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DISTANCES OF PROBABILITY MEASURES AND RANDOM VARIABLES

By R. M. DupLEeY!

Massachusetts Institute of Technology

1. Introduction. Let (S, d) be a separable metric space. Let ®(S) be the set
of Borel probability measures on S. @(S) denotes the Banach space of bounded
continuous real-valued functions on S, with norm

[flle = sup {|f(z)]: z & S}.
On ®(8) we put the usual weak-star topology TW ™, the weakest such that
P— [fdP, Pe&®(S)

is continuous for each f & €(S).

It is known ([8], [11], [1]) that TW™ on ®(S) is metrizable. The main purpose
of this paper is to discuss and compare various metrics and uniformities on ®(S)
which yield the topology TW*.

For S complete, V. Strassen [10] proved the striking and important result that
if u, v & ®(S), the Prokhorov distance p(u, ») is exactly the minimum distance
“in probability’’ between random variables distributed according to u and ».
Theorems 1 and 2 of this paper extend Strassen’s result to the case where S is
measurable in its completion, and, with “minimum” replaced by “infimum”, to
an arbitrary separable metric space S. We use the finite combinatorial ‘“marriage
lemma” at the crucial step in the proof rather than the separation of convex sets
(Hahn-Banach theorem) as in [10]. This offers the possibility of a constructive
method of finding random variables as close as possible with the given dis-
tributions.

For S complete, V. Skorokhod ([9], Theorem 3.1.1, p. 281) proved the related
result that if p, — wo for TW ™ there exist random variables X, with distributions
un such that X, — X, almost surely. This is proved in Section 3 below for a
general separable S. Note that it is not sufficient to establish consistent finite-
dimensional joint distributions for the X, ; the Kolmogorov existence theorem for
stochastic processes is not available in this generality. Instead we construct the
joint distribution of {X,}5—o out of suitable infinite Cartesian product measures.

When S is the real line R, various special constructions involving distribution
and characteristic functions are known. In Section 4, we compare some of these
uniformities on ®(R).

2. Strassen’s theorem. The metric of Prokhorov [8] is defined as follows.
Foranyxz eSand T < Slet

d(z, T) = inf (d(z,y):yeT),
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apd for s = 0let
T ={xeS:d(z, T) <5,
T = {zeS:d(z, T) < 8}.
Given P and Q in ®(S) let
o(P,Q) = inf (¢ > 0: P(F) < Q(F*) + ¢ forallclosed F c S),
p(P,Q) = max (o(P, @), 5(Q, P)).
Then p is a metric and metrizes TW™ on ®(S) (this was proved in [8], Section

1.4, for S complete and is established for general separable S by results toward
the end of this section).

We may replace F* by F¢ in the definition of ¢ without changing its value. Also
we may replace “all closed F”’ by “‘all Borel sets B’ since if F is the closure of B,
F* = B‘and F9 = B,

Prorosition 1 (known to Strassen [10]). If P, Q e ®(S) and a, 8 > 0, then
P(F) = Q(F*) + B for all closed F if and only if the same conditions hold with P
and Q interchanged. Thus s(P, Q) = ¢(Q, P) = p(P, Q).

Proor. Suppose P(F) = Q(F*) + g for all closed F and let T be closed. Then
T* is open,

(1)

Tc (S8~ (8~T%), and
P(8~T%) = QU8 ~T"%) + 8, so
Q(T) = QS ~ (8~ T%%) = P(T%) + 8.
The conclusions follow.

Let (2, ®, Pr) be a probability space and let (2, S) be the set of S-valued
random variables over £, i.e. functions from £ to S, measurable from & to the
Borel g-algebra in S, modulo functions vanishing with probability 1.

Then the natural topology of convergence in probability in F(R, S) is metrized
by the metric

de:(f, 9) = inf (e > 0: Pr (d(f(w), g(w)) Z €) < e).
Now f X ¢g: w — (f(w), g(w)) maps @ measurably into § X S and defines an
element Pro (f X ¢)™ of ®(S X 8). On S X S let m and m be the natural
projections onto S:

Wl(x; y) =T, 7r2(xy y) =Y.
TuroreM 1. Let S be a separable metric space, P, @ e ®(S), ¢ = 0 and 8 = 0.
Then the following are equivalent:
(I) P(T) £ Q(T™) + B for all closed T < S,
(I1) Forany e > Othere isapin ®(S X 8) withpom ' = P pom ' =
andlu(d(z, y) > a +€) = B8+ e
,Proor. First assume (II). Then for any ¢ > 0 and closed ' < 8, P(T) =
Q(T*) + B + e Letting ¢ | 0, this yields (I).

)

3
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Conversely, assume (I). Given ¢ > 0, let v = €/9.

Let {z.} be a dense sequence in S. For any x ¢ S let f(x) = x, for the least n
such that d(x, z,) < v.Let Py = Pof " Q, = Qof " Let H, = {x1,2s, - ,Zn}
and choose n so that

min (Py(Hn), Qy(Haa)) > 1 — 7.

Then choose an integer m so that n < my. Let P’ & ®(H,) be such that for
i=1,---,n — 1, mP’(x;) is the largest integer <mP,(x;). Likewise construct
Q' from Q, . Then for any set T C S,

max (|(Q" — Q) (D), [(P" — P,)(T)]) £ 2,

P(T) = P(T) + 2y £ P(T") + 2y = QUT™™) + 2y + 8
Qy(T™) + 2y + 8 = Q(T™") + 4y + 8,
PI(T) £ Q(T"™) + r/m,

where 7 is the largest integer =m(4y + B).

A

Let I be the unit interval [0, 1] with Lebesgue measure A\. On the Cartesian
product S X I we form the product measures P X X and @ X \. Let X be the
natural projection of S X I on S.

Fori =1,---,n — 1 we select measurable subsets E; and F; of (fo X)™"(x:)
such that

(P X N (H:) = Pl(zs), (@ X N(F:) = Q' (x:).
Let
Ey= (SXI) ~ (Bru---uBny),
F,= (8 XI) ~ (Fiu---uF,,).

We divide each E; into mP’(z:) sets Ei; with (P X \)(E;) = 1/m; likewise
each F; into mQ’(x:) sets F;; with (Q X \)(Fi;) = 1/m. We call the Ey; “boys”
and the F,; “girls”. For win E;;let b(w) = z; ; we say the boy E;; “lives at” ;.
Likewise on F; let g(w) = ;. Let B (resp. G) be the set of boys (resp. girls) so
far defined, m of each. Let U (resp V) be a new disjoint set of r elements called
boys (resp. girls).

We say a boy b knows a girl ¢ if they live at points less than 2y + « apart or if
be UorgeV.Then for any set A C B, with k members, livingon aset ' C H, ,

k< mP' (T) £ mQ' (T™*) 4+ r

< the numbers of girls known by the &k boys.

Thus any set of boys in Bu U knows at least as many girls. Hence by the
marriage lemma (Philip Hall [5]; cf. also [4], p. 60) there is afunction M from
B u U onto G u V such that b knows M (b) for each b. Hence there is a function &
from B onto G such that b knows &(b) except for at most r boys in B.
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Now for each boy b = E;, let
po(4) = (P XN (4nbd), @(d) = (Q XN (4nh(d))
for any measurable set A < S X I. Let u be the product measure

m(ppo X ) X (poX™") on S XS, and D pemo = .
Then since the b ¢ B are disjoint with union S X I, as are the A(b), and
(8 X I) = (8 X I) = 1/m, we have pom -—Pa/nd/.t°1l'21=Q
All but at most 2my of the boys in B are subsets each of some (fo X) ™ (z:),
1 =1, — 1, all but at most r of them know A(b), and likewise for the girls
in G. Thus except for at most 4my + r of the boys b in B, the following three
statements all hold: .

bC (foX) ™ (a:) forsome i3,
h(b) © (foX) (z,;) for some 7,
and d(z;, z;) < 2y + a.
Thus
p(d(z,y) >a+e) = 2pm(d(z,y) >ate) <dy+r/m<8+B<B+e

This completes the proof.
A separable metric space (S, d) is called inner regular if for every Borel prob-
ability measure » on S and Borel set 4 C S,

v(A) = sup (W(K): K € A, K compact).

Then 8 is inner regular if it is complete, or a Borel subset of its completion S, or
if (and only if) it is P-measurable for every P ¢ ®(S) (Varadarajan [11], b
p. 224).

TueOREM 2. If in addition to the hypotheses of Theorem 1 S is inner reqular, then
(I) s equivalent to

(IT') Thereis a pin ®(S X 8) with
pom ' =P, pom = Q, and pld(z, y) > a) £ 6.

Proor. Clearly (II') = (II) = (I). Assuming (I) let e = ¢ | 0in (IT) and
let ui be corresponding measures on S X S. For any § > 0 there is a compact
K < 8 such that

P(S~K) < §/2, QIS ~K) < §/2,
S0 w((S X 8) ~ (K X K)) <.

Thus the sequence {ux} is “tight’”” and has a TW *-convergent sub-sequence
(Waradarajan [11], Appendix, p. 223, Theorem 2; Part II, p. 202, Theorem 27).
Thus we may assume p; — u (TW™) for some p in P(8). Then pom " = P,
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pom ' = Q, and

w(d(z, y) > @) = lime op(dz, 4) > ¢ + o)

< lim, o liminfy, ue(d(z, ) > ¢ 4+ a) ([8], Theorem 1.2,)
liminf (8 + &) = 8. q.e.d.

We shall see in a moment that Theorem 2 cannot be proved under the
hypotheses of Theorem 1 only. The following holds by definition of p, Proposition
1, and a passage to the limit:

CoroLLARY 1. Under the hypotheses of Theorems 1 or 2, (1) holds (hence (II) or
(IT1") respectively) when

IIA

a=8=p(P Q).

In Theorems 1 and 2, p depends on « and 8. Now (I) will hold for different
pairs (e, B) yet it may be impossible to obtain (II) for two different pairs
simultaneously. For example let § = R, P(0) = P(2) = 1 = Q(1) = Q(3).
Then (I) holds for « = 8 = § and for o = 1, 8 = 0. If p satisfied (II) for both
thesepairsthenu(z = §,y=1) = jandu(z =0,y = 1) = p(z =4,y = %) = 4,
a contradiction.

Note that Theorem 1 yields an independent proof of Proposition 1.

Now we give an example showing that the hypothesis of inner regularity
cannot simply be dropped from Theorem 2. Let \ be Lebesgue measure on the
real line. Then there is a subset A of the interval [0, 3] whose outer measure
A*(4) is 3, and such that A and 4 + 1 are disjoint (Halmos [6], Theorem E,
p. 70). (Then 4 is not Lebesgue measurable and hence not inner regular.) Let
S = A and for any Borel set B in S let

P(B) = N*Bn [0, 2]/2)’
Q(B) = x*(BnlL,3])/2.

Then P, Q £ ®(8) ([6], p. 75 Theorem A), and for any Bore Iset B in S, P(B)
< Q(B"). Suppose

pe®(8 X 8), pom ' = P, pom - =@Q, and p(lz —y| > 1) = 0.
Then y £ = + 1 almost surely, and

fydp=2= Jedu+1=[(e+1)du, soy=z+1
almost surely, contradicting disjointness of 4 and 4 + 1.

We shall use Theorem 1 to compare p with another metrization of TW™[1].
Let BL(S, d) denote the set of all bounded real-valued functions f on S which
are Lipschitzian, i.e.

Ifllz = sups [f(x) — f(y)l/d(z, y) < .

We let Ifllzz = |flle + lIflz. (The use of Lipschitzian functions has been
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suggested in the excellent survey by Fortet [2], p. 191, and the boundedness
assumption assures integrability for each probability measure. Cf. also Fortet
and Mourier [2a].)
Now (BL(S, d), || |ls.) is a Banach space. If
w5z = sup {1 f dul: [If]ls2 < 1}

then the metric ||p — »||3z metrizes TW™ on ®(S) ([1], Theorems 6, 8, and 18).
ProrosiTioN 2. If the hypotheses of Theorem 1 and (I) hold then |P — Q|3
< 2 max(a, B).
Proor. By (II), given ¢ > 0 we take random variables X with distribution
P and Y with distribution @ such that

PAX,Y)>a+e) <6+
Then for any fin BL(S, d),
I[fd(P — Q)] = [E¢(X) — f(¥Y))]| £ (a + llfl: + 208 + Olfll-

Letting ¢ | 0 we get the desired conclusion.
CoROLLARY 2. For S separable metric and P, Q € ®(S),

I[P — Q|3 < 20(P, Q).

ProrosiTiON 3. If P, Q ¢ ®(8S), F is a closed set in the metric space S, a = 0,
B > 0, and P(F) > Q(F®) + a, then

IP — Q|3 = 208/(2 + B).

Proor. We defflne a function f in BL(S) such that f = Lon F,f = —1 on
S ~ F? |Iflw = 1,and ||fllsr £ 1+ 2/8 ([1], Lemma 5)*. Then

(1+2/8)|P — Q5= [fd(P — Q)
= [+ 1)dP - Q) = 2(P(F) — QFY)) = 2a,

and the conclusion follows.

Now note that

f(z) = 22%/(2 4+ z) = 2/[2/2" + 1/a]

is an increasing function of z for z > 0. Thusif z = 0,0 = f(z) £ %if and only
ifz <1,and for 0 < 2 < 1, 22%/3 £ f(z).

CorOLLARY 3. For 8 metric and P, Q e ®(S), f(o(P, Q)) < |P — Q|3..
Thus if p(P, Q) = lor ”P - Q”:L =3

IP — QI3 = 3(P, @, »(P, @) = GIP — Q[5)"

Corollaries 2 and 3 together imply that if S is separable (metric), ||~||§ L
2 The extension of a Lipschitzian function f from A C S to S without increasing | f ||z

was reportedly first shown by Banach (unpublished); ef. also McShane, E. J., “Extension
of range of functions,’’ Bull. Amer. Math. Soc. 40 (1934) 837-842.
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and p define the same uniformity on ®(S) (but this is not the weak-star uni-
formity, defined by all pseudo-metrics |[ fd(P — Q)l, f & €(S), which indeed
is not metrizable, unless S is compact ([1], Theorem 13)).

Here are examples showing that the inequalities in Corollaries 2 and 3 can
be improved at most by a factor of 2. Let d(p, ¢) = 1/n, and let u be a point
mass 1 at p, and » at ¢q. Then

p(p,v) = 1/n,  |lp — vl[5z = 2/(2n + 1),
and the two distances are asymptotic as n — . On the other hand let
o(p) =o(g) =% () =3+1/n (@ =%—1/n
Then p(c, 7) = 1/n, ||l — 7||5z = |» — »||32/n, asymptotic to 1/n*asn — o.

3. Almost sure convergence. A set A in a topological space S is called a con-
tinuity set of a measure p = 0 if the boundary of A has u-measure 0. If S is
metrizable and P, — P, for TW* in ®(S), then P,(A) — Py(A) for every
continuity set A4 of Po([11], Theorem 2(IV), p. 182). The continuity sets of P,
form an algebra ([8], Lemma 1.1) the proof does not use completeness of S.

Given z ¢ S, the balls

{yeS:d(z,y) < ¢

are continuity sets of Py except for at most countably many values of e. Thus if
S is separable, given & > 0 we can find finitely many disjoint continuity sets of
Py, each of diameter less than 8, and with total Po-measure at least 1 — & (cf.
[9], p. 281).

TuroreM 3. Let S be a separable metric space, P, ¢ ®(S),n = 0,1, ---, and
P, — Py weak-star. Then there is a probability space (2, ®, u) with S-valued random
variables X, , X, — Xo almost surely, and p o X, '=P,.

Proor. For each &k = 1, 2, ---, we take finitely many disjoint continuity
sets of Py, called A(k, j), j =1,2,---,Jx, each of diameter less than 1/k,
and satisfying

2iPo(A(k,j)) 21— 27"
We may assume each term in the above sum is positive. Then for each k there
is an ny such that for all n = ng
2 [(P = Po)(A(k, §))| < 27 min; Po(A (K, 7).
We may assume 7y < ng < -+ - .
Now for each n let S, be a copy of S and I, of the unit interval [0, 1] with

Lebesgue measure N\, . Let @, = S, X I, and let P, be the product measure
P, X N\, on Q,. We define countable Cartesian products

Q= [Ina@, 2=Q X Q.

Let X, be the natural projection of € onto S, and = the projection of 2, onto
S, for each n.
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Foreach k, 7 = Ji,andn = n; we let
B(n, k,j) = A(k,j) X [0, 8(n, k, j)] C @,
C(n, k,5) = Ak, 7) X [0, v(n, k, j)] € D,
choosing 6 and v so that
P)(B(n, k, 7)) = Py/(C(n, k, §)) = min (Pa(A(k, §)), Po(A(E, 1))).

Then one of 6 and v is 1 and the other is at least 1 — 27*. Let B(n, k, 0) =
Qp ~ Uj'ng(ny k? .7)1 C(’ﬂ/, ky O) = Qo ~ Uj'gl C(?’L, k’ .7)'

Let no = 1 and for each n let k(n) be the unique k such that ny = n < ng4a .

For each n, Qo is the disjoint union of finitely many sets E(n,7) = C(n, k(n),7),
j=0,1, -+, Jym . For j = 1 the E(n, j) have diameters less than 1/k(n),
and if also n = ny, Po(E(n,j)) > 0. Likewise 2, is the disjoint union of finitely
many sets

D(n,j5) = B(n, k(n),7),7 = 0,1, -+, Jiw , with the same properties.

For each n, and z in Qo , let j(n, ) be the j such that ¢ E(n, 7). Let

A = {xeQ: P/(E(n, j(n, z))) > 0 for all n}.
Then clearly Py’ (2 ~ A) = 0. For z in A let P(n, z) be the measure P,

restricted to measurable subsets of D (n, j(n, )) in @, , then normalized to mass
1 (i.e. divided by Py (E(n,7(n, x)))). Let u, be the product measure

II72P(n, @) on 2«

(Halmos [6], Section 38, Theorem B, p. 157). Now I claim that for any measur-
able subset F of Q. , x — u,(F) is a measurable function on Q. In fact, for a
given n, P(n, z) has only finitely many possible values, each for z in a measur-
able set, and hence so does

1% P(n, ), N finite.

Thus the claim is true for sets F = Yy (@) where Yy is the projection of
Q. on, and G is measurable in,

H]:=1 Qn .

But the algebra of such sets generates the o-algebra of measurable sets in Q ,
and the class of sets F' for which the claim holds is closed under countable mono-
tone increasing and decreasing limits. Thus the claim holds for all measurable
F ([6], Section 6, Theorem B, p. 27).

For any measurable H C Q, and z € Qo, let

H.={y:(z,y) eH), ‘and w(#H) = [ p(H.) dPy(a).

Note that z - u:(H;) is measurable if H is a finite union of measurable
“rectangles” A X B, A C Q, B C Q. Hence by monotone convergence it is
measurable for any measurable H C Q, and u is a countably additive probability
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measure on W. The distribution of X, for u is
(X5 P (E(n, §))P(n, 2)sexwplon ™ = P on™ = P,.

Since Y x Po(S ~ U; A(k, 7)) < o, Ps-almost every point of S, belongs to
U, A(k(n), j) for all large enough n. Also if tel, and ¢ < 1, then
t < y(n, k(n), ) for all § if n is large enough. Thus Py’-almost all z belong to an
E(n,j) with 7 = 1 for n large enough, and then

d(Xo, Xn) = 1/k(n) — 0
80 X, — X,. Thus u(X, — Xo) = 1, q.e.d.

4. The real line R.1f S = R, the proof of Skorokhod ([9], Theorem 3.1) reduces
naturally to the following. Let P, ¢ ®(R) and let F, be their distribution
functions

Fo(z) = Pa((— e, z]).

Let © be the unit interval [0, 1] with Lebesgue measure A and for y in Q let X,,(y)
be any x such that F.(z) = y,or Fo(z™) = y £ Fa(2x). X, is well-defined except
for at most countably many values of y and hence is a well-defined random
variable. If P, — P, for TW™, then F,(z) — Fo(z) whenever F, is continuous
at z, and X,(y) — Xo(y) except on the possible countable set of y where X,
is not well-defined. Thus X, — X almost surely. Clearly Ao X, = P,.

The above method seems unsuited to proving Theorem 1 on R. Let

Pn(]) = Qn(]+ 1) = l/n? .7 = 0, 1: cee,mn — 1 Pn; QnS(P(R).

P, — Q. — 0 (even in total variation), but if X, and ¥, are random variables
on (2, \) constructed from P, and @, as above, then X, + 1 = Y,.
For P in ®(R) we introduce the usual characteristic function

P@t) = [C,e™ dP(X).

On ®(R) let UC be the uniformity of uniform convergence of P on compact
sets, with a base given by the vicinities { (P, Q): |P(t) — Q(¢)| £ 1/n whenever
|} = n}. Clearly the identity on ®(R) is uniformly continuous from the
BL*(= Prokhorov) uniformity to UC. We do not have uniform continuity in
the converse direction, as is shown by the following stronger result:

ProposITION 4. For any 8 > 0 there exist P, Q ¢ ®(R) with |P — Q|3 = 1
(4n fact P concentrated inx = 1and Qinx < — 1) and |P(t) — Q(t)| < & for all ¢.

Proor. For eachn = 1,2, .-+ let

Cn = Z]’:;]_ ]./k

and let P, have mass 1/kC, at k = L, m, with @,(4) = P.(—A). Then
clearly ||Pn — Q|52 = 1. Also C|Po(t) — Q.(2)] is bounded uniformly in n and

t (see e.g. Zygmund [12], volume 1, I, 9, p.61),s0 Po(t) — Q.(¢) — 0 uniformly
intasn— oo, q.e.d.
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The central limit theorem is generally proved using characteristic functions,
and as long as one considers convergence P, — P for a specific limit P, it is a
question of topology rather than uniformity on ®(R). But it is notable, and not
surprising given Proposition 4, that in order to prove uniform closeness of n-fold
convolutions P+Px --- xP, P ¢ ®(R), to infinitely divisible distributions, one
does not use characteristic functions (Kolmogorov [7]).

For P, Q ¢ ®(R), Paul Lévy’s metric p.(P, Q) may be defined by replacing,
in the definition of Prokhorov’s metric p, closed sets F' by semi-infinite intervals
(— o, z]. Now let P,, Q. c ®(R) where

Pn(2) = Qu(2j + 1) = 1/n, =1, mn

Then pr(Pn, @) = 1/n, while |P, — Q|52 = %, so the uniformity of Lévy’s
metric is strictly weaker than that of ||-||3c and p. pr metrizes TW™ on ®(R)
(3], p. 33, Theorem 1).
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