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THREE MULTIDIMENSIONAL-INTEGRAL IDENTITIES WITH
BAYESIAN APPLICATIONS!

By JameEs M. DickEy?

Yale University

1. Summary. The first identity (Section 2) expresses a moment of a product
of multivariate ¢ densities as an integral of dimension one less than the number of
factors. This identity is applied to inference concerning the location parameters
of a multivariate normal distribution.

The second identity (Section 3) expresses the density of a linear combination
of independently distributed multivariate ¢ vectors, a multivariate Behrens-
Fisher density (Cornish (1965)), as an integral of -dimension one less than the
number of summands. The two-summand version of the second identity is
essentially equivalent to the two-factor version of the first identity. A synthetic
representation is given for the random vector, generalizing Ruben’s (1960)
representation in the univariate case. The second identity is applied to multi-
variate Behrens-Fisher problems.

The third identity (Section 4), due to Picard (Appell and Kampé de Fériet
(1926)), expresses the moments of Savage’s (1966) generalization of the Dirichlet
distribution as a one-dimensional integral. A generalization of Picard’s identity
is given. Picard’s identity is applied to inference about multinomial cell prob-
abilities, to components-of-variance problems, and to inference from a likelihood
function under a Student ¢ distribution of errors.

2. The first identity. The identity is presented in Section 2.1 (Theorem 1).
Applications are then briefly given in Section 2.2.

2.1. Moments of products of multivariate t densities. Consider the p-dimensional
vector &,

(2.1) £=x+ YY),

where ¢ has the p-variate normal distribution with mean 0 and variance M
(precision M), { ~ N(O, M™), independently of x,". The vector £ is said to have
a p-variate ¢ distribution with mean x and degrees-of-freedom » [Cornish (1954),
(1962), and Dunnett and Sobel (1954)]. The density of £ is proportional to

(2.2) 1+ G((g —x) ™,
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1616 JAMES M. DICKEY

where
G =M, n=v -+ p.

(Throughout the paper, G((y)), with double parentheses, will denote the
quadratic form yGy; and G = 0 and G > 0 will mean that G is symmetric and
nonnegative definite and symmetric and positive definite, respectively.) The
complete integral of (2.2) is finite if G > O and v = n — p > 0, and it equals

(2.3) [Cl, p)-IM[T" = (m)0 (%) /T + p)]- M|

Hence the density of £ is the quotient of (2.2) and (2.3). The moments of §
follow easily from the synthetic representation (2.1).
This Section 2.1 develops the moments of a produect of ¢-like functions (2.2),

each of which need not have a finite integral. Let
(24) g(8) = TIE 11 + Gul((g — x)]7s,

where each
G, = 0, nx > 0.

We seek, then, the complete p-dimensional integral of f-g where f(¥) is a poly-

nomial in the coordinates of &.
The limiting case, v1 — «, of one normal-density factor (more than one such

factor can be combined by Lemma 1 below) will be left to the reader, except for
brief mention of a special case at the end of this Section 2.1.
The basic tool is the representation of a ¢-like function as a gamma mixture of

exponentials,

(25) 1+ G((g—x)™
= [T(3n)2" ™ [7 o exp { —3ull + G((£ — x))]} du,

n > 0. We shall also need the following immediate generalization of a result of

Raiffa and Schlaifer (1961), p. 312.

LemmMa 1 Do Mi((€ — %)) = D((£ — %)) 4+ 2_ Mi((x:)) — D((%)), where
D= M,and % = D (D Mixy). The terms constant in € can also be written
2 Mu((x)) — D((®)) = 22 x/Mi(xe — %) = 25 Mi((x — ).

An application of (2.5) to each t-like factor of g and a completion of the square
by Lemma 1 yield

g(8) = [IL: TGme) 2™

S8 dun - [3 dum(Tlews™ ™) exp [—3Du((£ — %)) — 3.,
where
D. = 2 wGx, %, =D, D wGix:
Wu= 2wl + Gu((x:))] — Du((%a)).
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After a formal change in the order of integration, the integral of f-g over
Euclidean p-space is expressed as a K-dimensional integral,

(2.6) e f(€)-g(¥) d& = [[L: T(3m)2™17 (2m)
J8 dur -+ [5 dux Dl Npu(TTe wd™™) exp (—3W.),
where
L (2.7) Ny = Ef(Q),
given
{~ N(z,,D, ).

By Fubini’s theorem, equation (2.6) is valid if either (thus each) member is
finite when f is replaced by [f]. Hence, in particular, a necessary condition for
absolute convergence of the p-dimensional integral of f-g is that ) G4 > 0.
We note in passing that the right-hand sides of equation (2.6) and its descendants
below are susceptible to the s-method of asymptotic expansion (Wallace, 1958).

After a change of variables in the right-hand side of equation (2.6), we can
perform one of the integrations to reduce the K-dimensional integral to a

(K — 1)-dimensional integral. Given constants ¢, > 0, k = 1, ---, K, let
u. = 2, cuur and ux = vu.. Then ), o = 1 and the Jacobian of partial
derivativesof uy , - - - , ux with respect tow. , vy, +++ , Vg1 18 cx w7 Expressed

in these variables, Ny, is a polynomial in u.”", the coefficients of which are
rational functions of the v . Denote

(2.8) Niw= D2 nbalvy, -, 00)u".

Then for each term of N, , the integration with respect to w. is in the form of the
gamma function of argument 3( S — p) — .

TaEOREM 1. Given g(¥) a product (2.4) of K-many i-like functions and f(¥)
a polynomaal in the coordinates of €. If the p-dimensional integral of f-g is absolutely
convergent,

[ro f(£)g(¥) dE = Const- >, T[3(n. — p) — r]27"
'CK_1 fo dvy -+ dvg lel_% hr(”l gyttt 'UK)(Hk vkhk_l)Wv_%("'_p)H,

where
Const = [[[xT(3m)] 'x,

n.= . n,
D, = >, uGs,
W. = 2 ull + Gu((x:))] — D7 (2 u6ixa)),
h. is defined by (2.7) and (2.8), and o is the simplex,
o= {(v, - ,vx): 2 av =1 andeach v, > 0}.
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Another necessary condition for absolute convergence of the integral of f-g is,
thus, that Y_ n; > p + 2 max (r). Note possibilities for simplifying the integrand
by choices of the ¢ for which Y, ¢, = 1.

We turn now to specific integrands for Theorem 1.

I. A special circumstance in which |[D,|, D, !, and Ny, are explicitely calcu-
lable functions of the vy is when the G; are simultaneously diagonalizable in the
following sense. Write for each k&

G: = A'AA,
where
Al =1 and Ay = diag MW", -+, M)
Also, .
2 = Ax, = (22, -+ ).

Then we have

Do = TT: (22k o),
W, = Z v + Zz [Zk<h vkvh)\k(i))\n(i)(zk(i) — zh(i))2]/(2k Uk)\k(i))'

The expression for W, is obtained by noting that simultaneous diagonalizability
of theM; = Gy, isequivalent to M,D,"M; = M;D, "M, for all &, k, and hence
the constant term of Lemma 1 becomes Y Mi((x:)) — D, (2] Mixi)) =
2k MDD, M) (3 — %1)).

For the linear form, f(£) = (b'A)£, r = 0 and

Npju = ho = 2209 (220 02 ) / (2okmihe?).
For the uncentered quadratic form, f(£) = [A'i.A]((E — X)), = 0,1, and
Nitw = u""h + ho
= w20 L/ ( 2ok o)
4 220 Ly TLamis 220 00?29 — 2091/ (20 0aM?),

where I: = (Z”) and zy = Ax = (Zo(l), te ,Zo(p)),.

I.A. The case of two t-like factors, K = 2, is especially important for appli-
cations, as discussed in the next Section 2.2. Fortunately, if G; + G, > 0, then
G; and G, are simultaneously diagonalizable as defined above. In this case,
o = (0, 1/c1), and the integral of f-g has a representation as a one-dimensional
integral.

The simultaneous diagonalization of G; and G; is achieved in practice by per-
forming successive diagonalizations, by orthogonal matrices, of G; + G, and
H = A;'0'G,0A; ™}, where A; and O are the diagonal matrix of roots and the
orthogonal matrix of row eigenvectors of G; + G;. Then A; = AzA, Ax = A3 —
Aryand A = A;QAS0, where A and Q are the matrices of roots and eigen-
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vectors of H. The one-dimensional quadrature is easily and accurately carried
out by Simpson’s rule.

A computer program in ForTRAN (listings available) has been developed to
calculate the complete integral of f-g in the case K = 2 for f(£) = 1, b'E, or
L((& — x0)). The program’s performance compares favorably with that of Tiao
and Zellner’s (1964) asymptotic expansion of a (posterior) density function
proportional to g. Tiao and Zellner consider a two-sample regression problem with
parameters 8; and obtain approximations, .03726 and 9.6158 X 107°, to the
posterior mean and variance of 8;. The values with the approximating normal
density are .03730 and 9.0145 X 10~°. The quadrature program yields .0372826
and 10.02397 X 10",

L.B. Another subcase of interest occurs when the K quadratic forms are propor-
tional: there exist a G > O and 71, - -+ , vx > 0 such that each G; = v;G. (This
holds, of course, when p = 1.) Letting ¢; = v, we have |D,| = |G| and

Wy = D 00 + Dorcn vnyvG (X — X)),
For the vector-valued function
f(€) =&  Npuw= 2 oerike ;
and for
(&) = LU(E — %)), Ny = u"tr (LG 4+ L((X vevixi — Xo)).

L.AB. Consider the case of two ¢-like factors (K = 2) with their quadratic
forms proportional, and let G = I,,. Then

g(&) = [+ n & — x| T (1 + y g — x|,
and with n. = n; + n, and
C = [P(3n)TGn)] "7 T (n. — p)lv "y,
we have for f = 1,

fRF g(i) dg
(29)  =C-fodt A — O My 4+ (1 — Dyt

+ (1 — ) — x|
= C-v!™ ™ B(3n1, Ina) -Fi(3na 5 3(n. — p), 3(n. — p); dn. s 21, 2),
where 2, and 2, are the two (real) roots of
24+ nln— %l + v = Dz — v — x| =0

B is the complete beta integral, and F; is Appell’s hypergeometric function of two
variables,

Fi(a;8,8'57v;2,y) = [B(a,y — )] [odt 711 — )7 (1 — t2) (1 — ty)™
[Appell and Kampé de Fériet (1926), or Erdélyi et al. (1953)].
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Double series in ascending or descending powers of = and y result from apply-
ing the binomial series to the integrand of F; . Known transformations of F; lead
to additional useful series.

Integrals of f-g for polynomial f ean be similarly expressed in terms of
Appell’s F; .

L.AB.O. As a final, limiting case, consider a function go, the product of an
exponential function and a ¢-like function with proportional quadratic forms,

g0(8) = exp (=3[ — x|)-[1 + v || — x|'T™

By setting in equation (2.9) v; = M\/n1, v2 = v, and letting n; — «, we obtain
the representation,

(210) [ go(8) dE = [P (3n)2") 7' (2m) P (071

cexp (B — 3Nk — %) - T(—3(n — p),3ns Iy B [ — ),
where we write forb > 0,¢ = 0,anda > 0if¢c = 0,
(2.11) T(a,b;¢;d) = [0dit (1 — ¢)" exp (—e-t" + d-t).

The (arbitrarily symbolized) special function T, new to the author, merits
study. For its boundary values and a general representation, see Erdélyi etal.
(1953), p. 255, and Duff (1956), p. 242.

2.2. Inference about multivariate normal location parameters. Stein ((1962), e.g.),
and Edwards, Lindman, and Savage (1963), p. 233, have objected to the use of
the formal constant prior distribution for a high dimensional (p = 3) multi-
variate normal location vector £ (either the mean vector, or a vector of regression
coefficients with the mean vector equal to Z&, Z known). Anscombe (1963) and
Stein (1964) have criticized multivariate normal prior distributions for £, the
Raiffa-Schlaifer ‘“‘conjugate class’ for multivariate normal sampling with scale
matrix parameter known.

Anscombe (1963) and Tiao and Zellner (1964) have recommended multi-
variate ¢ prior distributions for £ Such a prior distribution implies, in the case of
known scale, a posterior density proportional to the product of a multivariate ¢
density and a multivariate normal density, a limiting form of g(£) (2.4).

The ability to handle prior independence of scale and location is clearly de-
sirable. A normal likelihood function with an unknown scale integrated out by a
gamma or Wishart kernel (including formal ignorance types) is proportional to
a t-like function (Raiffa and Schlaifer (1961); Ando and Kaufman (1965)).
Hence with a ¢-like prior for £ and an independent gamma or Wishart-like prior
for the unknown scale, we obtain a posterior density for & proportional to a
product g(£) (Anscombe (1963); Tiao and Zellner (1964)). Also, it is natural
to combine information from K separate experiments (prior independence of the
scales) into a likelihood function proportional to a product g(£) (Tiao and
Zellner (1964)).

* The posterior distribution is the sole objective of much Bayesian work. But
in cases of high dimensionality (p large), summarizing quantities are called for.
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The role of low-order posterior moments in estimation with quadratic loss is well
known (Savage, (1954)). See Dickey (1967¢) for an hypothesis-testing pro-
cedure based on the posterior mean.

3. The second identity. It will be of advantage to first discuss applications
in Section 3.1 and to then present the identity in Section 3.2 (Theorem 2).

3.1. Multivariate Behrens-Fisher problems. We treat Behrens-Fisher problems
generalized in two ways, first to multivariate normal populations and secondly to
any small number of such populations. Consider K many independent pi-variate
normal distributions 7, with unknown mean vectors w; and unknown variance
matrices H; . We discuss problems of inference about a linear combination n of
the means,

n = ZLIAkvk ) .
with given r X pj matrices Ay, on the basis of a sample of independent vectors,
Xi1,Xk2, - , Xkwy , from each distribution y .

Solutions to traditional Behrens-Fisher problems (prx = 1,7 = 1, K = 2)
based on the usual Behrens-Fisher distributions (variate d = # cos 8 + t;sin 6,
the #; being independent Student ¢ variates with v, degrees of freedom) have been
proposed by Behrens (1929), Fisher (1935), and Jeffreys (1940). In an un-
published manuseript, Savage (1961) has given a personalistic-Bayesian founda-
tion for the use of Jeffreys’ solutions as approximations.

We follow the precedent of former treatments of the traditional problem by
working with independent prior opinions about the K experimental distributions,
and hence independent posterior opinions. Suppose that each prior distribution of
a pair (ux, Hy) is independently as proposed in Section 2.2 (namely w1, - - -, ux,
H,, - -, Hg jointly independent). Then the posterior distributions of the means
ur are independent with densities proportional to products gi(wx) of ¢-like fune-
tions. Regression vectors 8 (wx = ZiBs) take posterior distributions of the same
form, and hence could replace the means yx throughout this section.

It was suggested in Section 2.2 that inference can be based on the low-order
moments of unknown parameters. In principle, the posterior moments of the
u, can be computed according to the methods of Section 2.1. The low-order
moments of n are easily obtained from those of the

En = ZAkEyk, '
EL((n—#)) = 2_tr (LyVi) + L((En — 4)),

where Vi = E(w — Ew) (we — Ew)’, and L, = A,/LA, .

If each prior distribution of a pair (w:, Hx) can be approximated by a Raiffa-
Schlaifer or Ando-Kaufman “conjugate’ distribution, in particular, if the dimen-
sionality py is low and stable estimation applies, then the posterior distribution
of w is approximately multivariate ¢. Such distributions are of interest for sum-
marizing opinion of the u; under the alternatives to a sharp null hypothesis in the
Savage version of Bayesian tests of hypotheses (Edwards, Lindman, and Savage
(1963)).
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We describe briefly the Bayesian test for the hypothesis,
h:n=0.

We test & against its logic?,l complement, 4: n % 0. Define the prior and posterior
odds for 2, @ = P{h}/P{h},Q = P{h|z’s}/P{h|x’s}, and their ratio, A = Q/Q; .
By Bayes’ formula,

(3.1) A = P'{w’s| B} /P'{x's| B},

the likelihood ratio, in which P’ denotes a probability density.

The denominator in (3.1) can be expressed as the integral, [ P'{z’s|n, &} -
P'{n|h} dn. By approximating the numerator by the limit quantity
P'{z’s|n = 0, A}, and then multiplying both the numerator and denominator by
P'{n = 0|k}, we obtain, after another application of Bayes’ formula, the ap-
proximation,

(3.2) A= Pf{n=0|zs k/P{n = 0]|h.

The posterior density of n in the numerator of (3.2) can conceivably be ap-
proximated by the density of the convolution of uncentered multivariate ¢ dis-
tributions of the independently distributed summands Axw:. Specifically, if
w = Coaw” and each w" is g-dimensional ¢ with center &, matrix
G, = v M; > 0, and degrees of freedom », > 0, then n — > ACW is dis-
tributed like the r-vector § ,

(3.3) 3 = 2 B,

where B, = AC:M,* and each (= M,ﬁyk*) independently has a standard
gr-dimensional ¢ distribution on »; degrees of freedom (center 0, matrix
G’k = Vk—llqk).

3.2. Multivariate Behrens-Fisher distributions. In the two-summand case
(K = 2), Cornish (1965) termed the distribution of & (3.3) a ‘“multiple Behrens-
Fisher distribution”. If K = 2 and r = 1, the distribution of & = § is a scaled
version of a usual Behrens-Fisher distribution. A vector formed of two usual
Behrens-Fisher variables which are different linear combinations of the same two
Student variables is distributed like & for r = 2, K = 2. Indeed, from the defi-
nition (3.3), any linear transformation D% has a multivariate Behrens-Fisher
distribution. For example, marginal distributions are Behrens-Fisher. We de-
velop the density and a synthetic representation for 8.

Returning to equations (2.2)—(2.4) and Theorem 1, note that we have already
developed the density of & for the case K = 2. If Gy, G; > 0, and n1, ne > p, the
initegral of g can be interpreted as proportional to a convolution of two multi-
variate ¢ densities,

(34) ¥(x1—%) = [ [T COn, p)MLI[L + w7 " Mi((E — %)) d,
vgith (%) the density of the p-dimensional vector,
® = Bimy + Bove, BB = M, .
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Here, again, the =; independently have standard ge.-dimensional (gr > p) ¢ dis-
tributions with », > 0 degrees of freedom. We have used the result of the syn-
thetic representation of = (2.1) that Byr: is distributed like (B:B.)*; for a
p-dimensional standard ¢ vector, t; , with v, degrees of freedom.

If the first factor in the integrand of (3.4) (k¥ = 1) is replaced by the normal
N(x1, M; ™) density, then =, in the synthetic representation below (3.4) is re-
placed by a standard normal vector.

In the case I.AB. of K = 2 and proportional matrices (say My = 8 I,
k= 1,2), ¥(8) can now be read from (2.9) in terms of . For ® = Bit1 -+ B%2
with v. = »n + 1, '

¥(8) = Tl + p)/2000a/2)T (3e/2)7] " (") (3"
(3.5) B(5(m + p), 3(n2 + ) -F1(3(n + p);
3.+ ), 30 + p)s . + D325 2),
where z; and 2z, satisfy
&+ (”5”2/1’2322 + nB /B — 1)z — [|8]*/meBs” = 0

This appears to be a new expression for the traditional Behrens-Fisher density,
p =1

In the limiting case I.AB.O., from (2.10) and the limiting form of (3.4), we
obtain the density ¥o(80) of a simple linear combination, & = 1z + Br, of a
standard normal vector z and a standard multivariate ¢ vector =,

Yo(®) = (3») [0 () (2m) "1 7678y
(3.6) -exp (398581 " — 381" [8l) - T(— v, 3(v + p);

38,7677 38" [15o]),
where equation (2.11) defines T. Equation (3.6) corrects an erroneous expression
for ¥y in the one-dimensional case given by Ruben (1960).

With a general number K of summands, we have the following theorem.
TueorREM 2. Let 71, -+, ©x have independent standard qi-dimensional multi-

variate t distributions with vy, -+ - , v > 0 degrees of freedom (centers 0, matrices
vi '1,,). Then the random r-vector 3,

5 = Z Bk‘ek 5
has the representation,
(3.7) 8 = (O w'wBiB)'z,

where the i, are independently chi-squared distributed with vy, degrees of freedom, and
z is an independent r-dimensional standard normal vector. Consequently, & has the
further representation,

(3:8) 8 = [ o (m/v.)BiBi I'x,
where, with v. = Z vk, the v, = U/ Z u; (v, -+, vx are jointly Dirichlet dis-
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tributed: vy > 0, Y v, = 1, with density T'(3v.) T /T Gw)ldnvy, - vk
Wilks (1962), pp. 177-182), and = has independenily an r-dimensional standard
multivariate t distribution with v. degrees of freedom. If the matriz Y, BBy’ is non-
singular, the distribution of d s nondegenerate with the density function,

¥(®) = TG + NI/ TLe TG
(3.9) Sodvy -+ doea(TTe o2 07 wiBiBy |
J1 4+ (o BB T,

the range o of the v, as above.

Proor. Since each w, = z/(uz/7:)}, the z; being independent standard normal
vectors, then the conditional distribution of & given % , - - - , ux is normal with
mean 0 and variance ), u; »B:B; . Hence (3.7) holds. Let u. = 2, u; and write
ur = vxu. . Then u. is chi-squared distributed with ». degrees of freedom, inde-
pendently of the v, (as in the discussion preceding equation (2.8)). By substitut-
ing for the w; in (3.7), we obtain (3.8). The conditions »_ BB, > 0 and
>~ v BB > 0 (with probability one) are equivalent, by consideration of the
corresponding quadratic forms.

Equation (3.9) generalizes Ruben’s (1960) integral representation for the
usual Behrens-Fisher densities.

4. The third identity.

4.1. Mathematics. Let vy, « -+ , vg be Dirichlet distributed with parameters
by, -+ ,bx,each Re (by) > 0;namely, D v, = 1 and each v; > 0, with density
By, -, bo) ]Il in o, -+, vxka, where B(by,---, bg) =
(I T ®)/T(2- b)) (Wilks (1962), pp. 177-82). Let ui, us = 1 — u be
Dirichlet distributed (beta distributed) with parameters a;, a2 = 2, by — a1,
each Re (a:) > 0. Then (ay/a)w = (as/ay) (uy/us) is F distributed with ia, and
14, degrees of freedom. Then given any linear form >, vz ,

(41) E(Z vkzk)"” = EH (ulzk + uz)_bk
= E(w + D] (wer + 1)

"The identity (4.1) in integral form is attributed to Picard by Appell and
Kampé de Fériet (1926), p. 115. Each member is an integral representation of
Lauricella’s hypergeometric function Fp . This function has many interesting
properties (Carlson (1963), and sequelae).

TueoreEM 3. The following generalization of (4.1) holds. Given Re (a;) > 0,
i=1,--+,LRe (bs) >0,k=1,--+,K,and ) a; = ) by Visualize a matriz
Z of entries 2« . Then,

(4 2)  for (ITe eviea) ™ 1(TLeos™ ™) dvx - - - dvgs/B(by, + - ,bx)
= Jor [TTe (Zeuia) ™ (TTew™) dur -+ - durs/Blay, -+ , ar)

where o7 = {(wy, -+, ws): 2 w; = 1 and each w; > 0}. In case Re (2 a;) <
Re (Z br), define ary = Z by — Z{ ai,letzrp e = 1,andreplace Iby I + 1in
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(4.2). The expected-value form of (4.2) is an obvious analogue of (4.1) and can
include multiple F, or ‘“inverted Dirichlet’”’, variables (Tia0 and Guttman (1965)).

Proor. Assign the usual notation (a,b) = I'(a + b)/T(a). Letza = 1 — yu.
In a neighborhood of 2z, = 1, the integrand of the left-hand member of (4.2) can
be expanded, and the integration performed term-by-term,

D enchmiz=o [ L¢ (@i, 2 ma) ([T (1, ma)]™ TLay*
Tk ey 22ma) (22 bey 2o ma)]™
= D ttetmamo [[1e (e, 2oemae) [T1s (1, ma) 1™ TLe y54l
e (i, 2oema) [ Q2 iy 2o ma)l™,

yielding the right-hand member of (4.2), since Y, by = > ai.
4.2. Statistical applications. The final member of equation (4.1), written as an
integral, reads

(4.3) Jew T (wer + 1)™" dw/B(as , as),

which, when b; = (v + 1), K = N,and 2 = (yx — i), we recognize as a likeli-
hood function for errors independently Student ¢ distributed with the unknown
scale w integrated out. Known properties of Lauricella’s Fp , for example differ-
ential relations, apply to inference from the likelihood function (4.3), for ex-
ample maximum “likelihood” estimation of location parameters.

Savage (1966) has noted that if vy, ---, vg are Dirichlet-distributed with
parameters by , - - - , bg, then the transformed variables oy,

B = v/ (2059525), u o= B /(i)
have density in oy, - -+ , Ug ,

(T &™) (T o™ ™) (2 827) /BBy, -+ - , bx).

Say, each z; > 0; then #, > 0 and ), % = 1. Then the moments of the 7, are
one-dimensional integrals, according to the integral form of the identity (4.1),

(44) EJIo*=BMbi+a, - ,be+ c)Bbi, -+ ,bx)B( by, 2 c)]™
(L™ fo duw™ (1 = w)®* 7 [ (™ — 1) + 1772,

Note the interpretation of the right-hand member as proportional to an ex-
pectation.

Note in passing that the relation between random vectors under a transforma-
tion of the above form is an equivalence relation. The transformation group is
isomorphic to the quotient group of the direct sum of K copies of the multi-
plicative group of positive real numbers, divided by the subgroup of equico-
ordinate vectors (v, v, +++ , v).

The vy, are distributed like homogenized chi-squared variables,
ks

2 2
U ™~ X(zbk)/z X(2bj) »
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with the usual degrees-of-freedom notation and the chi-squared variables inde-
pendent (Wilks (1962)). Hence,

(4.5) Be ~ Xaph/ 2o X(pp; -

With this interpretation, the distribution of the #;’s is important in some Bayesian
approaches to components-of-variance problems (Hill (1965); Tiao and Box
(1967)). I am grateful to George C. Tiao for pointing out this application.

Our final discussion applies to the quite general problem of inference from a
multinomial observation, n; , 72, - - - , g . Imagine a sequence y1, ¥, « - + of ob-
servable independent random variables, each with unknown probability mass
function p(k) on 1, --- , K. Then the predictive probability mass function of
Yn+, given yi, Y2, + - - , yn with cell counts ny, - - -, nx, is, as is well known and
easily derived,

Elp(k)|na, -+, nel = Ep(k) L p()"/EIL ()™,
where the expectations in the right-hand member are taken with respect to the
prior distribution on the mass function p. More generally, jointly,
Elp(kyi1)p(kuys) -+« p(lyear)| 1, -, mg]
= Ep(kwsa) - -+ plhysae) JL p(6)™/E T p(k)™.

For a prior Dirichlet distribution on p, say the p(k)’s distributed like the v;’s
in this section (parameters by, -- -, bx), the needed high-order mixed moments
are, of course, easily calculated in closed form,

Ellp(k)* = B(by+c1, -+ ,bx + ¢x)/B(b1, -+, bx)
(D b b 4+ 22 el ™ TT (o + ) [T(0e)] 7

For a prior Savage distribution on p, the needed moments are given by (4.4).
Although this generalized Dirichlet distribution permits some more flexibility
in the choice of a prior, still it cannot have special correlations between the prob-
abilities of adjacent pairs of cells.

5. A grand extension. The multivariate normal, multivariate ¢, and Dirichlet
distributions play important roles in the three theorems of this paper. It is an
amusing exercise to try to replace these multivariate distributions by their
matricvariate analogues: the distribution of a multivariate normal sample
(James (1954)); the matricvariate ¢ distribution (Kshirsagar (1960); Dickey
(1967b)); and the multivariate beta distribution extended to any number K of
matrices (Olkin and Rubin (1964)).

Acknowledgment. I am grateful to Leonard J. Savage and William A. Ericson
for their patience and encouragement.
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