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ON A GENERALIZED SAVAGE STATISTIC WITH APPLICATIONS TO
LIFE TESTING!

By A. P. Basu?
Unaversity of Wisconsin, Madison

0. Summary. Let there be two samples X3, X5, -+, Xpand Yy, Yy, ---,
Yo(N = m + n) from two populations with continuous edf’s F(x) and G(y).
Let the first ¢ ordered observations (out of N combined observations) contain
m; &’s and n; y’s (m; + n; = ) where m; and n; are random numbers. To test

(0.1) Hy:F =@
against alternative that they are different we propose the statistic
(02) 8% = 3isaz+ (m—m)(N—r)"(Xha) — 3(m +n)

based on the first r ordered observations only where

aiN/:' a; = ;‘V—N—i+1 1/j:
and
2z =1, if the ¢th ordered observation is an z; ,

= 0, otherwise.

The statistic is the asymptotically most powerful rank test for censored data
under the Lehmann alternative and is equivalent to the Savage statistic [14]
when r = N. It is also known to maximize the minimum power over IFRA (or
IFR) distributions asymptotically. Exact and large sample properties of S,
are studied and a k-sample extension of it is also considered. Various tables are
also provided to facilitate the use of the S, statistic.

1., Introduction. Let X;, X5, -+, Xnand Yy, Y5, ---, Y, be two independ-
ent samples of sizes m and n respectively from two populations with continuous
cumulative distribution functions (edf’s) F(2) and G(y), where F and G belong
to the same family F of distribution functions indexed by a parameter 6. Let all
the m + n = N observations be ordered in a sequence and we want to test the

hypothesis
(1.1) Hy:F =@
against the alternative that they are different based on (at most) the first r

out of the combined sample of N observations. That is we have a right censored
sample of size at most 7. Such a problem arises naturally in many fields as for
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1592 A. P. BASU

example, in problems of life-testing where we are interested in comparing the
mean life of items produced by two physical processes or in problems of biological
assay where we can not afford to wait until all the observations are available.

To test the above hypothesis Sobel [15], [16] proposed two statistics whose
large sample properties were studied by Basu [2], [3]. In [3] it was shown that in
the exponential case a modified version of the statistic proposed by I. R. Savage
[14] performs best. Also it is well known (see for example Savage [14], Capon
[7], Hajek [11] and Basu and Woodworth [5]) that the Savage statistic is the
asymptotically locally most powerful rank test under the Lehmann alternative
which include, as special cases, the exponential and the Weibull distribution—
the two most commonly used models in life testing. Recently Doksum [9] has
shown that the Savage statistic maximizes the minimum power over the class of
distributions with increasing failure rate averages (IFRA), or over the class of
distributions with increasing failure rates (IFR), asymptotically. (For defini-
tion of IFRA and IFR distribution see Birnbaum, Esary and Marshall [6],
Barlow and Proschan [1], p. 23.)

In view of the above findings it seems desirable to study the generalized Savage
statistic to be defined later (based on only the first » ordered observations r =
N). Our study closely parallels Sobel’s work [16] in which a generalized Wilcoxon
statistic has been studied.

In Section 2 we have defined S,"", a generalization of the Savage statistic,
based on the first r observations only. The exact and asymptotic distribution of
S, ™ is given in Section 3. A curtailed form of S,“", suitable for life testing prob-
lems, is discussed in Section 4 and in Section 5 we compare the S, test with
other life tests on the basis of their curtailed forms. Finally, in Section 6 a k-
sample extension of the S,™ statistic is also considered.

Two other generalizations of the Savage statistic have been proposed previ-
ously by Gastwirth [10] and Rao, Savage and Sobel [13]. However, Gastwirth
did not consider any explicit form for small samples and S, is shown to be
asymptotically equivalent to his statistic. On the other hand, while S and
R, the statistic proposed by Rao, Savage and Sobel, perform comparably in
small samples, the large sample properties of R, are not known. The above
reasons also justify the introduction of the S, statistic.

2. Definition of the generalized Savage statistic. Let the first ¢ ordered ob-
servations (out of the N combined observations) contain m; z’s and n¢ y’s

(m; 4+ n; = 1) where m; and n; are random numbers (¢ = 1,2, .-+, r). Also let
(2.1) 2z =1, if the ¢th ordered observation is an z,
= 0, otherwise (i=1,2,---,N).

Then to test the hypothesis (1.1) we propose the statistic S,™ where
22) 8P = Yiaaz+ (m — m)(N = r)7 (2 a) — 3(m +n),
(r < N)



and

(2.3)

A GENERALIZED SAVAGE STATISTIC

_ N N —1
a; = Q; = Zj=N—-i+1] .

It is obvious that for r = N, S, reduces to the Savage statistic S where, by
convention, (m — m,)(N — r)™*
Table I gives the weight function a;" which may be used for computing the
statistic S, for N < 20.

= 0.
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TABLE I
Weights ai® used in computing the statistic S&)
N
7
1 2 3 4 5 6 7. 8 9 10

1| 1.0000 | 0.5000 | 0.3333 | 0.2500 | 0.2000 | 0.1667 | 0.1429 | 0.1250 | 0.1111 | 0.1000

2 1.5000 | 0.8333 | 0.5833 | 0.4500 | 0.3667 | 0.3095 | 0.2679 | 0.2361 | 0.2111

3 1.8333 | 1.0833 | 0.7833 | 0.6167 | 0.5095 | 0.4345 | 0.3790 | 0.3361

4 2.0833 | 1.2833 | 0.9500 | 0.7595 | 0.6345 | 0.5456 | 0.4790

5 2.2833 | 1.4500 | 1.0929 | 0.8845 | 0.7456 | 0.6456

6 2.4500 | 1.5929 | 1.2179 | 0.9956 | 0.8456

7 2.5929 | 1.7179 | 1.3290 | 1.0956

8 2.7179 | 1.8290 | 1.4290

9 2.8290 | 1.9290
10 2.9290

N
7
11 12 13 14 15 16 17 18 19 20

110.0909 | 0.0833 | 0.0769 | 0.0714 | 0.0667 | 0.0625 | 0.0588 | 0.0556 | 0.0526 | 0.0500

210.1909 | 0.1742 | 0.1603 | 0.1484 | 0.1381 | 0.1292 | 0.1213 | 0.1144 | 0.1082 | 0.1026

3] 0.3020 | 0.2742 | 0.2512 | 0.2317 | 0.2150 | 0.2006 | 0.1880 | 0.1769 | 0.1670 | 0.1582

4 0.4270 | 0.3854 | 0.3512 | 0.3226 | 0.2984 | 0.2775 | 0.2594 | 0.2435 | 0.2295 | 0.2170

510.5699 | 0.5104 | 0.4623 | 0.4226 | 0.3893 | 0.3609 | 0.3363 | 0.3150 | 0.2962 | 0.2795

6 | 0.7365 | 0.6532 | 0.5873 | 0.5337 | 0.4893 | 0.4518 | 0.4197 | 0.3919 | 0.3676 | 0.3462

7 10.9365 | 0.8199 | 0.7301 | 0.6587 | 0.6004 | 0.5518 | 0.5106 | 0.4752 | 0.4445 | 0.4176

8 11.1865 | 1.0199 | 0.8968 | 0.8016 | 0.7254 | 0.6629 | 0.6106 | 0.5661 | 0.5279 | 0.4945

9| 1.5199 | 1.2699 | 1.0968 | 0.9682 | 0.8682 | 0.7879 | 0.7217 | 0. 6661 | 0.6188 | 0.5779
10 1 2.0199 | 1.6032 | 1.3468 | 1.1682 | 1.0349 | 0.9307 | 0.8467 | 0.7773 | 0.7188 | 0.6688
11 | 3.0199 | 2.1032 | 1.6801 | 1.4182 | 1.2349 | 1.0974 | 0.9896 | 0.9023 | 0.8299 | 0.7688
12 3.1032 | 2.1801 | 1.7516 | 1.4849 | 1.2974 | 1.1562 | 1.0451 | 0.9549 | 0.8799
13 3.1801 | 2.2516 | 1.8182 | 1.5474 | 1.3562 | 1.2118 | 1.0977 | 1.0049
14 1 3.2516 | 2.3182 | 1.8807 | 1.6062 | 1.4118 | 1.2644 | 1.1477
15 3.3182 | 2.3807 | 1.9396 | 1.6618 | 1.4644 | 1.3144
16 3.3807 | 2.4396 | 1.9951 | 1.7144 | 1.5144
17 3.4396 | 2.4951 | 2.0477 | 1.7644
18 3.4951 | 2.5477 | 2.0977
19 3.5477 | 2.5977
20 4| 3.5977
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An interesting feature of the statistic S, is that once all the 2’s (or all the
y’s) are available the value of S, remains unchanged (as it should be intui-
tively) as can be easily seen that if m, = m or n, = n for some r = 7, then
S = S™ forallr = 1.

3. Distribution of S,"”. In this section we shall find the exact and the large
sample distribution of S,*”. To this end it seems desirable to have some idea
about the extreme values of S,™. Clearly for fixed N the a/"’s are increasing
functions of 7 (1 £ 7 = N). We can use the above fact to prove the following:

LemmMa 3.1. The minimum value of S, is attained if the first v = min (m, r)
observations are all x’s (m, = v) and s given by

S (min) = > T a; — i(m +n) (r =m)
(3.1) =D iai+ (m—r)(N—r)H (D a)
— 3(m +n) (r < m).

The mazimum value of S, can be obtained by interchanging the a’s with the y’s
in the above statement.

Proor. Since the a.’s are increasing functions of ¢ and Y w1 as/(N — 7) > a;
(j=1,2, -+, r) it is clear that S, will be minimized by minimizing {(m
— m,)/(N — r)}. D% a; and making D i a2 as small as possible. The proof
for the maximum value of S also follows similarly. It can be easily seen that
for m = n, max (S,™) + min (8,") = 0 for all r.

The exact distribution of S, under the null hypothesis can be easily found
for small values of m, n and r. Since under the null hypothesis the probability of
any sequence (21,2, -+ , %) is given by (m—m,)/(m) (for proof see Rao, Savage
and Sobel [13]).

It should be noted that for m = n the distribution of S, is symmetrical for
any r < N, since for any sequence Z = (21, 23, -+ , %) we can find a dual se-
quence Z* = (1 — 2,1 — 2, -+, 1 — z) by interchanging the 2’s and 3’s. In
Table II using above results we have tabulated the tails of the exact distribution
of ;P form=n=r=4(1)8m=n=4r=56m=n=>51r=26,7,8
andm = n = 6,r = 7. Because of the symmetry of the distributions it is enough
to tabulate only one half of the table, that is, only the positive values of S, an
(say). For the special case r = N, some of these tables are also given in Savage
[14].
For large N(r/N — p > 0 as N — =) the asymptotic normality of S,
both under the null and the non null hypothesis follows from the Chernoff-
Savage theorem [8] as 8, is asymptotically equivalent to the Gastwirth form
[10] of the Savage statistic as can be seen from the following:

TureoreM 3.1. S, is asymptotically equivalent to the Gastwirth modification
of the Savage statistic.

Proor. Since

(32)  limyawa: = limyow 2o (N — 5+ D7 = [E (1 — ) de
= —log (1 — )



TABLE II

Tail Probabilities of S, under Ho for different values of m, n and r

m=4,n=4r<4

m=mn=235,r =6 (continued)

2 548 Cum. Prob. P 5619 Cum. Prob.
0100 1.1716 .8714 000100 2.8616 .9921
0010 1.3384 .9286 000010 3.0282 .9960
0001 1.5382 .9857 000001 3.2282 1.0000
0000 2.5382 1.0000

m=n=35,r=7
m=n=4r=35 o

" 5@ Cam. Prob. 2 N Cum. Prob.

00101 10881 8857 1100000 1.5981 .8968
0001011 1.6115 .9087

00011 1.2881 .9286
1010000 1.7231 .9127

10000 1.7787 .9429
0000111 1.7781 .9246

01000 1.9216 .9671
0110000 1.8342 .9286

00100 2.0882 .9714
1001000 1.8660 .9325

00010 2.2882 .9857 .

00001 o 5382 10000 0101000 1.9771 .9365
: : 1000100 2.0326 .9405
m=n=4r=6 0011000 2.1021 9444
z Se® Cum. Prob. 0100100 2.1437 .9484
1000010 2.2326 .9524
010010 1.5882 .9000 0010100 2.2687 .9563
001010 1.7548 .9143 0100010 2.3437 .9603
100001 1.7787 .9286 0001100 2.4116 .9643
010001 1.9216 .9429 0010010 2.4687 .9682
000110 1.9548 .9571 1000001 2.4826 .9722
001001 2.0882 .9714 0100001 2.5937 .9762
000101 2.2882 .9857 0001010 2.6116 .9801
000011 2.5382 1.0000 0010001 2.7187 .9841
— s 0000110 2.7782 .9881
= 0001001 2.8616 .9921

5 S Cum. Prob. 0000101 3.0282 .9960
00011 1.0615 8968 0000011 3.2282 1.0000
10000 1.6826 .9167 mmmesi,o3
01000 1.7937 .9365 ’

00100 1.9187 .9563 3 S50 Cum. Prob.
00010 2.0616 9762 00011100 1.8282 .8068

00001 2.2282 .9960

00000 3 9080 10000 01100001 1.8342 .9008
: : 10010001 1.8660 .9048
m=n=357r=6 10000110 1.8992 .9087
. S pr——— 00101010 1.9353 .9127
01010001 1.9770 .9167
001010 1.5187 .8968 01000110 2.0103 .9206
010001 1.5937 .9127 10001001 2.0326 .9246
000110 1.6616 .9286 00011010 2.0782 .9286
001001 1.7187 .9444 00110001 2.1021 .9325
000101 1.8616 .9603 00100110 2.1353 .9365
000011 2.0282 .9762 01001001 2.1437 .9405
100000 2.4826 .9802 10000101 2.2326 .9444
010000 2.5037 .9841 00101001 2.2687 .9484
001000 2.7187 .9881 00010110 2.2782 .9524
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TABLE II (continued)

m=mn=35,r = 8 (continued)

m=mn=06,r =7 (continued)

z S50 Cum. Prob. 2 S;42 Cum. Prob.
01000101 2.3437 .9563 1000000 3.1827 .9935
00011001 2.4116 .9603 0100000 3.2736 .9946
00001110 2.4448 [9643 0010000 3.3736 9957
00100101 2.4687 .0683 0001000 3.4848 .9968
10000011 2.4826 9722 0000100 3.6008 .9978
01000011 2.5937 .9762 0000010 3.7526 .9989
00010101 2.6116 .9802 0000001 3.9193 1.0000
00100011 2.7187 .0841 pr———

00001101 2.7782 .9881 P 57(14) Cum. Prob.
00010011 2.8616 .0921
00001011 3.0282 9960 0011000 . 1.8479 .8998
00000111 3.2982 1.0000 0100100 1.8646 .9059
1000010 1.8987 .9120
m=n=r=56 0010100 1.9479 .9181
z Sed2) Cum. Prob. 0100010 1.9757 .0242
1000001 2.0237 .0304
000110 1.5087 -9113 0010010 2.0590 .0426
001001 1.5403 .9275 0100001 2 1007 9487
000101 1.6515 -9437 0001010 2.1499 .0548
000011 1.7765 -9600 0010001 2.1840 .9610
100000 2.3494 9664 0000110 2 2499 9071
010000 2.4403 -9729 0001001 2.2749 .9732
001000 2.5403 -9794 0000101 2.3749 .9793
000100 2.6515 -9859 0000011 2.4860 0854
000010 2.7765 .9924 1000000 3 0257 0875
000001 2.9103 .9989 0100000 31007 9895
000000 3.9193 1.0000 0010000 3.1840 .9915
P —— 0001000 3.2749 .9936
- S —— 0000100 3.3749 .9956
0000010 3.4860 .9977
0110000 1.7279 .8950 0000001 3.6110 .9997
1001000 1.7482 .9004 0000000 4.6110 1.0000
0101000 1.8301 .9058 p—
1000100 1.8732 0113
0011000 1.9391 9167 : S0 Cum. Prob.
0100100 1.9641 .9221 00100101 1.6346 8992
1000010 2.0160 0275 01000011 1.6632 .9036
0010100 2.0641 .9329 00001110 1.6838 .9079
0100010 2.1069 .0383 00010101 1.7115 .9123
0001100 2.1753 .0437 00100011 1.7346 .9166
1000001 2.1827 .0491 00001101 1.7949 .9210
0010010 2.2069 .9545 00010011 1.8115 L0253
0100001 2.2736 .9600 00001011 1.8049 .9207
0001010 2.3181 0654 00000111 1.9858 0340
0010001 2.3736 .9708 11000000 2.1689 9362
0000110 2.4431 9762 10100000 2.2403 0384
#0001001 2.4848 .0816 01100000 2.3070 .0406
0000101 2.6008 .9870 10010000 2.3172 0427
0000011 2.7526 .0924 01010000 2.3839 .9449
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m=mn=r = 8§ (continued)

m = n =r = 8 (continued)

z S50 Cum. Prob. z S0 Cum. Prob.
10001000 2.4006 L9471 00100001 2.8407 .9819
00110000 2.4553 .9493 00001010 2.8899 .9841
01001000 2.4673 .9514 00010001 2.9176 .9862
10000100 2.4915 .9536 00000110 2.9808 .9884
00101000 2.5387 .9558 00001001 3.0010 .9906
01000100 2.5582 .9580 00000101 3.0919 .9928
10000010 2.5915 .9601 00000011 3.1919 .9949
00011000 2.6156 .9623 10000000 3.7025 .9956
00100100 2.6296 .9645 01000000 3.7692 .9962
01000010 2.6582 .9667 00100000 . 3.8406 .9968
10000001 2.7026 .9688 00010000 3.9175 .9974
00010100 2.7065 .9710 00001000 4.0009 .9981
00100010 2.7296 L9732 00000100 4.0918 .9987
01000001 2.7693 L9754 00000010 4.1918 .9993
00001100 2.7899 9775 00000001 4.3029 .9999
00010010 2.8065 L9797 00000000 5.3029 1.0000

and
limysw a(N — 7)™ = limyaw (N — ) [ Dotm ai — D i ad

(3.3)

It

(1 — p) 7 limyaw [1 — DL im ai/N]

(v Y ai=N)
(1= p)  imyaw [L = N7 255 (r =+ 1)
(N —j+1)7
(1=p)"[1 = [§(p— 2)(1 — 2)7" da]

1 —log (1 — p).

The result follows by comparing (3.2) and (3.3) with the weight function given

in [10].

To make use of the normal probability integral we need to find the mean and
variance of S, under the null hypothesis. To this end we have the following:
TueoreM 3.2. Denoting by Eo(-) and oo’ (+) the mean and variance under Ho

we have

(84)  Ey«(8™) = (m — n)

and

3.5 o (&™) = mn(N(N — 1)) Xial + (N — )™ — N}

a = Zf—ﬂai .

where
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Proor. Proof follows easily since S,"” can be written as
S = 3 lazi+ a(N — )7 D iz — Hm + n)
= Zliv-=1 lg; — 3(m + n),

where

A

z

IA
>3

li = a;, 1
=a(N —r)7}, r+1

And it is well known that under H,
Eo( X lz;) = mN Y1

I\
IA
=

and
oo (D liz)) = mn(N(N — 1)) D.F (I — DA

Table III gives some idea about the accuracy of the normal approximation of
the two sided test statistic |S,™| for various values of m, n, 7 (m = n) and for
the 5% level of significance. ' gives the size of the critical region based on the
normal approximation when the exact size based on |8, ™| is .05, Pr denoting
the randomization probability needed to achieve the actual size .05 based on the
|8, statistic. It should be noted that we have not made any correction for
continuity which normally should improve upon the approximation.

4. The test based on S,” and its curtailed form. An interesting feature of the
test based on the statistic S, is that it might be possible to terminate the test
even before all the r observations are available and predict accurately the out-

TABLE III
Comparison of Exact tests based on |S; M| with Normal Approzimation
a = .05
m n r Critical Value Pr® o/ @
18]
4 4 4 1.5378 1875 1142
5 5 5 2.0616 .0600 .0614
5 5 6 2.0280 .0756 .0910
5 5 8 2.5937 .2999 .0548
6 6 6 2.5403 .6833 .0358
6 6 7 2.4431 .2200 .0588
7 7 7 2.3748 7048 .0602
8 8 8 2.7692 .2054 .0478

(1) Pg denotes the ‘“‘randomization probability’’ to achieve o = .05 when the test sta-
tistic | S, | is used.
“(2) o is the size of the critical region for the same critical value |S,?)| when the
normal approximation is used.
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come based on all the r observations. This is particularly true of value in de-
structive testing since the earlier we reach a decision the more we save on the ex-
perimental cost and time. This feature can best be illustrated by an example.

Consider the case m = n = r = 5. Let X and Y refer to the failure times of
two sets of items put on test. In this case S5"” is symmetrically distributed
around zero under the null hypothesis and we use an equal tailed test based on
|8:"?|. Eight sequences with the largest values of |Ss"”| are shown in Table IV.

The proposed test is to reject, Hy for large values of |Ss"”|. For a critical region
of exact size a = .05 we reject Hy when |S5"”| > 2.0616, accept Howhen |Ss"”| <
2.0616 and randomize when |S;"?| = 2.0616, that is, we reject H, with randomi-
zation probability Pr = .02749.

It is clear that the results of the test may be determined before 5 failures are
observed and hence the test can be put in a curtailed form, that is we can termi-
nate the test as soon as the decision to accept or reject the Hy is reached. Table V
gives the stopping sequences in a curtailed test allowing for randomization. Since
the test is symmetric we restrict the tabulation to  sequences only.

It can be easily verified that if the first observation is an z very little can be
said about the possible outcome of |Ss'”|. However, if in addition the second
observation is a y, no matter what are the outcomes of subsequent failures the
maximum value of ]Ss(m)[ will be less than 2.0616, the critical value.

It is interesting to study the expected length Eo(Ny) of the stopping sequence
and the expected time to terminate the test under H,. We shall discuss these
points later. Using some results of Sobel [16] and some results given in the next

TABLE IV
Test based on |80 form =n=7r=1§
Sequence z  Dual sequence z* | 8500 | Po(2) + Po(z*) Cumulative
= 2P (z) Probability
TLTTTT yyyyy 3.2282 1/126 .0076
TTITTY Yyyyye 2.2282 5/126 .0476
TLTTYT yyyry 2.0616 5/126 .0873
TTYTL yyTyy 1.9187 5/126 1270
TABLE V
Test based on |Ss19| in curtailed form
Stopping 2P(2) |8510] Action
sequence z
T 6/126 |85 > 2.0616 Reject H,
TTTYT 5/126 |8:40] = 2.0616 Reject H, with probabil-
ity .0275
zy 70/126
Y 35/126 |8:019] < 2.0616 Accept H,

TTTYY 10/126
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section it can be shown that for this particular example
Ey(N;) = 344/126 = 2.76 and Eo(T)/6 = .310317

where 0 is the parameter through which the two populations differ and Eo(T)
is the expected termination time.

Another interesting feature of the curtailed sequence follows from the follow-
ing:

Lemma 4.1. For any curtailed sequence of length d < v the value of Si™ ob-
tarned by using (2.2) with r replaced by d s the conditional expectation of S,
under Hy given the source of the first d failures.

Proor.

(41) ES® | (a1 2)) = D tmai + 2 aiB(zi] (21, - - 22))
+ (T ) (N = )7 T B (2 ) = 3(m + n).
But E(zi| (21, -+ 2a)) = (m — mg)(N — d)~". Hence
B(S™ | (2, o+ ,20) = 2dazs + (m — ma)(N — d)™
(4.2) X ana + el — 3(m+n)
= 8™
The above lemma shows that for increasing 7, 8, forms a martingale.

6. Comparison of nonparametric curtailed life tests. Since the statistic S, is
asymptotically equivalent to the Gastwirth form [10] of the Savage statistic,
S, can be shown to possess all the standard large sample properties. Moreover
elsehwere ([2], [3]) Basu has computed the asymptotic relative efficiencies of the
S, statistic with respect to other “r out of N statistics, which show the su-
periority of the S, test in life testing situations. However, since in many life
testing problems 7 will be usually small or of moderate size, it seems desirable to
compare the performance of S, statistic with other statistics which are con-
sidered suitable for life testing. Sobel has already made some comparisons among
several competitive tests on the basis of their curtailed forms when the parent
populations are exponential. For a discussion of these tests we refer to Sobel’s
paper [16] whose notations we shall use. Let the density function of #(z) and
G(z) be, under the null hypothesis Hy ,

(5.1) , fo(z) = 67, x> 0.
And let under the alternative hypothesis H,
(5.2) go(y) = 26 ¢, y=0In2,

and under the alterantive hypothesis H,
(53) go(y) = 367", y > 0.

Thus H, and H, correspond to two situations commonly encountered in life
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testing problems. Denoting by P;(Sa), E«(N;) and E(T) the probability of any
sequence (21, -+, 2a) of length d under H;, expected number of observations
needed for the curtailed |:S,""| test to reach a decision under H; and the expected
time to terminate the curtailed form of the test (¢ = 0, 1, 2) Sobel has compared
various tests in terms of the above quantities. In this section we shall consider
P:(8Sa), E{(N;) and E;(T) for the S, test for the special cases (m = n = 5,
r=6),(m=n=5,r=8),(m=n=r=6)and(m=n=r=7)using
the formulas given by Sobel. However for H; we have the following simpler ex-
pressions.

LemMaA 5.1. Given a sequence Sa = (21, -+, 24) of length d(mq 4+ nq = d,
Mg = M,ng = n,d < r) we have under H,

(54) Px(8a) = minl((m — ma)(n — ng)!)~'2™
Tlemr(20m — ma) + (n = na) + o + 553 2]
and
(5.5) Ex(T|8a) = 2Py(8a)- 2 e [2(m — ma) + (n — na)
+ a4+ 20550 zagl ™

where By(T | Sa) is the contribution of the stopping sequence Sq (that is, the term to
be added) to E(T | H,) so that E(T | Hy) = D {Ey(T | 8a)Ps(Sa)} where the
summation 1s taken over all admissible stopping sequences Sz (d < 7).

Proor. The expression Py(Sq) directly follows from an expression given by
Rao, Savage and Sobel [13]. The second part also follows by substituting f(w;) =
2(1 — G(w:))g(w:) and integrating the variables (wa, wa_y, --- , ws, w,) one
at a time and in the order wq , wa_,, - -+ , w, in the expression

Ex(T|8s) = min!l((m — mg)!(n — nd)I)_lf(0<’wl<'w2<"'<wd<°°) Wa
JTea 7w Filg(wa) 7511 — F(wa)]™ ™1 — G(wa)]" ™
dwy -+ - dwg.

Table VI shows the results of computations involving the various quantities
described above. Here we have compared several statictics in terms of E;(N,),
Ei(T) and the power function P {correct decision | H;} = P(CD | H;) under
specific alternatives H; (7 = 1, 2). To facilitate disucssion we have also included
corresponding results for the R, statistic proposed in [13] for the cases m =
n =5r=6andm = n = r = 6. Looking at Table VI and comparing it with
Sobel’s Table IV [16] it seems clear that even in small samples the S, test
performs as good as any one of the tests discussed by Sobel. In particular, the
curtailed forms of the S, and the R, statistic are comparable in their per-
formances.

» 6. K-sample extension. In this section we shall consider a k-sample extension
of the two-tailed test based on 8,”. Let Xi; (j = 1,2, -+ ,ni, 5= 1,2, -+ , k)
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TABLE VI
Performance characteristics of stx curtailed tests for « = .05
Hy H, H,
Ran-
e Max
Criti- | dom- = ]
Test P No. of = o
Statistics ngll.lle lﬁ!ggn failures| ® _h_:_ _ ® E .
. t = = < X IS X
rr s &85l & |85 ¢&
5] g & & S A S 5

(1) Seu®
m=n =25, 2.0280(.07560] 6 |4.722|.60595(.17374|5.199|1.09108|.19916(5.195 .96467
r=26

80
m = n =5, 2.5937(.29988] 8 [4.349|.55436|.22664(5.397|1.14918|.17258/4.644| .87051
r=8 R
Se(12)
m=n=r = 6 |2.5403(.68330] 6 [3.348|.32755|.32013|5.144| .91682(.12913|3.633| .50463
S,2)

m = n = 6, 2.4431/.22000{ 7 |4.844].49791{.33207(5.548| .96346|.13653|5.089| .74380
r=17
2) Reu®
m=mn =5, 2.028 |.07500] 6 (4.722|.60959|.17160|5.199(1.09934|.13076|4.928|1.93001
r=26

R
m=mn=1r =6 |1.540 [.68333] 6 |3.348|.32756|.32013(5.144| .93309|.12914|3.633|1.12741

(1) S, is the generalized Savage statistic.
(2) R,™ is the statistic considered by Rao, Savage and Sobel in [13].

be k independent samples of sizes n; , n2, - - - , 1y respectively from & populations
with continuous cumulative distribution functions F, , Fy, - - - , F} respectively.
We assume that the F’s belong to a family & of distribution functions indexed by
a parameter 6. (The proposed test is particularly suitable for & to be the family
of Lehmann alternatives or the family of IFR or IFRA distributions.) As before
let us assume that only the first » ordered observations out of the combined
sample of size N = D s, n, are available. Let

(6.1) Z,2 =1, if the ath ordered observation is from the ¢th sample,
=0, otherwise (¢ = 1,2, --+ ,N;4=1,2, --- , k),

and

(6.2) Si = Dot @2 + (ni — na)(N — 1) 7a (i=1,2 - ,k)

where a, and @ have the same meaning as before and ns, = D _aey 24" is the cumu-
lative number of observations from the ¢th sample among the first » observations.
To test the null hypothesis

(6.3) Hy:F,=Fy= ... = F,
EY
against the alternative that they are different we then propose the statistic

(6.4) AW = Gt (8 — mi)?
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based on only the first » ordered observations where
(6.5) Gl= (2 tmal +d (N—=r)"=N)/(N = 1).

Clearly for k = 2 the above test is equivalent to the symmetrical two-tailed test
based on S,*.

We next compute the exact mean of 4, under the null hypothesis. To this
end we can easily show, using some results of Basu [4], that

(6.6) Eo(S:) = ni,

(6.7) 00’(8:) = ni(N — n;)/(GN) (t=1,2,--+ k)
and

(6.8) oo(Si, S;) = —nm;/(GN) (4,7 =1,2, -+ k31 = §).
It easily follows then that

(6.9) E(AY) = (k — 1)

irrespective of the value of r.

We next want to find the asymptotic distribution of A, as N — o (r/N —
p > 0, ny/N — Xy > 0). Asymptotic ditsribution of 4, follows from Puri’s
[12] results, since in Puri’s notation 4,”” can be considered as an L-statistic.
Thus 4, asymptotically follows the x° distribution with (k — 1) degrees of
freedom. That is, under Hy 4, follows the central x:_, distribution and in the
non null case 4, follows the non-central xi_; distribution.
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