The Annals of Mathematical Statistics
1968, Vol. 39, No. 5, 1502-1506

ALMOST SURE CONVERGENCE OF QUADRATIC FORMS IN
INDEPENDENT RANDOM VARIABLES!

Dare E. VARBERG

Hamline University

In [3], we began a study of convergence of quadratic forms in independent
random variables. Simultaneously, Fau Dyk Tin and G. E. Silov [2] initiated
their study of this problem but restricted to the case of quadratic mean conver-
gence and normal variables. Our aim in this paper is to consider carefully the
problem of almost sure convergence (convergence with probability one). Several
of our results will generalize well known theorems for series of independent
random variables. .

We shall assume throughout that X;, X, --- is a sequence of independent
real random variables with E(X;) = 0 and E(X;}) = 1,k = 1,2, --- . Note
that we do not assume that the X;’s are identically distributed or place conditions
on the higher moments. Let (aj),j, &k = 1, 2, --+, be a real (not necessarily
symmetric) matrix and let

Sp = Z}tk:l aijij .

At various times, we shall place special restrictions on (a;z). We say that (aj) is
Hilbert-Schmidt if Y %1 a3x < o, that it is nuclear if a;, = D ie1 bjicix Where
(bji) and (ci) are Hilbert-Schmidt, and that it is positive semi-definite if it is
symmetric and D% apuue = 0 for all choices of n and uy, « -+ , Un . We ob-
serve that the class of Hilbert-Schmidt matrices contains all nuclear matrices
(use the Schwarz inequality) and all those positive semi-definite matrices with
finite trace (use the inequality D Jx—1 @ir < (D =t taz)>).

TuroreM 1. If (aj) is Hilbert-Schmidt and Y pala| < oo, then S, converges
almost surely.

ReMARk. This theorem is the best possible in the following sense. For any
Hilbert-Schmidt matrix () with ) _ielaw| = o, there is a sequence X7, X5 ,
.-+ of independent random variables with £(X;) = 0 and E(X;") = 1 for which
S, diverges almost surely. We omit this fairly simple construction.

Proor. Let K, , L, , and M, be defined in the obvious manner by

S, = 2 X2 apXe + D Xe Dbt aaXi + D onX
=K, + L. + M,.
Now K, is a martingale and since
BUKNT = BB = 2im 2t aie S 2 5hm1 G 5

it follows that K, converges almost surely (martingale convergence theorem).
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A similar argument applies to L, . On the other hand,
M, = D iaaw(Xid — 1) + Dottt
The first term, call it P, , is a martingale and since
E(|P.)) £ 2| aw | B(IX — 1)) = 2 X lau] < o,

it also converges almost surely. That S, has this property is now an immediate
consequence.

COROLLARY 1. If D gpe1 ajs] < o, then S, converges almost surely.

COROLLARY 2. If (aj) is nuclear, then S, converges almost surely.

CoROLLARY 3. If (aj:) vs positive semi-definite and Do < o, then S,
converges almost surely.

A recent result of Gundy [1] allows us to relate the convergence of S, to that
of other random variables. Let Vi, = X o1 (az; + a,k)X and note that

Sn = 2ot VX + Dois 0 X

TuEOREM 2. Suppose there are positive constants § and e such that P(| X > 8) =
& k=1 2,---.If 27:;1 lakk| < o, then S,, Z?=1 sz, and ZI?=1 Vk2Xk2
converge on equivalent sets, i.e., on sets which differ at most by null sets.

PROOF. Since Y e |ar] < 0, X ie1 X converges almost surely just as
in the proof of Theorem 1. Thus S, and > 2= VX converge on equivalent sets.
The result is now a direct application of Gundy’s main theorem [1], p. 731.
Theorem 2 will play an important role later in the proof of Theorem 7.

For the rest of our results, we shall want to impose a condition on the fourth
moment of X, . Let us suppose that E(X,') £ C < »,k =1,2,+--. Now

DXy = Do aw(Xd — 1) + Dorawm,

and the first term on the right of this equality is a sum of independent random
variables with means zero and variances

anB([Xi" — 1F) < a(C + 1)

which therefore converges almost surely by the Kolmogorov-Khintchine theorem
when D ag converges. This means, for example, that in Theorem 2 we may
replace the requirement of convergence of Y |mu| by that of the two series
> aw and Y ag . We may also improve Theorem 1 obtaining

TaeoreM 3. If E(X') £ C < o, k = -+, and if (aj) 1s Hulbert-
Schmidt, then S, converges with probabzlzty one or zero according as D et O
converges or diverges. ’

Though it is somewhat out of the context of this paper, we mention that we
can do still better if we consider convergence in quadratic mean rather than
almost sure convergence.

TuEoREM 4. Let (a;) be symmetric and supposethat 1 < ¢ < E(X;') < C < o,
k=1,2 ---.Then S, converges in quadratic mean if and only if (as) vs Hilbert-
Schmidt and Y xey tai converges.

REemMARK. This result should be compared with Theorem 1 of [2]. We mention
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also that the special case which occurs as Theorem 1 of [3] is not quite correct.
We forgot to note that for the only if part of that theorem, we need E(X,")
bounded away from one. Of course, E(Xi') = E ([Xi® — 1]*) + 1 = 1 so thisis
not a strong condition.

ProoF. Let ¥, = 2XiD i1 apX; + aw(X: — 1) so that S, — E(8,) =
> Y. Now ¥y , Y -+« is easily seen to be a sequence of orthogonal random
variables with

E(Y) = 4250 af + an[E(X:Y) — 1.

By a well-known theorem for series of orthogonal random variables, S, — E(S,)
converges in quadratic mean if and only if s E (Yi}) < oo, which in turn is
seen to be true, if and only if, D su=1a5x < . Turning to S, , we note that if
D Ti=105: and X axk both converge, then S, = S, — E(Sn) + Doret au
will converge in quadratic mean. On the other hand, if 8, converges in quadratic
mean, then E(S,) = 2t ax must converge and hence S, — E(S,) converges
in quadratic mean implying in turn that Dotk < 0.

We conclude with some results for normal variables.

TueorEM 5. If X 28 normal and if (a;) s positive semi-definite, then S,
converges with probability one or zero according as D et G converges or diverges.

ProOF. If D e i converges, then S, converges almost surely by Corollary
3. Contrariwise, suppose that D o1t diverges (necessarily to + o since
aw, = 0). If 8, did converge on a set M of positive probability say to a random
variable S, then

E(Ixexp (—38)) >0,
I being the indicator of the set M. On the other hand,
E(Iyexp (—%8)) = limy.e E(Iyrexp (—%8,)) = lim,.o E (exp (—%8,)) = 0,

a clear contradiction. That the last limit is actually zero is a consequence of the
following calculation. Let 61n, 02n, * -+, 0an be the eigen values of the matrix
(@jk)sx=1 - Then

E(exp (—38,)) = B(exp (—3} 2 i1 0mX:"))
= [T~ (1 + &)™
= [1 + > 16k + nonnegative terms]™
= [1 + D_riaw + nonnegative terms|™

and the latter goes to zero as n goes to infinity.

COROLLARY 4. Let Xy be normal. Then D p |ax| X\’ converges with probability
one or zero according as D ne1 |ax| converges or diverges.

COROLLARY 5. If X, isnormal and ay = 2 i1 bjibii (1 £ m £ ), then S,
converges with probability one or zero according as Do Domy b converges or
dwverges. In particular, D =1 b X X converges with probability one or zero
according as D _ne1 b converges or diverges.
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A problem suggested by the latter result is the case a;; = bjc; which however
does not fall under Theorem 5 since (a;x) is not positive semi-definite. We still
have the following result.

TaEOREM 6. Let X}, be normal and a; = bjc, where neither of the sequences b;
and ¢ consists of all zeros. Then S, converges almost surely if and only if >iabi
and D _n- ¢’ both converge.

Proor. The if part follows from Corollary 2. To handle the converse, let us
suppose that S, converges almost surely. Then the characteristic function of S,
is*given by (see [3], Example 2)

¢n(t) = E(exp (24S,))
=1 — 200 rabuce — (D= buci)® — Do b i )

which must converge to a characteristic function, say ¢(¢), as n goes to infinity.
But being a characteristic function, there is a o > 0 such that ¢(%) # 0. Hence
[(t0)]™ = limp.e [pn(f)] " must exist. However, a careful look at the expression
for [¢a(t)]™* convinces one that this limit will not exist if either ) b or > el
diverge. We remark that we do not know whether a zero-one law holds in this
case.

Returning to a more general situation, we prove a zero-one law similar to
Theorem 5 but without the positive definiteness condition.

TurorREM 7. Let X be normal and suppose that (az) s symmetric with
Dot laxs] < oo. Then S, converges with probability one or zero according as

et G, COnverges or diverges.

ProoF. If D 1% a3 < o, then S, converges with probability one by Theorem
1. Suppose that -1 aji diverges but that S, converges on a set M of positive
probability. Now > i1 e X converges with probability one (see proof of
Theorem 1) and since

S, = 227;1 XkZ]k;} apX; + Zz?=1 Xy = Zl?=l VX + Z;c;l X,

> t-1 VX, must converge almost everywhere on M. But by Theorem 2, Do Vi
must then also converge almost everywhere on M, say to a random variable V.
We argue now just as in the proof of Theorem 5, noting that D v Vil is a posi-
tive semi-definite form. Thus if I, is the indicator of M, E(Iy exp (—%V)) > 0.
But
E(Iy exp (—3V)) < limu.o B(exp (=} 25 Vi) = 0,

a contradiction. To see that the latter limit is zero, consider the following calcu-
lation.

E(exp (=32 i1 Vi) = E(exp (—3 2 i1 2521 241 apaaXX5))
= E(exp (—12,% et D immaxci, 1 Qi@ X X 7))
= [1 4 D 7 D i-j11 03 + nonnegative terms] ™

which goes to zero as n goes to infinity.
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