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0. Introduction. In recent years, among many problems concerning non-
stationary Markov processes with discrete time, much attention has been drawn
to the problem of ergodicity. The problem is treated by Hajnal [3], Mott [6],
Kozniewska [5], in the case of simple (i.e. first order) Markov processes with
finite state space, the state space being the same for every instant {. Recently,
one of the authors, in collaboration with Dorel [1], has extended the results of
[5] to the case where the state space, for each ¢, is any measurable space. Recently
also, Tosifescu [4], studied the uniform ergodicity of non-stationary multiple
Markov processes. Using a definition of Iosifescu, we extend the results of [1] to
kth order processes, k = 1.

In the course of the present investigation, we introduce the notion of ergodicity
of power h, h being a positive integer, and show that under certain conditions of
uniformity, every non-stationary Markov process of order k which is ergodic of
power h, with & = k, is ergodic in the sense defined by Iosifescu. This simplifies
considerably the eventual verification of ergodicity of a process (in the sense of
Tosifescu). It is also shown, by means of examples, that there exist kth order
Markov processes, ergodic of power h, with 2 < k, which are not ergodic in the
sense of Tosifescu, thus justifying the notion of ergodicity of power A. The use of
the “associated” simple process corresponding to the kth order process simplifies
many proofs and, moreover, in the finite case, allows the passage from certain
rectangular matrices to square matrices, thus facilitating the computations and
the practical verification of the results. This article also shows that there are
problems concerning kth order Markov processes which cannot be reduced to
problems concerning first order Markov processes (for example, ergodicity of
power 0 < h < k).

1. Definitions, notation and preliminary remarks. In the following, we shall
denote by N the set of non-negative integers, N* the set of positive integers, and
1; the indicator of the set B.

Let (X', ®) and (X", ®”) be two measurable spaces. We recall that a
transition probability P from (x', ®) to (X", ®") is a mapping P : &’ x ®" —
[0, 1] such that ¥ & £ %', P(z, -) is a probability measure on ®",andV Be ®”,
P(-, B) is a real random variable defined on (', ®").

Let ((X:, ®:)):wn+ be a sequence of measurable spaces. We shall denote the
product o-algebra of (®), 1 = ¢ =< n, (resp. te N*), by X1 ®; (resp. by
X ex+ ®:). In the particular case when %, = X, we let X1 ®; = X" ®.
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1.1. Let k ¢ N* be a fixed number. Suppose that, ¥t e N* ¢ = k, there exists
a transition probability P{*),; from (TT5mtmrsr X5, Ximiirr B;) t0 (Xigr, Brga).
The sequence ((X:, ®¢), P&y 1) sene 18 called a non-stationary kth order Markov
process with discrete time and with state spaces (X, , ®;), t ¢ N*.

From the P&y i, we define the P for se N*, s = k; he N* and
t = s — k + 1 as follows: Pr} is a mapping from [[jee s & x X207 ®; to
[0, 1] such that V2 = (Zopy1, - , Zs) & | [jmeks1 Xjand V B ¢ X g,

Pit(z, B) = 1nit pasixexilion: (2) = 1p(ze, -+ ) Tepha),
if t+h—1Z%s
= [ators Pihra(@, dasa) [ie,r0 Pftasa((@acksa, <+ Taga), dass)

.- ‘fscu,h_l Pgl-:-)h—2,t+h-—1((xt+h—k~l yttty Teph), ATein—1)

Ap(zs -0, Tegna), if t4+h—1>s.
We easily verify that PF} is a transition probability from (J[§—ss1 ;,
Xicotn ;) to ([ a;, X2 ®,), and that Vs, ¢, ue N*, k < s,
s—k+1=uzst,Vee][[laern %, VBe X2 ®;,
(1.1.a) Pz, B) = [qet1,. PY¥E(x, dy) Pihsy.i(y, B).

j=u Xj
1.2. Let us consider the non-stationary first order Markov process ((Y:, 3:),
Q¢,1+1) texwe,t 2k , Where Y, = H.;’=t—k+l X;, 5 = Ximirt1®;, and Q; 11(z, B)
= P iz, B), ¥ (z, B) €Y: X 5¢1. This process is called the associated
process of the kth order Markov process ((X:, ®:), P& i i) tene . From the
Q:,.1(x, B), we define as usual,

Qs,s(x, B) = 15(x), VY (2,B)e%Ys x 3,
and

Qui(z, B) = [y,p1 Quata(®, dTasr) -+ [,y Qeoatca(Tes, d2e1)Qeca.t(Tecn, B)
Vs teN* k<s<t and V(z,B)eY, x 3.

Let us also recall that a kth order Markov process ((;, ®.), Pf’i)k_1,¢+k)un~ is
said to be stationary if

EXI; = SX:, (Bt =® and Pt(l-:-)k__1,t+k = P(k>, Vté‘ N*

We then denote it by ((X, ®), Pa®)mexs .

1.3. In the particular case of a finite state space (i.e. thatof & = {1,2, --- | 7}
with ® = P(X) = class of all subset of ) we denote the process by
(X, P{¥\41) tewe.s2% . The transition probability P& 1 from (x*, X*®) to (X, ®)
is entirely defined by the *** numbers Py (31, - -+ , %), {7}) wheredy, - -+, 4,
j e %. In the same way, the transition probability PP fors,t, he N* s = k,
t = s — k + 1, is entirely defined by the #*** numbers P*P ((4y, -« -, @),
{(j1> e yjh)}) whereil, e 7ik7j17 ,jhé‘fr.
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It is convenient to introduce the mapping ¢ from X" to {1, 2, - -, 7}, de-
fined by

‘Ph(il, ) Zh) = Z?‘:}- (Z.’l - l)rh—j + ih? V(ily Tt zh) Sth'

Then, we can express the transition probability P{¥),; as a rectangular matrix,
called transition matrix. Now, Vte N* ¢ = k, it is easy to construct the
matrix Q.1 of the associated process from the (P{i1)wne,izr. Indeed,
V’I:,jé‘ {1: e ,rk},wherei = ‘Pk(il y ;7'10) andj = ‘pk(jli o }jk)7 (7;17 tee y7'k)
and (jl) e >.7k) exk)

Qt,t+1(i, {.7}) = P,;:Itc—k+2((il y T zk)) {(]1 y 7.770)})
= chcx=2 aia,]’a_lpgc}+1(i7 {.]k})’
where da g = lif @ = Band 8.5 = 0if o = B.

2. Weak ergodicity. In the following, we assume that %, = &, ¥ t ¢ N*. Then
IT%.: ¢, becomes *, and Y = x*. We also assume that the o-algebra N .y« ®; is
not reduced to the o-algebra { &, }. Indeed, in this case, all the following defi-
nitions are verified. This assumption implies that, ¥ & e N* the o-algebra
@ = N .x X507 ®;is not reduced to theo-algebra { &, %"} . If®, = ®, Ve N¥,
then @, = X* ® = 3.

2.1. DEFINITIONS. A non-stationary kth order Markov process ((X, ®&:),
P&t vin) eene is said to be

(i) weakly ergodic of power h, (k& N*), if

lim., [P5(x, B) — Py, B)] = 0,
VY seN¥ s =k, Ya,yeX* and VBe@;

(1) weakly ergodic, if it is weakly ergodic of power &, ¥ ke N*;
(iii) weakly and uniformly ergodic of power h, (he N*),if ® = ®, Ve N*
and if the process is weakly ergodic of power k, and if moreover the limit

lim, e [Pigia(z, B) — Pitin(y, B)] = 0

holds uniformly with respect to s, z, B;
(iv) weakly and uniformly ergodie, if it is weakly and uniformly ergodic of
power i, ¥ h ¢ N* and if moreover, the limit

limn»w [PI::2+”(.’I7, B) - P’;:2+n (y; B)]= O

holds uniformly with respect to s, z, B and h.

2.2. ProposITION. If a kth order Markov process (X, ®.), P\ 1 crh)rene
(respectively ((C, ®), P&_1.04x) cen) s weakly (respectively weakly and uniformly)
ergodic of power h, where h ¢ N*, 4t is weakly (respectively weakly and uniformly)
ergodic of power B, 1’ ¢ N* 1’ £ h.

We give the proof only for the non-uniform case (that of the other case uses
analogous arguments). Let A" < h. Y Ay €@y, let us consider the set
Ay, = Ap x *". Then we have, VseN* s = k, and Yz, ye ¥,
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lime [P (2, A1) — PEt(y, A)] = 0. But, by the definition of PEY PEMN 2, An) =
PE¥ (2, Aw), Y z ¢ %F, so that lime.. [PE} (z, Aw) — P¥V (y, 44)] = 0.

2.3. ProrosiTioN. A kth order Markov process (¢, ®¢), Piik_1,irk)ens (re-
spectively((, ®), Py 1.10)en+) s weakly (respectively weakly and wuniformly)
ergodic of power k if and only if its associated process ((Y, 3¢), Qi e41) een+, ez (re-
spectively ((Y, 3), Q¢.e41)tewe,t2r) 18 weakly (respectively weakly and uniformly)
ergodic of power 1.

The proof, for the nonuniform case, for example, follows directly from the fact
that Vse N* s = k, V (2, B) e X" x @, ie. YV (2, B) €Y % (jen+izk 3 )
P¥(2, B) = Q. 1iua(x, B) fort = s — k + 1.

The following results generalize those concerning the first order Markov
processes (cf. [1]).

2.4. ProrosITION. A necessary and sufficient condition for a kth order Markov
process ((X€, ®,), P-1,00) eene (respectively ((, ®), Pix_1,i1x) ten+) to be weakly
(respectively weakly and uniformly) ergodic of power h, h e N*, is the existence, for
every se N*, s = k, of a sequence of probability measures (7)) en,izs—k1 , each

i) being defined on Xiti " ®;, such that Ve X", Y Be Gy, Vse N*, s 2 k,
(A) lim,.., [Pt (2, B) — 7 (B)] = 0,

(respectively that limit being uniform in s, x and B).

Proor. We give the proof only for the nonuniform case. If there exists, for
every s ¢ N, s = k, a sequence of probability measures (ws(f't))teN,tgs_kH such that
(A) is verified. Then, Vse N*, s > k; Va,ye X*and VB e @y,

limt-»oo [P{::’:(a% B) - Plsc”tb(y) B>]
= limt-»oo[ st(x, B) - ﬂ(h)(B)] + limt»w [Tst(B) - P (yy B)] = 07

and the sufficiency of the condition is proved. Conversely, suppose that the
process is weakly ergodic of power h. ¥ s e N*, s = k, let 1. be a probability

measure on Xj—_._r1 ®; , and let us define, for every ¢ ¢ N t=zs—Fk+1,x%
on X2 ®; as follows

7 (B) = [ardu,® (2)Pii(z, B),  VBeXii'®
Then, Ve e X* and V 4 ¢ @,
limese [PEi (7, A) — 70l (A)]
= limesw far du® (y) (PLi(z, A) — PLi(y, 4))
= [or du® (y) limesw [Pet(x, A) — PLi(y, 4)] =

The necessity of the condition is thus proved.

2.5. ProposiTiON. A kth order Markov process ((SC, CBz), P&t cn)cene s
weakly ergodzc of power h, h e N*, if and only if, Vs e N , 8 = k, there exists
v(s) e N*,v(s) = k, and a probability measure w8 on X&) —en ®; , such that

limyaw [Pi5(2, B) — [ar dusiny(y)Prey (y, B)] = 0, Vzex', VBeG.
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Proor. Necessity. First, let us prove that if the Markov process is weakly
ergodic of power %, h e N*, then for any probability measure u® on X% ®;,

lime.. [P5i(z, B) — [wr du® (y)Phi(y, B)] = 0,
Y seN¥ s =k, Yz ok, Y Be@Gy.

Indeed, ¥V se N* s = k,let us define a probability measure m{5—; on X st ®;
by

Therin(4) = [ dp® (y)Phiin(y, 4), VAeXjmwn®;,

and a probability measure =% on XX~ ®; by

wM(A) = [qr driona(y) Py, A), VYAeXZ'®;
2.4 shows that Vz ¢ X* and V B ¢ G,
lim,., [PE3 (2, B) — «{%(B)]
= lime.o [Phi(z, B) — e drie-ia(y)Pet(y, B)] =
Applying the Lebesgue convergence theorem to Pr(-, B), we have
limesw [Pei(z, B) — [or du® (2) far PLi(y, B)Pis-rnle, dy)] =
viz., by (1.1.a),
lim... [Py (2, B) — [+ du® (2)Pii(z, B)] =

Hence,Vse N* s = k; Vve N* v = k (then a fortiori, we can say that v ¢ N¥,
v = k), 3 a probability measure u,* on Xj—,_x11 ®; such that

limeso [P¥3(2, B) — [ar duw® (y)PEi(y, B)] = 0, Vaex®, VBeGs.

Indeed, we take: u,® = p®, if v = k, where u® is any probability measure on
xl.‘;=1 (Bi )
p(B) = [t du® (y)Prn—ina(y, B), VBeXicin® , if v>k,

Sufficiency. ¥ s e N* s = k, let us define from the uf ), a sequence of probability
measures (7.7 wex+, ¢t>s—kt1 as follows:

It ¢ > o(s), mi(4) = [owdulo() Py, A), VAeXT 6. If
t < o(s), 7 = pu®, where m(h) is an arbitrary probability measure on )(f_'t‘_ (B, .
This sequence (wﬁf‘t)),ew,tgs_kﬂ verifies the sufficiency of the condition of 2.4,
so that the Markov process is weakly ergodic of power 4. And this completes the
proof.

2.6. PROPOSITION. A necessary and sufficient condition for a kth order Markov
process ((X, ®,), Pf'fk_l,,+k)th~ to be weakly ergodic of power h, h & N*, is that
whenever there exist Se N* s = k, Be@Gu, and an increasing sequence (t; ) N of
indices such that Pt i;(x, B) converges to a limit when j — =, for some x & o, then
Pk ;(y,B) convergesV y € X to the same limat. M oreover, this common limit is mde—

pendent of s.
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Proor. Necessity. Let us suppose that the Markov process is weakly ergodic
of power &, and let u® be a probability measure on X*_; ®; . We have seen, in the
proof of 2.5, that Vs e N*, s 2 k; V2 e *; V B ¢ G,

lime.. [P5i(z, B) — [ar du® (2)Pii(2, B)] =

Let ¢ = (4:):n be an increasing sequence of indices such that the sequence
(Pfj’t‘,.(x, B))eN.¢t; ze—k+1 converges. Such an increasing sequence o always exists,
for (P (z, B)) teN,¢tze—k+1 1S & sequence of numbers of the compact interval [0, 1].
Then,

limyw [Pht; (2, B) — [or du™ (2) Pit.(2, B)] =

The sequence (fgck du(k)(z)P,,,, (2, B)):en then also converges, and we have
lim;.. Pet, (2, B) = limise [or du® (2)Piti (2, B).

This equality shows that if y is another state of &*, we also have
limise Pot,(y, B) = limesw [or du® (2) PRt (2, B),

so that we can write lim:, Pit, (2, B) = 7 (o, B), independent of s and x. The
necessity of the condition is thus proved.

Suﬁciency YseN* s 2 k Vaz, yeX* and YVBe@s, (Pii(z, B) —
P¥4(y, B)) tene. ¢=s—k+118 & sequence of numbers of the compact interval [—1, +1].
Then, we can find a subsequence (Ps,;,(x, B) — Py ,,(y, B)) jene whlch con-
verges to a limit. Let us denote this limit by L. For the same reason, we can find
a subsequence (Pr} t, (z, B))wn+ of the subsequence (P,, t;(z, B))jn+ which
converges But, by hypothesis, for another ye %*, the subsequence
(Pg t“(y, B)) .+ converges to the same limit. Hence,

hmz_m [Ps:tjl(x, B) 8 t;l(y’ B)] = 0

This relation, and the existence of a limit for the sequence (Pf:',‘ﬁ.(x, B) —
”,(y, B))j.x+ implies that L = 0. Every subsequence of (P¥:(z, B) —

P (y, B)) tent.t2s—k+1 Which converges has then limit 0. This implies that
lim,.., [P¥%(z, B) — P¥}(y, B)] = 0,
YseN¥, sk, Yz, yext, Y B¢ G,

viz. the weak ergodicity of power k of the Markov process.

We state now the following theorem:

2.7. ProposiTioN. If a kth order Markov process (X, ®), Pk 1,ck)eens 18
weakly ergodic of power k and if moreover, the limit lim,.., [Py (x, B) — Phi(y, B)]
holds uniformly in B, Be X*®, Y se N*, Vz and y ¢ o, then this process is
weakly ergodic and moreover, the limit lim., [P¥}(z, B) — Phi(y, B)] holds uni-
formly in B, ¥ ke N*, ¥V se N*, YV z and y £ X".

Proor. For every z, y € X, let u, (2, y; -) be the signed measure, defined on
X" ® by

#s.n(x, y;r) = P,sc:’sc+n(x, ©) = Plscs+n(yy ).
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By the Jordan decomposition,
Hom = Ham — Hom -
Then, Vhe N* Va,ye X', VBe X"® Vs, neN*withs > F,
Pz, B) — Piiin(y, B)
= fsx:k Piyin(, d2) Pyt st ,ein(2, B) — fsck Piiin(y, d2) Pyt i oin(2, B)
by (1.1.a)
= [qb pen(@, y; d2) Pitniics sen(2, B)
= fsx:k M:-,n(l', y;dz)P’ﬁ;’_’nH_l,Hn(z,B) - fﬁck pen (2, y§dz)P§£n+k—1,s+n(2,B)-
Since 0 £ Ptuiicisim(z, B) £ 1, we have
— e (@, y; )
< far ma(e, y; d2)Pituiiciein(z, B) — [ar won(@, y; d2) Pitusict osn(z, B)
< pan(z, y; ).
But pen(z, y; X) = 0, so that tan(@, y; L) = ponlz, y; X). Consequently
IP{::?M(% B) — Pitia(y, B)| = pan (@, y; ).
By hypothesis, Ve > 0,V x,y e X*, ¥ s e N*, s = k, there exists no(e, z, y, s) e N*

such that n = noe, 2, 4, ) = |usn(z, y; A)| < ¢, ¥ A £ X* ®. Now, if {H, .,
G H..) is any Hahn decomposition for ., then

I“:n(x: Y, frk) = ﬂ's,n(x; Y; xk n Hs.n)
= lls,n(x, Y; Hs,n)-

H.,., being one of the A’s cited above, we have consequently: ¥ e > 0, V z, y £ ¥,
VseN* s =k 3nole x,y, s) € N* such that n = ne(e, z, y, s) = |Phesn (2, B)
— P (y,B)| < Y he N*and V B ¢ X" ®, and this completes the proof.

One would be led to believe it possible to prove this result for a first order
process (although this does not seem to have been proved elsewhere) and then to
apply it to kth order processes by means of the associated process. However, the
complicated form of the relations between PE" and Q! can easily convince the
reader how well-founded is our way of tackling the proof of this result.

This theorem has two interesting corollaries. The first of them is concerned
with the uniform case, as follows:

2.8. PropPosITION. A necessary and sufficient condition for a kth order Markov
process ((X, ®), P& 1 k) e t0 be weakly and uniformly ergodic is the existence of
some h e N*, h = k, such that the process is weakly and uniformly ergodic of power h.

The necessary condition follows obviously from the definition 2.1. The sufficient
condition uses the Proposition 2.2 and arguments analogous to those of the

proof of 2.7.
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The second corollary of 2.7 concerns the finite case. Indeed, if  contains only
a finite number of states, the condition of uniformity imposed in 2.7 is always
satisfied, so that we have

2.9. PropostrioN. Let (€, P&Ey_1,142) ene be a kth order Markov process with a
finite state space. Then it is weakly ergodic if and only if it <s weakly ergodic of
power h, for some integer h = k.

2.10. As mentioned in the introduction, we give now an example of multiple
Markov processes which are weakly ergodic of power h, h < k, without being weakly
ergodic.

In the following, we denote by {z mod j} the set of positive integers which are
equal to ¢ modulo j.

Consider the Markov process (9, Pgi)s,H.«l)th‘, of order 4, with two states,
X = {1, 2}, and with transition matrices

MI Ml (Ml/
M’ M M”
P = 1imoan (t) - o + 1z moas (t) - M: 4 1iomoas (2)- i
M M M|
where
i1 10 (0 1} (1 0]
/ 14 0 1 [1 0 " 10
— 2 2 = = Z =
M—%%, M, Lolr M=y 4 M Lol
14 0 1 1 0 1 0

These are rectangular matrices with 16 rows and two columns. The associated
process (Y, Q¢,:+1) een+, >4 has 16 states, Y = {1, ---, 16}. It is easy to see that
Q:,:+1 is, depending on the value taken by ¢, equal to one of the three following
square matrices (with 16 rows and 16 columns):

S1 = Qsprisprz,, S2 = Qspraspis, Sz = Qspissprs, V p e N*, P = 2
Let now S = 83818, . A computation shows that

(U o U’ 0
_ U/ 0o U/ o
S”—Ul_ UlIO U]IO
u' 0 U/ o
where
$ 00 %
;|0 10
“los ko
100 %

Consequently, p e N*, p = 2,
(1°) limmsw @sp,3piam = liMpmewe 8™ = U
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(2°) limmsw Qspspramr = US; = Us, where

U, 0 10000010
U, 0 /|00 30 %000
Ur=1lpyy o] 24 U2 =14 010100 o
U’ 0 3} 00000 % 0)
(3°) limmsow Qipsptamiz = UaSy = U;, where
Usj 1100000000001 00
Us / |0000%*20022000000
Ue=lgy| 24 U8 =16000220022000000
Us 1100000000003 00

Ui, U, and U; not being matrices with identical rows, 2.4 shows that the
associated process (Y, Q¢,i+1) e+ >4 is not weakly ergodic of power 1. Conse-
quently, by 2.3, the Markov process (¢, P{{s,i44) e is not weakly ergodic. It is
then not weakly ergodic of power &, for h = 4. We now show that this process is
weakly and uniformly ergodic of power 1, and that it is not weakly ergodic of power
2. Indeed, we have

. 4,1 . 4,1 (4)
(a) limym s P 3p,3p+3m = limmse Qap,3p+3m—1'P 3p+3m—13pt3m = UsP 3p+2,3p+3 = 1,

where m is a matrix with 16 rows and 2 columns, the elements of which are
identical and equal to 3.

. 41 o
(b) liMpmsw Pspsprsmin = UrPspts,aprs = 2,

where ; is a matrix with 16 identical rows and 2 columns,

(%)
T2 = : <)

: 4,1 (4)
(C) hmm-»eo P3p,3p+3m+2 = U2P3p+1,3p+2 = .

So that, by 2.4, we have the weak and uniform ergodicity of power 1 for the
Markov process (<, Pt(i)s,z+4)th'. We also have

. 4,2 4,2
hmm-no P3p,3p+3m+2 = US'P3p+3m+5.3p+3m+2 = U3U4 )

where

w - 0
U= |: * .
™ ’ M

0 -+ m

—

The rows of the matrix U;U, not being identical, the process (%, Piis iya) tene is
not weakly ergodic of power 2.

3. Strong ergodicity. As in Section 2, we assume that %, = &,V ¢ ¢ N*, and
that the o-algebra M} e+ ®: is not reduced to the trivial s-algebra { &, x}.
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3.1. DeFINITIONS. A non-stationary kth order Markov process ((X, ®),
P §i)k—1,t+k)teN' is said to be
(i) strongly ergodic of power h, h e N*, if

limpsw P¥4(z, B) = m™(B), VseN* s =k V (¢, B)ex’ x &

h) - ope
where 7, is a probability measure on Gy ;

(ii) strongly ergodic, if it is strongly ergodic of power h, ¥ h ¢ N*,

(iii) strongly and uniformly ergodic of power h, h e N*, if ® = ®, V t e N*
and if the process is strongly ergodic of power ~ and if moreover, the limit
limn,e P4, (2, B) holds uniformly with respect to s, z, B;

(iv) strongly and uniformly ergodic, if it is strongly and uniformly ergodic
of power k, ¥ h e N*, and if moreover the limit limn. P¥rin(2, B) holds uni-
formly with respect to h.

It is clear that

3.2. The strong (respectively strong and uniform) ergodicity (respectively er-
godicity of power h, he N*) smplies the weak (respectively weak and uniform)
ergodicity (respectively ergodicity of power k).

3.3. ProposiTION. If a non-stationary kth order Markov process ((X, ®.),
P& 1.iik)ene is strongly ergodic of power h, heN* then, ¥ seN* s = F,
Y (z,B) eX* x @4,

lime. Pit(z, B) = = (B),

where T is a probability measure on Qs , independent of s.

In other words, in Definition 3.1, we have =, = =® Wse N* s = k.

The proof of 3.3 does not differ from that of the simple case: it makes use of
the Fatou-Lebesgue theorem. Indeed, V' s, u e N*, s, u = k, let us assume that

s < u, then by using (1.1.a), we have
7" (B) = limg.e PEi(z, B) = limpw [qr Pousa(z, dy)Pui(y, B)
= [ar Pi% i(x, dy) lime.e Phli(y, B) = =™ (B), VBeas.

3.4. ProposITION. A necessary and sufficient condition for a mon-stationary
kth Markov process ((, ®;), P{ik—1,i4%)een+ to be strongly ergodic of power k is
that its assoctated process is strongly ergodic of power 1.

The proof follows directly from the fact that V s¢ N* s>k V (z, B) ¢
* x @,ie, Y (z, B)eY % () jen+izi3i,

Plsc:lf(x, B) = Q:,trxa(x, B) fort = s — k + 1.

3.5. ProposITION. If a kth order Markov process ((X, ®), Py isr) eneis
strongly (respectively strongly and uniformly) ergodic of power h, with h ¢ N*, then
it is strongly (respectively strongly and uniformly) ergodic of power k', ¥ k' < h.

We omit the proof which is analoguous to the proof in the case of weak
ergodicity.

We give now a sufficient condition for strong and uniform ergodicity.

3.6. ProposiTioN. Let ((X, ®), P{%%_1.00x) 1en+ be a kth order Markov process.
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If it is strongly and uniformly ergodic of power h for some integer h = k, and if
moreover, ZmN an, < + o, where

an = SUp le nmant1(Z, B) — Pm”+n mont1 (2, B)l;
(where the sup is taken over all z e %", m', m" e N*and = k — n, Be®).

Then, it is strongly and uniformly ergodic.

Proor. Let us recall the condition (Ck)mo introduced by Iosifescu in his paper
{4]. This condition (Ck)mo , Where mg ¢ N , mo = k, means that: A n, ¢ N and
68]0 1[such that |Prf m'+no(x,B) — Pt ino (¥, B)l <1—=58Ym,m"eN¥
m,m” = m; ¥z yext; YV Be X'®.

Now, by hypothesis and by 3.5, the process is strongly and unifor mly ergodic
of power k, so that ¥ € > 0, 3 no(e) ¢ N* such that n = no(e) = |Pr¥ ., (z, B)

(k)(B)I <¢/2,¥VseN*  s=2k VaoeX andV B e X® 7" being a
probability measure on X*®, Then, ¥ m/, m” e N*, m’, m" = k, ¥V z, y ¢ &*
and V B ¢ X*®,

IPm mi4n(T, B) — Pklc’ mr40 (Y, B)I
= lP w4 (2, B) — W(k)(B)[ + |Pm”,7n”+n(y; B) — W(k)(B)l <'g
when n = ng(e). This is the condition (Ci): cited above, with 6 = 1 — e. The

Theorem 1 of [4], which states the strong and uniform ergodicity of the process
under the conditions ) _ney tn < ® and (Ci)m, , achieves the proof.

Naturally, there exist other kinds of sufficient condition, such as the fol-
lowing concerning finite Markov processes:

3.7. ProposITION. Let (€, P&% 1.004)eene be a kth order Markov process with
finite state space. If it is strongly ergodic of power h, for some h e N*, h = k, and if
moreover lime P41 exists, then it is strongly ergodic.

ProoF. As in the preceding proposition, it is sufficient to show that, under
the stated conditions, if the process is strongly ergodic of power k, then it is
strongly ergodic. By hypothesis, limse Pi3yy = P®. Therefore, ¥V h ¢ N¥,
limy.e Pihyy = P*™* also exists. Since the process is strongly ergodic of power F,
we have lim., PY; = 7%, where #® is a stochastic matrix indexed by ¢ and
j € %*, with identical rows. Now, V s, t, he N* s = k,t = s — k + 1, we have
Pyt = PYi_ P ;. Then,

k R i3
2 pEh —

. kb . K.k . k,h
limnew Poit = liMyse Poig liMse Pt—l,l = ,

where 7 is a matrix with identical rows. So, the process is strongly ergodic.

This proposition has the following corollary: under the same conditions as in
3.7, the kth order Markov process is strongly ergodic if and only if the associated
process s strongly ergodic of power 1.

3.8. As mentioned in the introduction, we give now an example of multiple
Markov processes which are strongly ergodic of power h, h < k, without being
strongly ergodic. '

Consider a non-stationary Markov process (X, Pi%s.crs) ene of order 3, with 2
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states, its transition matrices being of the form
P =3[l — (=P + 3-[1 + (=1D)IP:

for t e N*, ¢t = 3, where P; and P, are matrices with 8 rows and 2 columns;
whose transposes are respectively

and

=]

10010110
<o 110100 1>'
The passage to the associated process gives us
Qi =31 — (=110 + 31 4+ (—1)Q

and a computation shows that

(10) limm»oo QZp,2p+2m = Ul , Where

i 0 0 %
v’ Uy ) 0 r 10
U1= , , and U1=
U th 0% t0
|
1o 0 3
(2°) limmsw Qopptemin = Us, where
110000 %%
U, 00211100
U2=<2,,With U’ = Loror .
Us 00 f 1100
110000 % %)

U, and U, not being matrices with identical rows, the associated process is
not weakly ergodic of power 1, and a fortiori not strongly ergodic of power 1.
The Markov process (X, P&y 4s) en» is then not strongly ergodic. It is also easy
to see that it is not strongly ergodic of power 2. But it is strongly and uniformly
ergodic of power 1. Indeed,

. 3,1 *
limg.e Ps: = Py, Y seN, s = 3.

. . . 3,1 . 3.1
(In detail, one examines separately liMmw P2poptom, LiMmsw Popt1apiom,
: 3,1 . 3,1 o e

liMmsw Popoptomis a0d liMmow Popt1 2p+omi1). In fact, the limits are reached
uniformly, for:

(a) Pg';apwm = Q2p.2p+2m—2' U2'Pl = (UzUl)m‘l‘ UZ'PI
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=P, for 2m = 6,
(b)  Piptrzpien = Un(UUD)"™ Uy Py,
= Py, for 2m — 1 = 7,
(¢) Pilopiomyn = (UU)"Py = Py, for 2m+ 12 5,
(d) Piptispsemns = U(UpUD)" Py = Py, for 2m Z 6.
Consequently, the process is strongly and uniformly ergodic of power 1.

4. Relations between weak and strong ergodicities. In this section, we shall
suppose that V ¢ & N*, ® = ®. The o-algebra @, will then be equal to X"®,
YV h e N*. The relations between weak ergodicity and strong ergodicity have
been studied in detail in [1], for first order Markov processes. Different notions of
“K-stationarity”’, (not to be confused with “‘stationary” Markov processes,
which is synonymous with “homogeneous’) are used to this effect.

4.1. DeFINITIONS. A kth order Markov process ((¢, ®), Piyik—1.t4%)ene 1S
said to be

(i) K-stationary, if 3 a probability measure p® on X*®, such that

far P¥ivia(z, B) du®(z) = u®(B), ViteN* t=zk and V BeX's.

(ii) K-asymptotically stationary if 3 a probability measure on X*®, such
that

lime.o [or Pri(z, B) du®(z) = u®(B), VseN*s=zk and V Be X'®.

The results concerning kth order Markov processes which generalize those ob-
tained for first order processes, are easily proved by passage to the associated
processes. We shall only quote the following essential ones:

4.2. PROPOSITION. A necessary and sufficient condition for a nonstationary kth
order Markov process ((X, ®), Piii_1.00x)eene to be strongly ergodic of power k
1s that it 1s weakly ergodic of power k and K-asymptotically stationary.

Consider now the stationary case. As indicated in 1.2, the transition proba-
bilities P} and P&} depend only on the difference ¢ — s. They are respectively
denoted by P®, and Pi, .

4.3. ProrosITION. Let ((X, ®), P2 )nex+ be a stationary kth order Markov
process such that its associated process verifies the condition (D) of Doeblin (cf.
[2]). Then, it is strongly ergodic of power k if and only if it s weakly ergodic of
power k.

In fact, the condition (D) implies the K-stationarity of the process (cf. [1]) and
the equivalence between the weak ergodicity and the strong ergodicity follows
from 4.2.

We finally state the following result, concerning the stationary case, which
improves a similar result obtained for first order processes in [1].

4.4. ProrosITION. For a stationary kth order Markov process, the strong and
uniform ergodicity of power h, b € N* | and the weak and uniform ergodicity of power
h, are equivalent.
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Proor. It is sufficient to show that the weak and uniform ergodicity of power
h implies the strong and uniform ergodicity of power A. For this purpose, we
first prove that ¥ z ¢ %* and V¥ B ¢ X"®, P.*"(z, B) converges uniformly in z
and B to a limit independent of z, when n — «, and then, that this limit is a
probability measure on X'®.

By the weak and uniform ergodicity of power &, ¥ ¢ > 0, A no(e) ¢ N* such
that n = ne(€) = sup; e |Pn (2, B) — P.*"(y, B)| < ¢/2.Thenn = no(e) =

(4.2.a) SUpgerk Po'™(x, B) — infoe P (2, B) < ¢/2.

Now, for Be X"®, (supset Pn'™(®, B))nens is a decreasing sequence while
(infyek Po**(, B) )nene is an increasing one, for if ny and n, are two positive
integers such that n; > n., then

P2, B) = [ur Piionssn(a, ) PRAC, B).
Consequently,
infer P57 (2, B) < infrae Ph (x B) = supgexk Pnz(x B) = SUDaex P”‘(x B)

and by (4.2.a), the two sequences converge to a same limit when n — .
Let 7™ (B) be this common limit. We have n = no(e) =

(4.2.b) P, "’h(x B) — #®(B)| < ¢/2.

It remains to show that #® is aprobability measure on X"®. It is clear that
7% is a positive set function, taking its values in [0, 1], and that =™ (x*) =
1r(") is also finitely additive, since for every finite family of pairwise dlS]Olnt

sets of X'®, say (B:)icr,
7 (Ui B:) = limpow Po*" (2, User Bi)
= limyoo Zm P.*"(z, B)
= 2 ierliMuse Pa¥ (2, Bi) = D ur ™ (Ba).

Finally, if (Am)men is a decreasing sequence of sets of X"®, such that 4,, | &,
then limmaw 7™ (An) = 0. Indeed, ¥ n e N* and V z ¢ &*, P,**(z, -) being a
probability measure, verifies this monotone sequential condition; therefore,
Y ¢ > 0, 3 mo(e, n, z) such that m = mo(e, n, £) = P.""*(x, 4,) < ¢/2. Now,
let mo(e, ) = mo(e, no(e), z); no(e) being the same in (4.2.b). There exists a
z £ X* such that mo(e, 2) = infeer mo(e, ). Then, m = mo(e, 2) = 7 (4n) <
[Pz, Am) — 7 (AR)| + PiM(z, An) < ¢, that is to say limp. 7 PM(An) =0
and this completes the proof.

4.5. Consider now a stationary kth order Markov process with a finite state
space, say (X, Po® )nens . It is clear that the weak ergodicity of power h, h & N*,
and the strong one are always uniform, so that by 4.2, in this case, the weak
ergodicity of power h and the strong ergodicity of power h are equivalent and are
always uniform. Consequently, we can henceforth suppress the adjectives “weak”
and “strong”, and mention only whether (%, P,* ),y is ergodic of power h.
We also remark that, by the stationarity, lim..., P§*)4; always exists. Using 3.7,
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2.9, 2.7 and the preceding remarks, we conclude that:

For a stationary kth order Markov process with a finite state space, weak and
strong ergodicity are equivalent.

4.6. We should like to end this article by pointing out that relations (for
first order and stationary Markov processes) between various notions of er-
godicity (of power 1) and the existence of a single ergodicity set with or without
cyclic subsets have been examined in detail in [1].
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