at least one, let b < 1 and set
B = C n {T* > 0} n {lim, Do < b}.

’

We have z,(f) — « on B 50 2.(f) — ® on B 50 z«(bf — k) — » on B. Then
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0 < [es(bf —h)du = [ ea(bf — Bf)du = [ (bes — Heen)f du = [ (bes — ez)f dp
= (b—1) [ (Nes)fdu = (b — 1) [ esT dp,

using H.es = ez and Nes = es (Proposition 2.4). Thus x(B) = 0. And, using
(3.5), wehave D, = 1 on C n {sup,z.(f) > 0}.

CoroLLARY 3.7. If f =2 0, p = 0 are u-integrable, then
limMgsee 2a(Bef) /2a(Bep) = liMase 2a(f) /22(P)

on {sup.z.(p) > 0} n C.

Note that B.f has its support on C, and B.f = f if f has its support on C. The
corollary combined with the following lemma will enable us to restrict T° to
the conservative part C in the discussion of the limiting behavior on C. If f has
its support on C then so does T°f.

LemMma 3.8. If f = Oand f = 0 on D, then T?f = T?fI, for v-almost all 8.

Proor. If f = O on D, then D T%f = 0 on D because

[1oTfdu = [ NIofdu < [ Iofdp.

Thus f T?f dv(B) = 0 on D by Theorem 3.4, and T%f = 0 on D for v-almost all 8
TreoreM 3.9. If u(D) = 0(S = C), and if f, p arenonnegative integrable,
then on {sup z.(p) > 0} = {supz.(p) = =}, p — ae,

(3.6) limaw 2a(f) /2a(p) = E(f|©)/E(p|€)

Proor. The set equality follows from Lemma 3.5, which implies that
0 < sup 2z, < o cannotoccur onC. Toseethat E(p |€) > 0 on {sup z.(p) > 0},
let F = {T*p > 0, E(p|€) = 0} and note that E(p| @) = 0 on F (see Proposi-
tion 2.4 (iii)). Then
0= [IFE(p|C)dp = [Ispdp = [N'Izpdp = [IzT'pdp = [I:T"pdu
so u(F) = 0. Thus, by Theorem 3.4, E(p | @) > 0on {sup z.(p) > 0}. Let the
limit in (3.6) be @ and the ratio be R. Let b > 0 and

B = {R <b < Q,supzp) = =},
noting that R < b on B, (see Proposition 2.4(iii) ) since R is C-measurable. We
have on B, z.(f — bp) — « sofeg(f — bp) du = 0, by Lemma 1.5. But ez = I3,
by Proposition 2.4(iii), and thus

[sE(fle)dp = [3fdu=b[apdu =0 [3E(p|e)dy,

contradicting R < b on B, unless u(B) = 0. Similarly, if

A={R>b>Qsupz(p) = »},
we find p(A) = 0. Thus R = Q on {sup z.(p) = «}.
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