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APPROACH TO DEGENERACY AND THE EFFICIENCY OF SOME
MULTIVARIATE TESTS'

By G. K. BHATTACHARYYA AND RICHARD A. JOHNSON
Unaversity of Wisconsin

1. Introduction and summary. When testing p-variate distributions for a shift
in location, two important nonparametric competitors of Hotelling’s T” are the
multivariate extensions W of the Wilcoxon test and M of the normal score test.
Bounds on their asymptotic relative efficiency (ARE) have been investigated by
Hodges-Lehmann [6] and Chernoff-Savage [4] in the univariate case and by
Bickel [3] and Bhattacharyya [1] in the multivariate case.

The univariate normal score test has the commendable property that for all
continuous distributions, its ARE with respect to the i-test exceeds 1 and with
respect to the Wilcoxon test it exceeds /6. This naturally raises the question of
whether or not the multivariate extension M inherits this property and if not,
what the lower bounds on its ARE with respect to W and T” are. In this paper,
we answer this question by providing an example where the ARE of M with
respect to both W and T” is arbitrarily close to zero for some direction. The
example consists of a gross error distribution which places most of its mass on a
hyperplane and has marginals with high sixth moments.

Bickel [3] mentioned a similar property of the ARE of W with respect to 7™
His proof for the case p = 2 is, however, incorrect. We show that for the type of
gross error model considered by Bickel, the above ARE is bounded strictly away
from zero. We correct his proof by constructing a distribution which also places
high mass on a line but is not of the gross error type.

2. Results for the M -test. For the sequence of local shift alternatives sN %,
the ARE of a test A relative to a test B depends, in general, on the parent dis-
tribution F as well as the direction = (8, 82, - -+, §,). Denote this ARE by
e4.5(5,F). Let F, be the class of all nonsingular continuous p-variate distribu-
tions. Our main results for the M test are summarized in the following theorem.

Tueorem 2.1. Forp = 2, F e¢F,and & = 0

(1) ian inf;, GM;T(S,F) = 0,
(2) ianinf;,eM,W(S,F) = 0.

Before proceeding with the proof of the theorem, we make some preliminary
remarks and calculations.

Let &, be the subelass of , consisting of those p-variate distributions whose
univariate marginals are all identical and whose bivariate joint marginals are
all identical. Let F(z, y) and G(x) denote the common bivariate and univariate
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marginal cdf’s of F ¢ §,’ and assume that G has density g satisfying the conditions
of Lemma 3 of Hodges-Lehmann [5]. Denote the standard normal cdf by &
and its density by ¢. Equations (2.7) and (2.8) of [1] give the following expres-
sions for the infimum of the ARE over 3.

(3a) infgew.r(3,F) = 0’0" infg (BR'3')/(3R*'3')
= o’ min [(1 — p)/(1 — p%), {1 + (» — 1)p}/

{1+ (p — D",
~’6” infy (SR*™'")/(3R*7'3")
¥'6* min [(1 — p)/(1 — p%), {1 + (p — )5}/
{1+ (p — "]
where p and ¢® are the common correlation and va,riz;nce in F. Also
(4) 6= [Za(@)/8(@7G@)}) dz, v = [(12)! [Zug’(2) da],
(5) p =12 ff *oG(2)G(y) dF (z, y) — 3

p* = [ [2. 87 G(2)]17[G(y)] dF (2, y)

and R R* and R’ are the correlatlon matrices with off dla,gonal elements p, p
and p’ respectively. Here p is the grade correlation and p* is the normal score
correlation. Since F,° C F,, we have

(3b) inf;, GM;W(B,F)

infpcgp inf§ GM:T(S, F) é ian:gypo inf;, 6M;T(5, F)
(6) = min {infr.g,0 6°°(1 — p)(1 — p*)7, infpeg,e 60"
14 (p— Dplll + (p — e}

To prove (1) it is thus sufﬁ(:lent to produce an example of F & §,’ such that
that 6%°(1 — p)(1 — p *)7! is less than any preassigned positive number. By the
same argument the proof of (2) will be a,ccomphshed by showing the existence of
an F ¢ 5,° for which y’6°(1 — o) (1 — p *Y7is arbitrarily close to zero.

Let {A,: ¢ > 0} be the class of cdf’s defined by

) A(z) = ®(cz[l + 27), —o <z < o,

For every ¢, the density A\.(z) = co(cz[l + 1) (1 + 32°) is symmetric (‘sym-
metry’ shall alwa,ys mean symmetry about 0). If X has cdf A, then
Z = ¢X(1 + X*) has cdf &. Letting v(c) = Var (X), we have v(1) < 1 and
v(c) < o for all ¢ > 0. Making the tra,nsformatlon y = =2’ (1 + 2°)%/2, we
obtain v(c) > 2 [T 2"\ (2)dz > (4n’c) ™ [y 8 exp (—y)dy — » as
¢ — 0. Since v(c) is continuous, there exists a ¢o (0 < ¢o < 1) satisfyingv(co) = 1.
For notational simplicity, we shall denote A, by A and Xe, by A.
Proor oF TueoreM 2.1. Forp = 2and 0 < e < 1, consider the model

1(8) Fe(xa, -, xp) =(1- é)Q*(-"vl; Tyt x?) + € H?—1‘I’($¢)
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where Q* is a p-variate distribution which concentrates its entire mass on the
line 2, = 2, = --- = z, and has univariate marginal @(z). ¥(z) is a univariate
continuous cdf having density ¥. According to the argument following (6), we
need only consider the bivariate marginal of (8) given by

(9) Fu(z,y) = (1 — Q% (z, y) + e¥(x)¥(y).

Now we take @(x) = A(x) and assume that ¥ has unit variance and a bounded
symmetric density ¢ which satisfies ¢(x) = Mz) on [|z| = M] for some positive
M. Specification of ¢ on [|z| < M] will be postponed until the need arises.

Letting ueyy = ffw 2" d¥(z) it is clear that upyy < o forall? > 0and uwy = 0
for r odd. Let e;(¢) denote the quantity 6%°(1 — p)(1 — p*)™ for the cdf F..
The relations (3a) and (5) give

(10) e(e) = 0526[1 - 2 o—oooq)—l[Ge(x)]q)—l[Ge(y)] dF (z, y)]—l
where G. = (1 — €)A + €¥ and 6. is as defined in (4) for the cdf G.. By the

symmetry of G. and ¥, we have f 2o ®G.) d¥ = 0. Also f 2o [@ (AP dA = 1.
Substituting (9) into (10) gives

(11) (o) = 67" [Z (@7 (M) — @G} dA + [Zo[@7(G)I dA™

The fact that A and ¥ have the same tails allows us to apply the dominated
convergence theorem and obtain 6. — 4¢y and [2, [ (G )’dA — 1 as e — 0.
An expansion of the integrand in the first term of (11) followed by integration
by parts and an application of the dominated convergence theorem gives

(12) lime.oei(e) = 16[kay + 2nwy + povl -

Due to (12), the proof of (1) would be complete if we can produce, for every
7 > 0, a cdf ¥ which satisfies all the foregoing properties and makes the right
hand side of (12) smaller than 5. Equivalently, for any positive arbitrarily large
N, we need to exhibit a continuous cdf ¥ having the following properties: (i)
¥ has unit variance and bounded symmetric density ¢, (ii) ¥(z) = A(z) on
[lz| = M] for some positive M and (iii) u@y > N.

Let dy = [% dA(2), du’ = [% 2’ dA(x) and define Ly and K, by

(13) Ly = M*(1 —3dy’ +du)/(M* —1),Kpr = & — dypy — Lye(M — 1)M %,

Clearly, dy — 0, dy’ — 0, Lyy — 1 and Ky — % as M — ». Now, we com-
pletely specify ¥ by the following density

. Y(z) = Ky if 02z2z<1
(14) =MLy if 1S2<M
= NMz) if M=sx

and ¢(z) = ¢(—=z) for all x. By straightforward calculation the conditions (i)
and (ii) can be shown to hold. Also, uey > {2Ku/7 + 2Ly(M* — M%) /T} — «
~as M — o, so that (iii) holds for a suitable choice of M. We conclude that
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er(e) can be made arbitrarily close to zero for the distribution (9) by choosing
e sufficiently small and M sufficiently large. :

To establish (2), we again consider the gross error model (8) with Q = A and
the same ¥ as defined above. Letting e;(¢) denote the quantity v%6*(1 — p)-
(1 — p*)™ for the distribution 7. and using (5) and (10), we have

(15) exe) = 61(6)’Ye2h(€)
where v. denotes the y defined by (4) for the distribution G, . Here
(16)  h(e) = €'(4 — 12[G2dA) + 12[G2dr — 12(f G.d¥)*
and

limeoh(e) = 12 — 12(f Ad¥)* — 24 [ AW dA
12[f A%d% — (fAd¥)’] = 12 Varg [A(Z)]

where Vary [A(Z)] denotes the variance of A(Z) when Z has distribution -
Due to symmetry of A,

Varg [A(Z)] £ [0 (0 — 3)*d%(2) + [§ (1 — 3)*d¥(z) = 2.

Also
limeoy ™ = (12)! [2oN(2) do = (3/m)%0 [20 (1 4 32%)Nogns (z) dav
= (3/mall + 3v(co2))].
Hence
(17) limeoe(e) = {16meo " [1 4+ 30(co2)] {puey + 2mwy + wew}™

The first factor on the right hand side is a finite constant and hence a choice of
sufficiently small e and sufficiently large M would make e;(¢) less than any pre-
assigned positive number. This completes the proof of the theorem.

3. Results for the W-test. We first examine the performance of the W test
relative to T for a general p-variate gross error model (8) where the marginals
@ and ¥ are now unspecified. It is still assumed, however, that Q and ¥ have zero
mean, unit variance and square integrable symmetric densities.

Proceeding in the same manner as in the derivation of (3a) and (3b), we now
have

(18) infg ew.r(8, F.) = 12[ffwf¢2($) dx]2 min [(1 — p)(1 — Pcl)_l;
{14+ (@~ Dpd{1 4+ (p — 1)p/}7]

where f. is the marginal density, p. is the correlation and p.’ is the grade correla-
tion of the bivariate marginal F.(z, y) given by (9). Note that p. = (1 — ¢) — 1
4nd p.” — 1 as e — 0. Further, replacing A by Q in (16), we have ¢ (1 — p./) —
12 Vary [Q(Z)] < 3. Also [2, f&(x) dz — J2. & (z) dx where g is the density of
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Q. Hence as ¢ — 0 in (18), the right hand side tends to
(19) 12([2. ¢*(z) dx)* min [{12 Vare [Q(Z)]} 7, 1] = .288.

0

The inequality above follows from the bound 12([Z.¢*(x) dz)* = .864, (cf.
Hodges-Lehmann [6]) and the fact that Vary [Q(Z)] < 1.

Thus with approach to degeneracy (¢ — 0) in the model (8), inf er.r (5, F)
does not fall below .288 for any @ and ¥. Bickel [2], [3] investigated the behavior
of this infimum as e — 0 and b — 1 in the closely related model (p = 2)

(20) Fea(z,9) = (1 — Q% (z,y) + ¥ (2, y) + (1 — b)¥(x)¥(y)

where ¥* degenerates on the line £ = y and has marginal ¥. Using essentially
the argument given above, it is easy to see that this limit is identical to the ex-
pression (19) and consequently the additional complication in the model is
unnecessary. Inequality (19) shows that the proof of Theorem 6.2 of Bickel
[2] is incorrect. In particular, the expression (6.5) of [2] is identically zero con-
trary to the claim that it can be made nonzero.

We state the theorem here for the sake of completeness and present a correct
proof.

TueoreMm 3.1. For p = 2, F(x, y) €Fp and & %~ 0

ianesF2 inf;, 6W:T(5; F) = 0.

Proor. For 0 < a < 1, consider the following sequence of continuous bivariate
cdfs F,(x, y) on the unit square

F.(z,y) = an’zy it 0=¢t =n

(21) = ant if 0<t=<na7,
nt <t £1,
=a4+1—-a)n—1D"(nt—1) if a7 <t =21,

where t = min (2, y) and ¢’ = max (z,y). F, distributes mass a uniformly on the
square [0, n'] X [0, n"] and the remaining mass (1 — @) uniformly on the line
connecting the pointsz = n",y = n " andz = 1,y = 1. The common marginal
cdf G.(x) is given by
(22) G.(x) = anx if 0<z=n"
=a+ 1 —-a)(n—1T"(nx—1) if n <2z =1
Consider the random variables U, = G.(X,) and V, = G.(Y,) where
(X., Y,) hasedf F,(x, y) given by (2.1). Denoting the joint edf of (U,, V)
by H(u, v), we have

(23) H(u,v) = P[X, £ G (w), Ya £ Gu ™ (v)]
_{uv/a on [0=Su=<aln[0=v=ad
 |min (4,0) on [e<u=1ufe<v=1]

and this distribution is independent of n.
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Now
(24)  infg easr(8, Fa) = 120,°([3£2(2) dz)” min [I — pa)(1 — o),
(14 p)(1 + 0)7
< 120.°([5 " (%) d2)*(1 — pa)(1 — p)7

where ¢, = Var (X,), g.(z) is the density of G., p. = corrl (X», Y,) and
o = corrl (Un, Va). A straightforward computation leads to the expressions

F=0—=ad), [ig(x)dx =an+n(l—a)n—17,

oal(1 — pn) = B(X,}) — E(X, Y.) = a[l12n"]".
Substituting these expressmns into the rlght hand side of (24) and taking the
limit, we have limn.e @ la® + (1 — a)’(n — 1) = &®. Thus for the class of

distributions F, defined by (21), we can make infy ew.r(d, Fn) arbitrarily close
to zero by choosing a sufficiently small and # sufficiently large. This completes
the proof.

4. Conclusions. The implication of Theorem 2.1 is that the behavior of the M
test could be quite poor in comparison to both T? and W for some direction & of
alternatives when a nonnormal multivariate distribution is almost degenerate
on a line. Theorem 3.1 gives another degenerate situation where W behaves
poorly with respect to 7. Consideration of the infimum over directions of the
ARE is however much too conservative a viewpoint in test comparison. On the
other hand, a study of overall relative efficiency of multivariate tests is compli-
cated by the fact that there is no satisfactory direction-free measure of ARE in
the Pitman sense.

An extremely local measure has been proposed by Bickel [3]. It is defined as
the limit of the inverse ratio of the sample sizes required by two tests of the
same asymptotic size to have equal Gaussian curvature of the power surface
at 0. For any two tests A and B and the parent cdfF, let us denote this ARE by
E,x(F). 1t essentlally follows from [3] that, for p = 2, Ey.o(F) = 02 21— )t
(1 — o) With F = F. given by (8), we have Ey.z(F.) = 6.0, (2 — €)-
(1 + p,*)_l]% The last factor tends to 1 as e tends to 0. Hence the proof of
Theorem 2.1 also yields infp Ey.7(F) = 0 and similarly infg Ey. W(F) 0. In
the same manner, the proof of Theorem 3.1 yields infg Ew.r(F) =
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