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1. Introduction. In this paper we present a technique of embedding certain
urn schemes into continuous time Markov branching processes. Typically these
urn schemes could be represented by a discrete parameter Markov chain { Y, ;
n =0, 1,2 ---} where the state space is the nonnegative integer lattice in p
dimensions for some integer p. We shall establish the existence of certain con-
tinuous time Markov branching processes with p-types {X(¢) = (Xa(t), ---,
X,(1)); t = 0} such that for an appropriate sequence 7,,n = 0, 1,2, ---, of
increasing stopping times, the stochastic process {X(r.); n = 0, 1, 2, ---} is
equivalent to {Y., n = 0, 1, 2, ---}. Thus from limit theorems for X(¢) as
t — o we can deduce results on the limit behavior of the random variables{ Y}
as n — . It turns out that this technique yields many classical and some new
results on urn schemes in a relatively simple and more transparent manner.

In this paper we shall be mainly concerned with B. Friedman’s scheme (see
[7], [8] and Section 2 for a definition). Although we describe the technique in
detail only in this case the fundamental idea can easily be adapted to more general
situations.

It is interesting to note that urn models have been basic in the study of the
spread of contagious diseases and certain ecological and branching processes
(see [6], [11]). In this work we proceed in the reverse direction by exploiting
properties of branching processes with view to investigate the fluctuation be-
havior of urn schemes.

An outline of the paper follows. Section 2 introduces the background material
concerning multitype continuous time branching processes and reviews some
relevant limit theorems for these processes. Section 3 describes the structure of
the Friedman and Pélya urn schemes and highlights their connections to branch-
ing processes. The principal theorem on the relation of certain results pertaining to
multitype continuous time branching processes to those on the embedded Markov
chain is contained in Section 4. The applications of this fundamental limit theorem
to the case of the Friedman urn are summarized earlier in Section 3.

2. Some results on multitype continuous time Markov branching processes.
To make the paper reasonably self contained we devote this section to sum-
marizing results on multitype continuous time Markov branching processes
needed later on; for details see ([1], [2], [3]).

Let {X(t) = (Xa(¢), - -+, X»(8)); t = 0} be a p-type continuous time Markov
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branching process defined on a probability space (2, F, P) and let the associated
infinitesimal generating functions be

(1) ui(s) = adhi(s) — s
where fors = 1,2, ---, p,
0<a< o, s=(81,8%,"",8), 0=s=1

and h;(s) is a probability generating function on the p dimensional nonnegative

integer lattice.
We make the assumption

(2) 0hi(8)/08) ls=aa ey < 0, L,j=12--,p.

It is known that a conservative Markov branching process fulfilling the above
specifications exists (see [3], [10]). If ¢(D) denotes the sub o-field of F induced
by a collection D of random variables on (Q, F, P), then let F, = o({X (s, w);
s < t}). Without loss of generality we may stipulate that {X (¢);¢ = 0} is strong
Markov with respect to the family F,; and that the sample paths are right con-
tinuous and possess left limits in ¢ with probability one.

Set 7o(w) = 0 and let 7,(w) forn = 1, 2, 3, - - - denote the nth discontinuity
point of the sample path X (¢, w). It can be shown that for every =, 7,(w) is a.
stopping time with respect to the family F;. Since the process is strong Markov
and the sequence 7, is increasing we conclude that the family {X(7.), F.;
n =0,1,2, ---} is a discrete parameter Markov chain, where &, is the o-field
associated with the stopping time 7, .

It aids intuition to interpret X (¢) = (Xi(¢), ---, Xp(¢)) as a vector denot-
ing the population sizes at time ¢ of a system comprised of p types of particles
evolving in the following manner:

(a) a type ¢ particle lives an exponentially distributed length of time with
mean a; - and on death creates particles of all types following the distribution
law whose probability generating function is A;(s),

(8) all particles engender independent lines of descent,

(y) the initial population consists of X;(0) particles of type 7, ¢ = 1, 2,
cee L, D

From (2) we can deduce that m.;(t) = E(X;(¢) | X,(0) = &, for r = 1,
2, -+, p) is finite for all ¢, 7 and ¢ (Z denotes the expectation operator.)

Moreover, M (t) = ||m.(t)|| = exp (At) where A = |lagl, aij = adyy, by =
ah,-/és,- l3=(1,1‘...,1) - 5,’,’ .

We postulate the existence of £ > 0 such that

(3) ms;(t) > 0, ,i=1,2 - ,p.

This implies
(i) the eigenvalues )\; of A can be arranged so that

(4) )\1>Re)\22Re)\3_2_---;Re)\p;
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(i1) there exist strictly positive eigenvectors 4 and v such that
{(5) Av = M\, u*4 = zu®¥, and w® =1,

‘where * denotes the transpose operation;
(iii) the right and left eigenspaces of A corresponding to A\; are one dimen-

sional.
To avoid trivial degeneracies we henceforth exclude the singular case where

hz(s) = Z.?=1p’l:j8j for i = 1’ 2’ e, D

‘We now state a few results to be used in the sequel. For proofs see [1], [2] and [3].
ProrositioN 1. For any right eigenvector £ of A with eigenvalue N the family
(£ X(t)e™; Fi;t = 0} is a martingale (possibly complex valued) where

(6) F.=o({X(s,0);s = 1})

.as specified earlier. (The notation &-n denotes the inner product of the given

wectors.)
CorOLLARY 1. Forvin (5) {v-X(£)e ™ F, ;t = 0} is a nonnegative martingale

and therefore
(7) limge 0- X (1, w)e ™ = W(w)
exists almost surely and
EW)=wv o Xi0)=1 and X;(0) =0 for j=rt
ProrosiTiON 2. Subject to (2) and (3)
(8) limesw X (4, 0)e ™ = W(w)u a.s.
Now we impose the following additional assumptions: (consult (2) and (3))
(9) N> 0
corresponding to the supercritical case and
(10) 0%hi/88108m |sm 1,y < © for 4, Lm=1,2, ---,p.

Let ¢ be a right eigenvector of A with eigenvalue \. We have the following

results (see [1], [2]).
Case 1. 2 Re M > N . The martingale

{Y(t) = £X(t)e™;Fy5t = 0}

satisfies supso E(JY (1)) < « and hence there exists a random variable ¥
such that

(11) lime.E|Y(t) — Y =0 and Pflime.Y(f, 0) = Y(0)} = L.
CaseE 2. 2Re N = N . Let Y(t) = (L Re £ X(¢) + L Im £ X(¢)) where



1804 KRISHNA B. ATHREYA AND SAMUEL KARLIN

and [, are real numbers not both zero. Then
(12) limnP0 <z W £ 3 < », Y(8)[p-X(2) logo-X ()] < 2}
=P0<z WS 2, < 0}d(ze?)

where
ot = sz:;l ui0i2;
o7 = limpee M Var (Y (t) | X(0) = e.),
ei = (8a, 00, -, 0ip),

and ®(z) is the standard cumulative normal distribution function.
Cast 3. 2 Re A < N . Then with Y (¢) being the same as in Case 2,

(13) limmeP{0 < a1 S W S 2 < o, YOP-X(O]F £ 2}
=P0<zm=W=sua< w}@(xa_l)

where
o= 2 P uel, ol = limmee ™ Var (Y(2) | X(0) = e;).

We next state the generalization of the above to the case of an arbitrary
vector 7 (not necessarily an eigenvector). Using the spectral decomposition of
M (t) one can define for any 7, a real number ¢ = a(n), an integer v = v(5)
and an index set I(n) contained in {1, 2, ---, p} such that:

Case 1’. When 2a > \;. There exist random variables Z;, 7 ¢ I(n) such that

(14) Z(t) = Iy 17X (1) — 2ieren Zie™"]

converges to zero in mean square and almost surely. Here b; = Im (};).
Casges 2" AND 3". When 2a = )\, and 2a < \; : the results are the same as in the

eigen-vector case.

3. Embedding.

3.1. B. Friedman’s wrn. In 1949 B. Friedman [8] proposed the following gen-
eralization of the classical Pélya’s urn scheme. Start with W, white and B,
black balls (Wy + By > 0). A draw is effected as follows: (i) Choose a ball at
random from the urn; (ii) observe its color, return the ball to the urn, and add
a balls of the same color and 8 balls of the opposite color. Let (W, , B,) denote
the composition of the urn after n successive draws. The stochastic process
{(W,,Bn);n =0,1,2, -} is called B. Friedman’s Urn scheme. When 8 =0
the process reduces to Pélya’s urn scheme [6].

3.2. The embedding. We will now construct the Friedman’s urn process as
the standard embedded Markov chain of a continuous time two type Markov
branching process. Let {X(¢) = (X1(¢), Xa(t));t = 0} be a two type process
as defined in Section 2 with the associated parameters
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o =0=1,
h(s) = s""'s,?,
Pa(s) = s,
X1(0) = Wy, X2(0) = By.

= (Wa,Ba);n =0,1,2, ---} and
, 2, ---} are equivalent (see Section 2

(15)

TuroreEM 1. The stochastic processes {¥,
{X(12) = (Xi(7a), Xo(7a));n = 0, 1
regarding notation).

Proor. Since the case @ + 8 = 0 is degenerate we will assume o + 8 > 0.
Hence 7,(w) coincides with the nth split time in the realization corresponding
to w. Consider the situation at 7, 4+ 0. There are Xi(7,) particles of type 1 and
Xa(7s) of type 2 respectively. (Recall the paths are assumed right continuous.)
Since a; = a, = 1 all particles irrespective of type have independent exponential
lifetime distribution with mean one. Therefore, the ensuing split will involve a
type 1 particle with probability X;(7,.)/[X1(7.) + X2(7s)] and a type 2 particle
with probability Xs(7,)/[X1(7s) + Xa(7a)]. The split particle is lost but (e + 1)
new particles of its own kind and 8 of the opposite kind are created resulting in a
net addition of « particles of the type that split and 8 of the opposite type. This
implies that the stochastic mechanism yielding the movement from X(7,)
t0 X (7441) is the same as that from Y, to Y, . Furthermore, the two processes
are Markov. This completes the proof.

3.3. A remark. From the proof of Theorem 1 it should be clear that the em-
bedding prevails under quite general conditions. For example, consider the
following extension of B. Friedman’s urn scheme.

An urn has balls of p different colors. We start with Yo, balls of color ¢ (z = 1, 2,
-++,p). A draw consists of the following operations: (i) Select a ball at random
from the urn, (ii) notice its color C' and return the ball to the urn, and (iii)
if C = 4, add a random number R.; of balls of colorj (j = 1,2, ---, p) where
the vector R; = (Ra, ---, Riy) has the probability generating function 4;(s).
Let Vo = (Yu, Ya2, -+, Yap) denote the composition of the urn after n
successive draws. The stochastic process {Y, ;n = 0, 1, 2, ---} on the p dimen-
sional integer lattice is called a Generalized Friedman’s Urn Process (GFP).

Consider a p dimensional branching process {X(¢); ¢ = 0} of the type
described in Section 2 with the additional specification a; = 1 and X;(0) = Yy,
for all 7. Then the two stochastic processes {X(r.);n = 0,1,2, ---} and {¥,;
n = 0,1, 2, ---} are equivalent.

3.4. Some results on Friedman’s urn. D. Freedman [7] derived the following
results about B. Friedman’s urn process {(W,, B,); n = 0, 1, 2, ---} with
parameters Wy, By, @ and 8. We assume 8 = 0. Let p = (a — 8)/(a + B).

(1) If p > % then

(16) limpsw (Wo — Ba)n ™ = T exists a.s.
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(2) If p < L thenasn »

(17) (Wo — B)n ™t =4 N(0, (@ — 8)%/(1 — 2p)).
(8) If p = L thenasn — «
(18) (Wn — By)(nlog n)™ —4 N(0, (@ — 8)%)

where —, stands for convergence in law and N (0, ¢°) is a Gaussian random vari-
able with mean 0 and variance ¢°.

Now we will show how (16) follows easily from a martingale theorem for the
continuous time process {X (¢); ¢ = 0} in which the Friedman’s urn is embedded
as described in 3.2. Later we will establish (17) and (18) in a considerably more
general context. Our methods differ substantially from those of D. Freedman.
He employed mainly moment methods. Furthermore, D. Freedman was puzzled
by the nature of the factor p. From our analysis the significance of p will become

clear.
In the notation of Section 2, for the { X (¢);¢ = 0} process the A matrix becomes

9 4= 5 n=Grs; w=@hrh =0
The second eigenvalue is Ay = (@ — ) and the associated right eigenvector is
£ = (1, —1). Since the condition p > # is the same as 2\, > N, by appealing
to (7) and (11) we get, if p > %,
(20) limy,e (X1(t) + Xa(2))e ™ = W 2

limge (Xi(t) — Xo(2))e ™ = V exist a.s.
Also one can show that P{W > 0} = 1 (see [3], [12]). Hence using (20) we
conclude that
(21) limg,e (X1(2) — Xa(8)e ™ [(Xa(t) + Xo(2))e™]™ = T exists a.s.

where T = V/(W2')" is a bonafide random variable.
Because P{limy.., 7» = »} = 1, (21) implies

(22) limp,e [X1(7a) — Xo(7a)][X1(7a) + Xo(ra)]" = T a.s.

By virtue of the embedding, we have

/

(23) limpsw (Wy — Bo)(Wo, + B,) " =T exists a.s.

where 7" is a random variable with the same distribution as 7.
Clearly (23) implies (16) with T” = T'(a + B)° since W, + B, = W, +
By + n(a + B8).

Now let us examine the assertion of (17). This assertion can be rephrased in
the form

(24) (Wo — B,) (W, + B,)"  —,N(0, C)
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where C is a suitable positive constant. Expressed in terms of the embedding
this means that

(25) [X1(ra) — Xa(7a)][X1(7a) + Xa(ra)] —a N (0, C).

This suggests the conjecture that

(26) [X1(t) — Xa()][Xa(2) + Xa(t)]F —a N(0, ©) as {— ®
or what is the same

(27) EXOR-X@)]™ =4 N (0, 0)

where§ = (1, —1),v = ( 27 97H) satisfy respectively A£ = N, Av = Mo,
Clearly (27) follows from (13). But to go from (27) to

(28) £ X (1a)[0- X ()] =4 N(0, C)

turns out to be nontrivial and is a special case of the principal result of the next
section. Similar remarks apply with respect to the assertion (18).

4. Limit theorems for the embedded process {X(r.); n = 0,1, 2,---}. In
this section we shall develop several general limit theorems for the sequence
X(m),n=20,1,2, ---.

4.1. Split times. Consider a branching process {X(¢); ¢ = 0} of the set up in
Section 2. We assume

(29) 0hi(8)/98i |s=w0,0,--0p = 0 forall ¢

so that when a particle splits, it never creates exactly one particle of the same
type <. This assumption entails no loss of generality since the process is Markov
and now the discontinuities of the sample path {X (¢, w) for ¢ = 0} coincide with
the splitting times. The discontinuities can be ordered and we designate them
by ma(w) forn = 1,2, -+- | N(w) where N(w) is the total number of discon-
tinuities of the sample point w. Clearly the event 4; = {w: N(w) < o} iscon-
tained in the set 4; = {w: X(¢, w) = 0 for some & a.s. To avoid unimpor-
tant technical complications, we make the assumption P(4;) = 0, so that
extinction cannot occur from any nontrivial initial state. Formally we assume

(30) hi(0) =0 for all 7.
It then follows
(31) P{limn-mo Tn = °°} = 1.

For later purposes it is convenient to record two facts proved in [4]:

(32a) limg,one " = CW a.s.
(Here C is a positive constant.)

(32b) liMpaw (7n — M logn) = W' exists a.s.

4.2. Almost sure properties. An immediate consequence of (31) is to the effect
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that if some limit relation holds a.s. as ¢ — « for the process {X(¢); ¢ = 0}
the same limit relation holds a.s. when n — « for the process {X(r.);n = 0}.
Thus from (7), (11) and (31) we get

(33) P{limg,e X (12)e ™ = Wu} = 1
and provided 2 Re X > A\;
P{limpoe Y(7s) = Y} = 1.

As pointed out in the previous section the almost sure limit relations for the
urn processes are immediate consequences of results like (33). For example,
we establish using (14) the following generalization of (16).

THEOREM 2. Let {Y,;n = 0, 1, 2, ---} be a GFP (see Section 3.3 for the
definition). Let n be an arbitrary vector in p dimensions. Assume that the process
{X(t);t = 0} in which {Yn;n = 0,1,2, ---} is embedded conforms to the setup
of Section 2. Define a(n), v(n) and I(n) as before. Let 2a > N . Then there exist
random variables Z,; and constants b; for j & I(n)

(34) P{limpsw |1 Ya/n’(log n)" — Y Zi exp (ib) log n)| = 0} = 1,
where p = a/\ .

Proor. Use (14), (31) and (32). q.e.d.

It turns out where 2 Re A\; > A; that if 7 is an eigenvector corresponding to
a real eigenvalue \; then a(q) = \;, I(n) = {j}, b;/ = 0 and v(n) = 0. In this
case (34) resembles (16).

We next investigate the limit behavior of - ¥, in the case 2a(n) < A\ . It is
anticipated that the analogues of (12) and (13) should prevail for the embedded
process {X(7,);n = 0,1, 2, - --}. However, it is quite nontrivial to demonstrate
that if a limit relation holds in law for the process {X(¢);¢ = 0} as ¢ — o then the
same holds for the process {X(7.);n = 0,1, 2, ---} as n— . This raises the
following general problem concerning Markov processes and associated embedded
chains.

Let {Z(t); ¢t = 0} be a continuous time Markov process with a discrete state
space and let {r.(w)} denote the sequence of discontinuity times of the sample
path Z(t, »). Suppose P{r, — «} = 1 and Y () = f(Z(¢)) is such that the
distribution functions F (¢, ) = P{Y ({,») < x} converge as ¢ — o in distribution
to a distribution function F(z). (Caution: The Z(¢) and Y (¢) used here differ
from those in the statement and proof of Theorem 3.) Now since Y (¢, w) =

Y(rn,w)form £t < mppforn = 1,2, --- (assuming Y (¢, ») to be right con-
tinuous in ¢) it is tempting to conjecture
(%) F.(z) = P{Y(1,,w) = z} =4 F(2).

Of course, (*) cannot be valid without the minimum requirement of aperiodicity
on the embedded Markov chain X(7,). The random telegraph signal process
with f(xz) = z provides a simple counterexample. Indeed consider a continuous
time homogeneous Markov chain {X(¢); ¢ = 0} whose state values alternate
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between 41 and —1 and where the sojourn times at each of these values is
exponentially distributed with unit mean. If 7, denote the successive discon-
tinuity times of X (¢), then

lime P{X(¢) = 1| X(0) = 1} =
limp,e P{X (%) = 1]X(0) = 1} = 1,
lim,._,wP{X(fg,.H) = ].IX(O) = 1} = 0.

However, if the embedded Markov chain {X(7,);n = 0, 1, 2, - - -} is aperiodic
and ergodic then both X (¢) and X (7.) have the same limiting distributions as
t— o and n— « respectively. For a non Markov process, {X(¢), ¢ = 0} and the
embedded process {X(7.);n = 0,1, 2, - - -} may exhibit diverse limit behavior.
For example, such situations occur frequently in queueing theory.

The above discussion focused on the case f(z) = x. The case of general f
is more interesting and presents a formidable problem.

If we restrict attention to special subsequences of 7, then (%) need not prevail.
To wit, consider a compound Poisson process {X(¢); ¢ > 0} with mean zero and
variance of. Examine the process only at the special times when X (¢) = 0.
These comprise an infinite subsequence 7,; of discontinuities of {X(¢); ¢ = 0}
and obviously

X (7n;)(oma;)F = 0 but X(£)(ot) —4 N(0, 1).

It is easy to see that (*) certainly applies in the case f(z) = x and undoubtedly
for a large class of f’s when considering the entire sequence of split times.

A further helpful remark is the following. Our proof of the main theorem
uses a step slightly resembling Rényi’s generalization of the central limit theorem
(see [14]) to the effect that if N, is a sequence of nonnegative integer valued
random variables and S, is a sequence of partial sums of independent identically
distributed random variables §; with E¢; = 0, Et” = 1, then

Sy N, — i N(0, 1) as m— ©

(S

)

p—

provided N,/n — W a.s. where W is a positive random variable. The technique
employed by Rényi [14] in the simplest case where W = ¢, a positive constant,
involves decomposing Sy, N3! in the form

SwNo ™t = (Swy — Staa)Na™ + Spaalne] *([ncl/Na)*.
With the aid of Kolmogorov’s inequality it is shown that
(Swa — S[ncl)[ncl_% —0

in probability and Slutsky’s theorem combined with the classical central limit
theorem is used on the second term.

In our case we know that the functional Y (¢) defined in (13) is such that
omf{w: 0<m = W £ 2 < o}, Y(t)/()? -4 N(0, o*). We decompose
Y (7az)/ (74 in a way somewhat similar to Rényi’s (see (36) to (39)).
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We further use the martingale analog of Kolmogorov’s inequality. The com-
plete analysis is more delicate and difficult.
We shall prove in this section, relying on (13), the following theorem.
TrEOREM 3. Conforming to the set up of Section 2 if £ 7s an eigenvector of A
with etgenvalue  and 2 Re N < \; then

(35) limewP{0 <2 S W < @ < o, Y(r)o-X ()] < )
=P0<zm =W = < »}®(z/o)
where Y (¢) is (L Re ((-X(¢)) + L Im (¢-X(¢))) with &, and L arbitrary but

fixed real numbers not both zero (see (13)).
RemArK. Clearly Theorem 3 implies that

(Re £ X (1a)/lo- X (7a)1}, Im - X (72) /[0- X (7))

jointly converge in distribution as n — « to a bivariate normal law. Also by
virtue of Theorem 3, the result in (17) emerges as a very special case. A similar
theorem prevails in the log case, i.e., when 2 Re A = A . We omit the details.
For ease of exposition, we discuss only the eigenvector case of Theorem 3. How-
ever the arguments can be adapted to treat the case of a general vector 5. Ac-
tually, the only place we use the fact that £ is an eigenvector is by appeal to
martingale and semi-martingale inequalities contained in the discussion of
Lemma, 3. In the general case the corresponding inequalities can be established
with the aid of stopping time arguments.

SoME PRELIMINARIES TO THE PROOF OF THEOREM 3. Let
(36) Fo(z) = Plo: Welo, @), Y(ra)/[v-X(ra)] < 2}
where we have suppressed ‘“the conditioning value of X (0)”. Observe that
(37a) Fin(z) S Plo: Weln, x), Y(r + pasy/l0- X (1 + pait)! < & + ¢
+ P{w: W e [21, @], [Bi(n, k) + By(n, k)| > ¢
and
(87b)  Fiyn(z) Z Plo: Wela, x, V(i + tnie) /[0-X (7 + pai)]} £ & — ¢
—Plw: W e [z1, 2], |[Bi(n, k) + By(n, k)| > ¢
where
(37¢)  Bi(n, k) = [Y(rai) = ¥ (e + pai)l/[0- X (rai)]',
(37d) Bu(n, k) = ¥(re + pna)0-X (72 + sn)]”
(X (7% + pae) /2 X (rai)]f = 1)

on the set {w: W & [x1, %]} and 0 otherwise and where

(37e) g = N log ((n + k) /k).
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Let ¢ > 0 be arbitrary. Determine € > 0 such that

(38) 2((z + €)/0) — ((z — &)/0)| < a.
Next let

(39a) A = {w: W(w) e[, z]}

and

(39b) A= {w: (@ —n)u; < Xi(m)e " < (m+mu; for j=12,-- , 0}
where 7 is chosen to satisfy
(39¢) Plw: W ez, 2]; Welz — z + 1)} < a.

This is possible since the distribution of W is continuous on (0, ). Now using
(37), (38) and (39) we conclude that

lim supw.« Fn(x)
(402) < lim Supow Plot 0 ds, Yime + pnp) /[0 X (7 + )P Sz + €
+ lim SUPnow P{w: we Ay, |Bi(n, k) + Ba(n, k)| > ¢
+ 2P{4; A A}
and
lim infy.. Fr(x)
(40b) = lim infasw Plot weds, Y(n + pap)/0-X (7 + ) Sz — ¢
— i infr.e Plo: wedi, |Bi(n, k) + Ba(n, k)| > ¢
— 2P{4; A A}
where
(40¢) Ay A A = {wiweArud, 0g Ayn A}

Now we state three key lemmas which provide the estimates from which the
theorem quickly follows. The proofs of the lemmas will be presented subse-
quently.

LemMa 1.

(41) lim sup., o im supr> P{4x A 4} = 0.
LemMA 2. For every k
(42)  limpw Ploiw e i, Y(re + pnp)/l0- X (7 + )] £ )
= P{Ai}®(z/0).
LEMMA 3.
(43)  lim Supe,-o lim Supz-e lim SUPs-w P{wiwe Ar, |Bi(n, k)
+ Bay(n, k)| > ¢ = 0.
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Proor or THEOREM 3. Assuming the validity of these lemmas it follows from
(40) that

(44) P{A}®((x — €)/o) + h(e) = liminfy.. Fy(x)

= lim supw.« Fa(z) £ P{A}2((z + €) /o) + he(ea)
where /1 (¢) and he(t) — 0 as ¢ — 0. But by our choice of ein (38) and since e > 0
is arbitrarily prescribed (44) implies (35).

We turn now to the proofs of the lemmas.
Proor or LEmma 1. Clearly

P{Ay AN A} = Ploiwe Ay, we A} + Plw: weg A, we A},

Now

Plo: wedr,wz A} < Ploio-X(m)e ™ elay —n, 22 + 1], W 2z, 2]}
and
Ploiwzg Ay ;we A}

S 20 Plo: Xi(m)e M g [ui(m — n), ui(@e + )], We o, 2]}
But since X ()¢ ™" converges a.s. to Wu as k — » we conclude that
lim Supkw Plwiw e Ar; we A} £ Plo: Welr, — 0, 2 + 9], Wz [21, 221}
and
lim sups-e Ploiw g Ar ;0 A} = 0.

Our choice of 7 in (39¢) now implies (41).

Proor or LeEmMa 2. Recall that the process {X(¢); ¢ = 0} is assumed to be
strong Markov and adapted to the family of fields F; = o{X (s);s < t}. Let & be
the field associated with the stopping time 7 . By the strong Markov property

(45) PlotweAr, Y(n + pn)/[0-X (i + pi)]! £ 2| 5l
= Xax(0) Pxiryy (Y () /[0- X (pn )] < ) 2.
where P, denotes the probability measure for the branching process { X (¢) ;¢ = 0}

with X (0) = y and x4,(») is the indicator function of the set 4.
Now for a fixed &, unr — o asn — «. Thus appealing to (13), we conclude

that
1iMoew Pxerg (Y (i) /[0 X (un ) < 2) = ®(2/0)  aus.

provided X (7)) 5% 0. The result of the lemma follows from (45). q.e.d.
We turn next to the proof of Lemma 3. We shall break it up into two further

lemmas.
LEMMA 3a.

(46) lim supe, 0 im SUps-« lim SUps.e P{w:w & Ar, |Bi(n, k)| > 3¢ = 0.
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LemmA 3b.
lime, 4o lim SUps.e lim SUpn,» P{w:w e Ai, |Bo(n, k)| > Le} = 0.

Proor or LEMMA 3a. We first observe using (32b) and the definition of un .
that

liMgsw 0+ X (1ats) €Xp [—N(7e + pai)] = W(w) exp [—N[r — M log kb — W']]

almost surely on theset {W > 0} where W’ = limu.« (7. — (1/N) log n). Thus
it suffices to show

(47)  1lim SUpgo im SUPpsw Plwiw e Ar, [V (7a4r) — Y (7 + pn)|
> 3yeexp [M(7i + wn i)l — 0
as e | 0 where y satisfies 0 < y < (x; — 7). Consider
m = Plotwe dr, |Y(ragt) — Y (7% + pai)| > Syeexp EM(rx + war)]}.
Let
Z(t) = £X()e™,  fui = Tasr — 7 — pnp and a = Re.
We observe since Y(¢) = [l Re (£-X(¢)) + & Im (¢ X(¢))] that
D |V (1) — V(e + o)

(48a) S (W4 W HEX (rain) — £ X (16 + pnp)}e 20|

(48b) = (W 4 BOYYIZ(tnir) — Z (76 + pn)| + 12 (rasa)| €™ — 1]}
It follows, setting ¢ = (I,* + 1°)%, that

(49a) T = p1+ pe

where

(49b) P = P{Equ .},

(49c) D2 = P{F,,},

(49d) E, wedr, |Z(tasr) — Z(1i + png)]

k= {w:

> teyc” exp [(3M — a) (7t + )]},
(49¢) Fur = Plotwe Ay, |Z(1as)| €™ — 1]
> teyc exp [(Bd — a) (7 + )]}

If we show lim sup; 4o lim Sups-« lim SUp,.. p; = 0 for 7 = 1, 2 we are done.
SteP 1. First consider p, . Clearly

(50a) P = pu + pr
where
(50b) Pu = P(w; w eEn.k ) !ﬂn.kl = 8):

(50¢) P2 = P(o;0eEnp, [1ai] > 6).
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But piz = P{|n. | > 8}. Now consulting (32b) we infer for any 6 > 0 that

(51) lim SUpg-»o im supa.c p12 = 0.
Obviously,

(52a) P = P + pue

where

(52b) pm = P(w;weBnp, 0 S nap < 9),
(52¢) pue = Plo;weBup, —0 = mug = 0).

In order to establish lim supe, o im Supz.o im supase pu1 = 0, we develop some
additional estimates. Note that the familv.

{Z(me + png + u) — Z(7e + Bok)) Frypunptn ; ¥ = 0}

constitutes a martingale owing to the facts that 7 is a stopping time, the process
{Z(%),t = 0}, is strong Markov and Doob’s optional sampling theorem is applica-
ble (see [13]).

Manifestly

(533) P = P{w! we Ay 5 SUPo<u<s [Z(’l'k + P + u) - Z(’l’k + Mn.k)l
> teyc ™ exp (3M — a) (7 + pai)]}-

Now using Kolmogorov’s inequality for submartingales (see [5]) and condition-
ing on the values of X (¢) at 7, + p.x we deduce that the right hand side of (53a)
is bounded above by

< 16 Y E(|Z (15 + pnp + 8) — Z(7h + pan)[®

-1,

(53b) lexp [(M — 2a) (7% + pni) I} 75 4)

< 166 Y B (D P e MR X (1 pan) Vi(8) 5 Ar)
where
Vit) = E(|Z(t) — EZ®)['| X(0) = e:).
Since
E(Xi(ri + pna)| Frp) = 2251 Xi(r)mjipin.ic)
where
msi(8) = E(X«(t)| X(0) = e;),
we have

pu £ 166° Y B{ D P € X (1) (2o Eet Vi(8)myi(pna)e ) 5 As).

We know on the basis of the Frobenius theory of positive matrices (see [11],
Appendix) that there exists a finite positive constant Cy such that

—\
SUp;,ink Mii(pap)e "™ < Cp < o0,
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Also on 4;
2 Xi(m)e ™M™ <

where C; depends only on z; , x; and 1.
Now lim; 4o V:(¢) = 0 and so determine § small enough such that

Sup1<icy Vi(8) < &é.
Combining these estimates, we may conclude that
(54) p < (16¢°y°CoCip)er .
It follows that
(55a) lim supe, 4o lim sups.. lim sups.. pu1 = 0

as desired to be proved.
A similar computation yields the result

(55b) lim supe, o lim SUpPs-« lim sups.. pus = 0.

The relations (50a), (51), (52a), (55a), and (55b) in conjunction embrace the
arguments of Step 1 to the effect that lim sup., 4o lim sups.. lim supa.. p1 = 0.
Now we turn to
Step 2. To show lim sup., 4o im SUps-« lim sups.. p; = 0, we recall that

(56) P2 = Plo: weAi, |Z(rap)| [€™ — 1]
> teyc™ exp [(3M — a) (7t + pan)]}-
Thus p, < p2’ + pe” where
(57a) p)’ = Plow: we Ay ; |Z (task) — Z(7)] et — 1
> feyc exp [(3M — a) (76 + pai)]}
and
(57b) p)" = Plo:we Ar; |Z(n)| |€™F — 1]

Beyc™ exp [(Bn — @) (7 + pas )]}

(1\%

However
p" < Plo: we i |Z(m)
> deyc(¢® 4+ 1) 7 exp [\ — @) (72 + n)], [mail S 8} + Plot [nas > 8}

where 6 > 0 is arbitrary but fixed. Since p,: — © as n — o« for fixed k and
| Z(7x)] is a finite valued random variable

lim SUPpsw P2’ < 0 + Hm SUPrae Pl [nau| > 8}
and thus

(58) Hm SUPje it SUPnoo 2" < 1im SUDsco im SUPpaes Po: |ae] > 8} = 0.
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It remains only to show lim supy.,. im sup,.. p; = O(e). Again we decompose
Py’ in the form p,’ = pu + pee where
(59a) pa = Plw: wedi, |Z(tar) — Z(1)| |€™* — 1]

> Seyc™ exp [(3M — @) (7 + pai)] [1n il S 8}

and

(59b) P2 = p. — pu.

As before p2 < P{|n,| > 8} and hence for any &
(60) lim SUPk-sew lim SUPpaw P2z = O.
Thus we need only show

(61) lim SUPgsw lim SUPpsw P = 0.
But

pa = PloiweAr, |Z(ri + png + mnp) — Z(m)| €™ — 1
> teyc exp [(3M — @) (7 + #a)], [mnil < 8},
Choose 6 small enough such that
e — 1] < q¢  for |u| S 8.
For a fixed k let ng be such that p,,x > 6. Then for n = no
Pn S Plot 0 Ai 5 SUp_sgugs 1Z(7e + pag + u) — Z(m)]
> fye'c exp [(3M — a)(me + ma)]}

Now the family {Z(7x + pag + %) — Z(7%); Fretunpte — 0 = u < 6} is a
martingale as before. Employing Kolomogorov’s inequality for submartingales
and paraphrasing the analysis as in the case of Step 1, we infer that

(62) pa = (6180/?!)2E{6)‘16 Z?sl Xi(me)Vilpnr + 5)6_)‘1(7””""‘“); Al
where we recall that
Vit) = E{|Z(t) — EZ(t)]’| X(0) = ei}.

Now we shall use the following easily proved fact (see [3]). There exists, if
2Re M < M, a finite positive constant ¢ < o such that sup;sup. Vi(t)e ™!
= C < . Further on 4, sup1<i<p X (r)e* < (, for some Cs . It follows
that

(63) pa < (a8c/y)%PCC.

Thus lim supe, ;o im Sup.e lim Sups.» pa = 0 establishing (61). Now com-
bining (58), (60) and (61) finishes the essentials of Step 2 to show
lim supe, 40 lim SUpg-« lim sups.. p: = 0.
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The proof of Lemma 3a is complete.
Proor or LEmMa 3b. Recall that

(64) Ba(n, k) = Y(mi + pas)lo- X (e + pn)]™

(- X (12 + pa)/lo- X ()] = 1).
On the set A = {w: W ¢ [z1, 2]} We see from Lemma 2 that
(65) Y(ri + pni)/0-X (7 4 pnp)! —a N (0, o) 88 nm— .

Also a.s.on 4, v-X(¢)e ™ — W > 0ast— «. This implies that almost surely
on A we have

(66) liMpaw 0-X (7% + pa)/0- X (tnsz) = exp [M(m — M logk — W)

Now using (32b) we see that as k — «, exp [M(7x — (1/N) log &k — W] —
1 a.s. Invoking Slutsky’s theorem, the lemma follows.
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