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SIMULTANEOUS TEST PROCEDURES—SOME THEORY OF MULTIPLE
COMPARISONS!

By K. R. GABRIEL
Unwersity of North Carolina and Hebrew University, Jerusalem

1. Introduction and summary. When a hypothesis is tested by a significance
test and is not rejected, it is generally agreed that all hypotheses implied by that
hypothesis (its “components’) must also be considered as non-rejected. How-
ever, when the hypothesis is rejected the question remains as to which compo-
nents may also be rejected. Various writers have given attention to this question
and have proposed a variety of multiple comparisons methods based either on
tests of each one of the components or on simultaneous confidence bounds on
parametric functions related to the various hypotheses.

An approach to such methods, apparently originally due to Tukey [27], is to
test each component hypothesis by comparing its statistic with the « level
critical value of the statistic for the overall hypothesis. This is called a Simul-
taneous Test Procedure (STP for short) as all hypotheses may be tested simul-
taneously and without reference to one another. An STP involves no stepwise
testing of the kind employed by some other methods of multiple comparisons for
means, in which subsets are tested for equality only if they are contained in sets
which have already been found significant. (See [3], [4], [10], [18]).

A general formalization of STP’s is attempted in this paper. Section 2 intro-
duces the requisite concepts of families of hypotheses and the implication rela-
tions between them, as well as the monotonicity relations between the related
statistics. Section 3 defines STP’s and shows conditions for coherence and con-
sonance of their decisions, these properties being that hypothesis implication re-
lations are preserved in the decisions of the STP. Section 4 discusses comparison
of various STP’s for the same hypotheses and shows the advantages of the union-
intersection type of statistics and of reducing the family of hypotheses tested as
much as possible. Section 5 translates all these results to simultaneous confidence
statements after introducing the definitions necessary to allow such translation.
The analogy between simultaneous test and confidence methods is of special im-
portance as it brings a wide spectrum of methods within this framework, most of
which was originally formulated in confidence region terms. This covers the
original work of Tukey [27] and Scheffé [25] and continues with that of Roy and
his associates [21] and most recently Krishnaiah [12], {13]. A general discussion
of this confidence approach has been given by Aitchison [1] since the first draft
of the present paper. In view of the close analogies pointed out in Section 5, it is
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not surprising that Aitchison arrives at the requirement of a constant critical
value for all his tests, exactly as in an STP. In fact his approach and the present
one are complementary.

The formal theory is illustrated with ANOVA examples to clarify the con-
cepts. No essentially new techniques are presented in this paper though this ap-
proach has been used elsewhere by the author to derive a number of practically
useful procedures [6], [7], [8].

2. Families of hypotheses and statistics. Let Y be a (vector) random variable
having density function fo(Y) with respect to a o-finite measure p,where the
parameter(s) are assumed to lie in a set w. An overall hypothesis wo(C «) is being
considered, as well as a family @ = {w;| < & I} of hypotheses w; implied by wo, i.e.,
wo C w; C wif 7 € I, I being an index set, not necessarily denumerable. (Note that
w; is being used to denote both a set in parameter space w and the hypothesis
0 ¢ w; restricting the parameters to it). The hypothesis wp itself is assumed to
belong to the family and to form the intersection of its members, that is, wo & @
and wo = Nrw;.

The implication relation w; C w; for a pair of hypotheses from Q will be referred
to by saying w; is a component of w; . If the relation is strict, i.e., w; C w;, w; will
be said to be a proper component of w;. Any such strict implication relation
w; C w;, where 7 ¢ I and j ¢ I, may be written ¢ < j and the set of all such rela-
tions existing between pairs of indices from I will be denoted J. Note that 7 < j
is a transitive relation, but is neither reflexive nor symmetric and that 0 < ¢ for
all ¢ e I — {0}. Also note that this is not the only type of implication relation that
may exist between members of a family of hypotheses. If, for example, p1, p2 and
us are parameters one might consider the intersection hypothesis wo : p1 = p2 = s
and let the family further contain hypotheses wi:m = w2, wa:m = pz and
w3t w2 = ps . In this example the relation set g contains only the relations 0 < 1
0 < 2,0 < 3, whereas implications (w1 0 we N ws) C wp or (w1 N wz) C wg are not
included in 4.

A partial ordering of the hypotheses of 2 may be obtained by always assigning
a higher rank to a hypothesis w; than to any of its proper components w;, ¢ < J.
This will assign maximum rank to the intersection hypothesis wo and minimum
rank to hypotheses which have no proper components in Q. The latter hypotheses
are referred to as minimal and their subfamily denoted Quin and indexed by Imin
50 that Qmin = {wj|J € Inin}. All other hypotheses are referred to as non-minimal,
i.e., Q — Quin = {wel’iEI - Imin}.

Corresponding to each hypothesis w; of @ let there be a real valued statistic
Z; = Z«Y) and write the family of these statisticsZ = {Z;| < ¢ I}. The collection
{Q, Z} of hypotheses and their corresponding statistics will be called a testing
family provided the distribution of Z;, for every ¢ e I, is completely specified
under v;, i.e., the same for all 6 € w; . If the family Q is closed under intersection
the testing family will be called closed. If, for any subfamily & = {w:|se T},
where I C I, the joint distribution of all Z;, < ¢ I, is completely specified under
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@ = Niw;, the testing family will be called joint. These two categories of testing
families are neither exclusive nor exhausitive.

ExampLE 2.1. Consider a one-way ANOVA with w as the hypothesis of equality
of all k(>3) means and w; the hypothesis of equality of a pair of means indexed
by I” — {0} indexing all (5) such pairs. Note that these (3) w;’s are minimal
hypotheses, only wo being non-minimal. This family is not closed under inter-
section for it does not contain hypotheses on equality of subsets of A means if
2 < h < k. However, with F-ratio statistics (with a common overall estimate of
error variance) being used for each hypothesis, a joint testing family {Q°, Z}
results. For the joint distribution of all the pairwise F-ratios is completely speci-
fied for any subset of (2 = h = k) equal means, irrespective of the values of
the other £ — h means. The same obviously also holds for augmented F-ratios,
1.e., F-ratios multiplied by their numerator df’s.

ExamprE 2.2 In the same set-up let w; be a hypothesis of equality for some sub-
set S; of k; means, I® indexing all 28 — k — 2 such subsets. The minimal sub-
family remains as in Example 2.1. If (augmented) F-ratio statistics are used for
each of these hypotheses, any one of them corresponding to a true hypothesis
will have a central (augmented) F distribution irrespective of any means not in-
volved in that hypothesis. Thus one obtains a closed testing family {Q°, Z}.

ExamPLE 2.3. Again, in the same set-up, one may start by ranking the observa-
tions of all samples together (overall ranking) and for each hypothesis use the
“between” sum of squares of these ranks as a non-parametric statistic. The over-
all sum of squares is, apart from a constant, the Kruskal-Wallis statistic and its
distribution is specified under wo . But for any subset of A( <k) samples, the cor-
responding statistic depends not only on the equality of the A means involved
but also on where the other k¥ — A means are relative to those A. This is evident
when one considers that the ranks available for that subset of & samples depend
on what ranks have been assigned to the other £ — % samples. Thus, such a col-
lection of hypotheses and rank statistics does not form a testing family.

ExampLE 2.4. Exactly the same argument holds if instead of ‘‘between”
sums of squares of ranks one uses any other statistics based on the overall rank-
ing, such as the range of rank means or the maximum rank mean. These types of
statistics do not provide testing families. (The use of such statistics and their
distributions have been discussed by Nemenyi [17]). ‘

ExampLE 2.5. An alternative non-parametric approach to the set-up of Ex-
ample 2.2 is to use a separate ranking for the statistic of each hypothesis, includ-
ing only the samples relevant to that hypothesis. One may then use the Kruskal-
Wallis statistic for each hypothesis, and as its distribution is specified under the
hypothesis a closed testing family is obtained.

Since for each w; of @ more than one statistic can be chosen to satisfy these
conditions, more than one testing family can be defined for any given family of
hypotheses. Consideration of the properties of different Z;’s as test statistics for
their respective hypotheses w; will play a part in choosing a Z appropriate to €.
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In the present discussion the choice of Z corresponding to any given Q is severely
restricted by the following requirement of monotonicity.

A testing family {Q, Z} will be called monotone if, whenever ¢ < 7, the numerical
relation

(2.1) Zi(y) z Zi(y)

holds a.e. (almost everywhere with respect to measure u), between the cor-
responding statistics. If, furthermore, for any non-minimal w;,i.e.,2&l — I,
and for any sample point y, there exists a proper component w; of w;, i.e., 7 < J,
for which (2.1) is an equality, that is, if

(2.2) Z(y) = max {Z;(y)|7 < j} a.e.,

{Q, Z} will be called strictly monotone. Note that the actual j for which
Z;(y) = Zi(y) need not be the same for each y. Clearly, if a testing class is strictly
monotone it is also monotone. Also, it is readily seen that if, and only if, (2.2)
holds for every ¢ € I — Inin, then, foreverysel — Inin

(2.3) Zi(y) = max {Z;(y)|% < j, 7€ Inn} a.e.

Hence (2.3) is an alternative definition of strict monotonicity. It is also clear
that in a monotone testing family the statistic for wq , the intersection hypothesis,
is

(2.4) Zy(Y) = max {Z;(Y)|1e I},

since © has been defined to include wo itself.

ExampLe 2.6. In the testing family {Qs, Zf} of Example 2.2 implication rela-
tions < exist between hypotheses on sets of means and hypotheses on proper sub-
sets of these sets. Monotonicity holds since the “between’ sum of squares, and
hence the augmented F-ratio, for any set is no less than that for any of its sub-
sets [6].

ExampLE 2.7. If in the subset ANOVA set-up of Examples 2.2 and 2.6, all
sample sizes were equal, studentized range statistics Z° might be used instead
of (augmented) F-ratios. In that case monotonicity would be strict, for the
range of all means always equals the range of some subset of the means.

Exampie 2.8. In the testing family of Example 2.5 it may happen that the
Kruskal-Wallis statistic for a subset exceeds that for a set containing that sub-
set. For example, let there be three samples of four observations with-the follow-
ing ranks: sample 1—S8, 9, 10, 11; sample 2—1, 2, 6, 7; sample 3—3, 4, 5, 12.
The K-W statistic for samples 1 and 2 is 5.33, exceeding that for samples 1, 2
and 3 which is 4.77. Hence that testing family is not monotone.

ExampLE 2.9. In a contingency table one may consider the family of independ-
ence hypotheses for the entire table as well as for all subtables obtained by omit-
ting or amalgamating rows and/or columns. If Pearson’s chi-square statistic is
used to test each hypothesis it may happen that the statistic for a table is less
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than that for a sub-table, though independence in the former implies independ-
ence in the latter [7]. Hence such a testing family would not be monotone.

Monotonicity holds for all testing families using likelihood ratio or union-
intersection statistics, as is shown next.

LemMA A. If the statistics of a testing family are all likelihood ratio (LR for
short) the family is monotone.”

Proor. Let the family be {Q, Z} and w, , w; hypotheses of € such that ¢ < j. The
LR statistic for w; is

Z; = d(sups; f/sup.f)

where d is a monotone decreasing function, and the LR statistic Z; for w; is
similarly defined.

Now ¢ < j is equivalent to w; C w; so that sup,,f = sup.;f. Thus the ratio
argument of d in Z; is no greater than that of din Z; . As d is decreasing, Z; = Z;
as was to be proved. ‘

ExampiE 2.10. In the ANOVA testing family {Q°, Z"} Example 2.2 the F-ratios
are LR statistics. Lemma A confirms the monotonicity noted in Example 2.6.

ExampiLE 2.11. In the contingency table independence testing set-up described
in Example 2.9 a monotone testing family may be obtained by using the log likeli-
hood ratio statistics instead of Pearson’s chi-squares [7].

LemMA B. A testing family is strictly monotone if and only if its statistics are re-
lated by Roy’s Union-Intersection (UL for short) principle [20].

Proor. Roy used the UI principle to construct a test for w; from tests of all
its minimal components w;, ¢ < 7, j € Iain . If the latter are tested with critical
regions (y | Z; > ¢), Roy [9], [20] defined the critical region for w;, ¢ &I — Inin,
as Ugjli<iderg (¥ Z; > ¢), or equivalently as

(y|max; {Z; |4 < 7,7 € Imi} > §).

Extending this definition to all possible values of ¢, Roy essentially defined the
UI statistic for w; as max; {Z;|7 < 7, J € Inia}. Use of this definition for every
1 & I is equivalent to using the statistics (2.3) which satisfy strict monotonicity,
as was to be proved.

ExampLE 2.12. For the ANOVA set-up of (2.7) one notes that the studentized
range Z" for any subset of means is the maximum of the Student ¢ statistics times
2! i.e., studentized ranges, for all pairwise comparisons of means from that sub-
set. Thus, the studentized range statistics generate UI relations for the testing
family {Q°, Z?} as was expected by Lemma B from the fact that this family is
strictly monotone.

Since the Ul relation is one of hypotheses and statistics it is preferable not to
speak of Ul statistics, but of Ul related testing families.

8. Simultaneous test procedures. For a testing family {Q, Z} and a critical

2 Essentially equivalent lemmas have been proved before by Aitchison [2] and Knight
[11].
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value ¢ a Stmultaneous Test Procedure (STP) is defined as the family of tests of
all w; ¢ @ which reject any w;, ¢ I, if Z; > ¢, using the same constant ¢ for all
Z;of Z. Such an STP will be denoted {Q, Z, ¢}. The probability

(3.1) a = Py (Zo > ¢)

of falsely rejecting the intersection hypothesis is referred to as the level of the
STP. If Z, is a continuous variable the same STP may alternatively be defined in
terms of its testing family {Q, Z} and level e, the critical value { being then deter-
mined by (3.1).

The term s¢multaneous is used to indicate that no order or sequence is imposed
on the tests of all the hypotheses of @ and that they are made without reference
to one another. It is shown below that this cannot lead to incoherent decisions.

Note that wo is rejected by the STP if and only if Z, > ¢, exactly as by a signifi-
cance test of significance level a. This test of the intersection hypothesis is there-
fore always part of the STP. If the testing family contains only a single hypothesis
wo and its statistic Zo , the STP {Q, Z, ¢} is equivalent to the test of hypothesis
wo by means of statistic Z, at critical value ¢.

An essential requirement that any procedure must satisfy is that no hypothesis
should be “accepted” if any hypothesis implied by it is rejected. In other words,
if 2 < j then w; must always be rejected if w; is. This requirement will be called
coherence,® and an STP will be called coherent if its decisions always satisfy this.

TaEOREM 1. All STP’s based on testing family {Q, Z} are coherent if and only if
{Q, Z} is monotone.

Proor. Consider any hypotheses w; and w; of & for which 7 < j. Monotonicity
of {Q, Z} postulates that Z; = Z; a.e., whereas coherence of {Q, Z, {} for any given
¢ requires that (y | Z: > ¢) 2 (y| Z; > ¢) a.e.” since these events determine the
rejection of w; and w; , respectively

Now, the statements “Z; = Z;a.e.” and “(y|Z: > ¢) 2 (y|Z; > ¢) a.e. for
all ¢ are clearly equivalent. Hence monotonicity of testing family is equivalent
to coherence of all STP’s based on that family, as was to be proved.

CoRroLLARY 1. If the statistics of a testing family are all LR, all STP’s based on
that famaly are coherent.

Proor. This follows from Lemma A and Theorem 1.

ExawmpiE 3.1. In the subset ANOVA set-up {Q°, Z"} of Examples 2.2, 2.6, 2.10
one may test equality of the A means of each subset by means of the (augmented)
F-ratio against ¢*, the upper « point of the (augmented) F distribution with
k — 1 and n, degrees of freedom, where n, is the d.f. for the variance estimate.
This will give an STP with coherent decisions; set S; of k; means will be rejected if
any subset of its means is rejected [6].

3 In an earlier paper [6] this properly was called transitivity. The terminology has been
changed because of the different connotations of the earlier term.

¢ For set containment relations A C B and A C B the a.e. qualifications mean that
A n B may be non-empty but of measure zero. Similarly, 4 = B a.e. mean that both 4 n B
and A n B may be non-empty but are of measure zero.
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ExampLE 3.2. The non-parametric analogue of the above, using the Kruskal-
Wallis statistics of Example 2.5, is not an STP since its testing family is not
monotone. As was pointed out in Example 2.8, the Kruskal-Wallis statistic for a
set may be less than the same statistic for a subset contained in the set. If the
common critical value happens to be between these two statistics’ values the sub-
set would be rejected whilst the set was accepted. This would lead to the inco-
herence of asserting that all means of a set are equal whilst some of them differ
from each other. Hence, such a procedure would be incoherent. (See further re-
marks in Section 6, below.)

ExampLE 3.3. In the one-way ANOVA set-up denote the expectations

v = (m,p, - ,m) and write ci'w, ¢’ € V(C') for a contrast in the expectations
where V(C") is the k-vector space orthogonal to the vector 1’ = (1,1, --- , 1).
Now considerwo s s = pz = « -+ = mrandw; : ¢ w = D nes Ciapn = 0,7 & I° — {0}

ranging over all contrasts such that ¢;' ¢ V(C"). Clearly, wo = N rcw; as nullity of
all contrasts is equivalent to equality of all expectations.

Let the sample means be written £ = (&, %z, - - - , %), the variance estimate
§* and the sample sizes 7 , ns, - -+ , 7 . Then LR statistics are, for wo , the aug-
mented F-ratio

Zy = (ZII:—I naEn’ — (ZII:=1 nhfi?h)z/ Z’}f=1 )/ 82,
and for w; , j € I° — {0}, the squared Student ¢

ZjF = (Zl;:=1 c,-;.a':;.)z/sz ngl (c?h/nh)-

It is readily seen that this provides a joint testing family {Q°, Z}.

An « level STP is obtained by choosing ¢* as in Example 3.1. This STP con-
sists of testing the overall w and each contrast w; by checking if Z," > ¢* and
Z; > ¢", respectively. By Corollary 1 this STP {Q°, Z*, ¢*} is known to be co-
herent in the sense that rejection of any contrast hypothesis always entails re-
jection of the overall equality hypothesis.

It will be noted that this STP consists of the significance tests of Scheffé’s
method (Example 5.1 [25], [6]).

In a coherent STP the level @ may be regarded as an experimentwise level, as
follows from the next theorem.

TrEOREM 2. The probability that a coherent STP {Q, Z, ¢} of level a rejects at least
one true w; of Q s a if wo 1s true; it is at most a irrespective of the truth of wo provided
{Q, Z} s either closed or joint.

The probability of rejecting any particular true w; of @ is no more than the above
probability.

Proor. By Theorem 1, {©?, Z} must be monotone, so that by (2.4) Z, =
max {Z;| e I}. Hence rejection of wo , event (Zy > ¢), is equivalent to rejection
of any w;, event U;(Z; > ¢). Under wo the probability of the former eventis «,
(3.1), hence so is the probability of the latter, proving the first statement.

Next, let & = {wi|2e I}, I C I, be the subfamily of true hypotheses whose
intersection @, = (7 w; is necessarily also true. Then rejection of a true w; occurs
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whenever max {Z;|7 eI} > ¢ and the required probability is
Psy(max {Z;|ie I} > ¢).

If it can be shown that

(3.2) Psy(max {Z;|iel} > ¢) = P, (max{Z;|cel} > ¢)

then the second statement of the theorem follows, for the latter probability is
clearly no greater than P, (max {Z;|7eI} > ) = Pyy(Zo > ¢) = .

If {Q, Z} is closed & € ©, as Q is closed under intersection. Hence max {Z; | ¢ I},
the statistic for & , has its distribution completely specified under @y , irrespective
of whether wo holds or not, and so (3.2) holds.”

If {Q, Z} is joint, the joint distribution of all Z;, ¢ I, is specified under &,
irrespective of the truth of wo . Hence the same holds also for max {Z;|¢ ¢ I} and
(3.2) follows as before.

The last statement in the theorem is obvious.

Coherence prevents the contradiction of rejecting a hypothesis without also re-
jecting all other hypotheses implying it. It does not, however, preclude the
dissonance of rejecting a hypothesis whilst not rejecting any other hypotheses
implied by it. Such dissonances, though not desirable, are sometimes allowed
when the alternative to rejection of a hypothesis is taken to be non-rejection
rather than acceptance. They are familiar to users of tests of significance, as
these merely reject a hypothesis without indicating where it fails. They occur
less often when STP’s are used, as they may indicate some components to be also
rejected. However, the use of STP’s does not eliminate all dissonances: some
STP’s may reject hypotheses without rejecting any of their proper components—
such STP’s will be called non-consonant. One would generally prefer procedures
which are coherent as well as consonant. In a later section non-consonant pro-
cedures will be compared in terms of the likelihood of avoiding dissonances.

Note that consonance of an STP can equivalently be defined as the require-
ment that any w; of @ be rejected only if some minimal component of w; is rejected.

ExampLE 3.4. In the subset ANOVA F-ratio STP {Q°, Z”, ¢*} of Example 3.1
the minimal hypotheses w; : uj, = wjs , J € Imin , are those of pairwise equality of
means. Since

Zy = (Zf—l s — (ZI’:=1 n)?/ Z}’:=1 )/ s

Z" = (&, — %)Y/ (Ui, + 1/nsp), jelmm,

and

and
Z¢" > max {ij |j8[i.in} a.e.

5 A similar proof for one-way ANOVA was given in [6] and a general proof for closed
testing families in [11] by Knight. As a result of the requirement of closure under inter-
section Knight’s form of the theorem cannot be applied directly to some important classes
of procedures, as, for instance, Scheffé’s (Example 3.3, above). Knight surmounts this
difficulty by applying his lemma to an extended family which includes all intersections of
sets from Q.
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(see [9]), (Zo" > ¢) does not necessarily imply (Z;" > ¢) for any j € Inmin . In
other words, dissonances may occur in rejecting over-all equality of means with-
out rejecting the equality of any pair of means [6].

ExampLE 3.5. The contrast ANOVA F-ratio STP {Q° Z%, ¢*} of Example 3.3
is consonant as well as coherent. To see this, note that the maximal squared ¢
statistic for a contrast is equal to the overall augmented F-ratio, i.e.,
Zo" = max {Z,” I j € Itun} where I = I¢ — {0}. (This is established by differ-
entiating the Z expression in Example 3.3 over all ¢; and setting the derivative
equal to zero [6]. See also [26]). Hence, (Zo" > ¢) = Uic, (Z," > ¢), so that
whenever overall w, is rejected so is w; for some contrast.

ExampLE 3.6. In the pairwise ANOVA set-up the F-ratio STP
{QF, Z7, ¢*} would consist of tests belonging to both {@°, Z%, ¢*} of Example 3.1
and {Q°, Z, ¢*} of Example 3.3, since the overall w, is the same in 2, @° and Q°
and the other hypotheses of QF, that is, those on pairwise comparisons, are in-
cluded in both ©° and in Q°.

TurorEM 3. All STP’s based on testing family {Q, Z} are coherent and consonant
if and only if {Q, Z} is strictly monotone.

Proor. STP {Q, Z, ¢} is coherent and consonant, by definition, if, for every
1el,

(3.3) W1Z: > ¢) = Uticijorma W1Z; > ) ae

For coherence requires the right hand side event to imply the left hand side,
whereas consonance requires that the left hand side imply the right hand side.
All STP’s based on {Q, Z} are coherent and consonant if and only if, (3.3) hold
for all ¢, but this is equivalent to (2.3), the definition of strlct monotonicity of
that testing family.

COROLLARY 2. If, and only if, a testing family vs Ul related, all STP’s based on
that family are cohrent and consonant.

Proor. This follows from Lemma B and Theorem 3.

Corollary 2 points out the correspondence between Ul statistics and consonant
STP’s. Roy has used the UI principle to induce a test of the intersection hypothe-
sis from the tests of its components, whereas its equivalent is used here to resolve
the test decision on the intersection hypothesis into decisions on the components.
The UT test of wo can be used as part of an STP. Rejection by this test is followed
in the STP by further tests to resolve which components are to be rejected,
whereas non-rejection obviates the need for further testing.

ExampLe 3.7. In the subset ANOVA set-up for equal sample sizes
n = My = -+ = N = N, say, one might use studentized range statistics as in
Example 2.7. Thus, hypothesis wi : pi; = pi, = -+ = py, of equality of all k;
means of subset S;, say, would be tested with statistic

ZE = max {|F;, — &i,| nl/s|1a #= ds € Si).

Taking fR as the upper a point of the studentized range distribution for k& variables
with n. d.f., and rejecting any w; if (Z:® > ¢®), one obtains an STP
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{Q° ZF, ¢*}. As pointed out in Example 2.12 this testing family {Q°, Z®} is UT re-
lated and hence is strictly monotone. By Corollary 2 {Q°, Z%, ¢®} is coherent and
consonant.

- ExampiE 3.8. If the decisions of the STP of Example 3.7 were restricted to the
overall hypothesis and all pairwise comparisons (as in Example 3.6) this would
not affect the coherence and consonance properties and one would obtain an STP
{QF, Z%, ¢®} consisting of the significance tests of Tukey’s method of allowances
[271.

Coherence and consonance are relations between test decisions on hypotheses
which imply one another, i.e., between some w; and w; of @ for which 7 < j. As
was noticed in Section 2, above, other implication relations may also obtain
within the family w. The STP properties of coherence and consonance do not
relate to such other relations and indeed STP decisions may violate them. Thus,
in a family of hypotheses on equality of sets of parameters from among w1, ps,

-, b, an STP may accept w1 = us as well as p3 = p; but reject us = ps even
though it is implied joinily by the two accepted hypotheses. Lehmann [14],
[15] has considered procedures which preserve a wider class of implication rela-
tions and has termed them compatible. STP’s, even consonant ones, are not
generally compatible in that sense.

4. Resolution of STP’s. The purpose of multiple comparisons in general, and
STP’s in particular, is to provide resolution of significant test decisions on overall
hypotheses into significant decisions on components, as far down as minimal
components. Thus, for family @ = {w:|% e I} rejection of intersection wo is to be
resolved into rejection of proper components w;, Z £ I, down to minimal hypothe-
sSes wj,jSImin.

The extent of resolution of a procedure must be defined in terms of the likeli-
hood of rejecting minimal proper components provided the overall hypothesis is
rejected. If two procedures each test overall hypothesis wo at level «, the one will
be said to be no less resolvent than the other if it always rejects any minimal
hypothesis rejected by the other, and will be said to be strictly more resolvent if it
sometimes rejects when the other does not. In other words, consider two STP’s
{Q,Z, ¢} and {9, Z%, ¢*}, such that wo = N;wi = Ny w;, where @ = {w; |z eI}
and % = {w:|7€I*} and Inin © I*. Then the former STP is no less resolvent
than the latter if

(4.1a) Puy(Zo > §) = Puo(Zo* > t¥)
and for all 7 &€ I uin
(4.1b) (Z;>¢8)D(Z*> ") ae.

It is strictly more resolvent if the containment in (4.1b) is proper. It is clear
that no meaningful comparisons can be made between STP’s unless they test
the same hypotheses, at least to the extent that their intersections are the same
and the minimal hypotheses of one of the families are all included in the other
family. ' ’ -
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ExampLE 4.1. In the pairwise ANOVA set-up with equal sample sizes the
studentized range STP {QF, Z%, ¢*} (Tukey’s method-Example 3.8) will reject
any pairwise comparison of means which is rejected by the F-ratio STP {Q°, Z*, ¢}
(Scheffé’s method-Example 3.5) provided both STP’s are of the same level [9].
Note that the family of hypotheses of the latter STP is wider than that of the
former as it also includes all contrasts, but that all hypotheses of the former are
included in the latter family.

Resolution comparisons are made between STP’s of the same level. An alterna-
tive kind of comparison can be made between STP’s which give identical deci-
sions on all minimal components. The procedure will be said to be no less (more)
parsimonious if it gives these decisions at no more (less) cost in rejection of other,
non-minimal, hypotheses, and specifically of the overall hypothesis. Thus {Q, Z, ¢}
is no less parsimonious than {Q*, Z*, ¢*}, where @ C Q* and wo = wo™, if

(4.2a) forallje Imin (Z;>¢) = (Z;* > ¢*) ae,

(4.2b) . foralliel (Z:>¢) C (Z&F > ¢*) ae.,

(4.2¢) and for wo Poy(Zo > ¢) < Puy(Zo* > ).

If the inequality in (4.2¢) is strict, {Q, Z, ¢} is strictly more parsimonious than
{o* Z* ¢*}.

A possible measure of resolution is the ratio of the rejection probabilities of
minimal hypotheses to that of the overall hypothesis. Under the overall hypothe-
sis wo, if all minimal hypotheses have the same probability of being rejected,
ie., if

o = ij(ZJ' >¢)
for all j & I'min, resolution may be gauged by the ratio as/a. Clearly, if one STP
is more resolvent than another, the former will have a higher a;/« ratio than the
latter. However, a higher o1/« ratio merely means more probable resolution, not
necessarily strictly more resolution in the sense of (4.1b).

ExamprE 4.2. Consider an eight mean ANOVA with 40 d.f. for error [6].
The 10 % level studentized range STP {Q°, Z*, 4.10} has a resolution ratio of
o/ = 0.006/0.100 = 0.06 whereas the 10 % F-ratio STP {Q°, Z*, 13.09}, noted
in Example 4.1 to be less resolvent, has a ratio of only en/a = 0.001/0.100 = 0.01.

ExampLE 4.3. In the subset ANOVA set-up any hypothesis w; on a subset
S: of k:(>2) expectations may be tested by means of the maximal pairwise F
statistic

Z,’M = ma.ngc,g.. ZjF,

where the index j indicates S; is a pair. For equal sample sizes Z;° = (Z;%)*/2
(Example 2.12) so that the use of Z;* is equivalent to the use of the studentized
range (Example 3.7). For unequal samples percentage points of Zs" are not
available. For any critical value ¢*, the STP {Q°) Z¥, ¢*} is clearly coherent and
consonant but its level o cannot be determined exactly for unequal n;s. How-
ever, by virtue of the first Bonferroni inequality o = (8)ay , where ay is the pair-
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wise probability of a type I error which is readily determined by noting that ¢*
is the upper oy point of the F distribution with 1 and n, d.f. The resolution
ratio is thus aa/a = 1/(3) for the maximal pairwise F STP. For the particular
case of k = 8, au/a = 0.036, whereas, with n, = 40, for the augmented F-ratio
STP this ratio is 0.01 (as in Example 4.2). Thus, if tests are desired only for pairs
and other sets, and not for all contrasts, one would have more probable resolution
with this approximate STP using the maximal pairwise F-ratio than with the
one using the ordinary F-ratio, and one may well be led to prefer to use the
former. :

A more general measure of resolution should also take into account the chances
of rejecting non-minimal component hypotheses. If ranks can be assigned
meaningfully to hypotheses, resolution should depend on the entire sequence

0.0 {01 =

where «a is the probability of falsely rejecting a hypothesis of rank g and k — 1
is the maximum rank (as in a k mean ANOVA), i.e., the rank of the intersection
hypothesis. Examples of such sequences of probabilities are given in [6] for
ANOVA STP’s and in [7] for contingency table STP’s.

To determine which STP’s are more resolvent or more parsimonious than which
others, one is led to consider the following relation between monotone testing
families. {Q, Z} will be said to be narrower than {2* Z*} if @ C 2% and wo = wo*
and if there exists a function g such that

(4.3a) ¢ is continuous monotone increasing,
(4.3b) for every j € I win Z* = g(Z;) ae.,
(4.3¢) forevery (el — Imin Z:* Z g(Z:) a.e.,
and

(4.3d) P(Zy* > g(Zo)) > 0.

A stronger condition which implies (4.3d) is

(4.3d") Zy* > g(Z,) ae.

If (4.3d’) holds {2, Z} will be said to be strictly narrower than {Q*, Z*}.

ExampLE 4.4. Again, in the subset ANOVA set-up for equally sized samples,
compare the studentized range testing family {Q°, Z®} with the augmented
F-ratio testing family {Q°, Z"}. The hypothesis family @° and intersection
woim = pp = --- = u are the same for both. Any minimal hypothesis 7 & I is
a pairwise comparison of expectations w; : pj, — pjs = 0, for which Z,” = (Z;*)*/2
(Example 2.12). Since Z® can assume only positive values the function
Z" = (Z%)?/2 satisfies (4.3a) and (4.3b). Also, it has been shown ([9], see also
Example 4.10, below) that for all non-minimal hypotheses w: on ki(>2) ex-
pectations Z;" > (ZF)*/2 a.e., so that (4.3¢) and (4.3d") also hold. This shows
{Q°, Z®} to be narrower than {Q°, Z%}.
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ExampLE 4.5. For contrast hypotheses w; : ¢;/u = > ¥ s cmm = 0 Tukey has
generalized the studentized range statistic as

Z{ = 2|2 camal/s 2oia lesnl

and shown that Z,° = max {Z;%|c;e V(C')} ([26], Section 3.6, [28], [16] pp.
44-46). Hence {Q° ZF} is UI related, just as {Q°, Z'} is (Example 3.5 and
Corollary 2). Thus, in the contrast ANOVA set-up for equally sized samples a
generalized studentized range STP {Q°, Z%, ¢*} is an alternative to the (aug-
mented) F-ratio STP {Q°, Z¥, ¢*} of Example 3.5.

Let g(z) = 2*/2 for z > 0. This is a function which satisfies (4.3a), (4.3b)
for all pairwise contrasts and (4.3c) and (4.3d) for the non-minimal hypothesis
wotp = pp = --- = w (Example 4.3). However, for minimal hypotheses on
contrasts involving more than two expectations (4.3b) does not hold. Hence
{Q°, Z®} is not narrower than {Q°, Z*}, nor vice versa.

ExAMPLE 4.6. Also compare testing families {Q°, Z*} of Example 2.1 and
(Q°, Z"} of Example 3.3. Clearly, @° < 2° and wo is the same for both. Further-
more, as in Example 4.3, for all j & I'nin

Zi" = (Z"Y2 and  Z" > (Z5)Y/2 ae,

wo being the only non-minimal hypothesis of 2° (and 2°). Hence (4.3a, b, ¢, d)
hold so that {QF, Z*} is found to be narrower than {Q° Z*}.

Given the narrowness relation between testing families the following two
theorems show the corresponding relations between STP’s based on these families.

TrEOREM 4. If {Q, Z} is narrower than {Q%, Z*}, then for every ¢* there exists ¢
such that {Q, Z, ¢} is no less parsimonious than {Q, Z*, *}. Moreover, the former
STP is strictly more parsimonious than the latter for some values of ¢, ie., those
Sor which

(4.4) P, (Zs* > * = 9(Z)) > 0,

where g satisfies (4.3a, b, ¢, d).

Proor. In view of narrowness conditions, (4.3a, b, ¢, d) hold for some func-
tion ¢. For any given ¢* choose ¢ so that ¢* = g(¢). Then it follows from (4.3b)
that

foralljeInmin (y|Z*(y) > ¢*) = (y|Zi(y) > 1) ae,
and from (4.3c) that
foralliel (y|Z*(y) >¢*) 2 (y]|Zi(y) > ¢) ae.,
establishing (4.2a) and (4.2b). From (4.3c) one further obtains
Pyy(Z" > ¢*) = Puy(Zo > §) + Pur(Ze" > ¢ 2 9(20))

from which (4.2¢) follows—and no lesser parsimony is proved. It also follows
that (4.2¢) is a strict inequality—more parsimony—if (4.4) holds. That this
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holds at least for some values of {* is ensured by (4.3d), and the theorem is
proved.

ExampLe 4.7. In comparing the subset ANOVA studentized range STP
{Q°, Z%, ¢*} and augmented F-ratio STP {Q° Z*, ¢}, choose {* = (¢%)?/2. In
view of the narrowness established in Example 4.4 it follows from Theorem 4
that the pairwise decisions of both STP’s are identical but for all hypotheses on
three or more means the F-ratio STP will reject whenever the studentized ratio
STP does and more often. In particular, this will result in a higher level for the
F-ratio STP—see Table 1 in [6].

THEOREM 5. If {Q, Z} is narrower than {Q*, Z*} and if {Q, Z, ¢} and {QF, Z%, ¥}
are of the same level, then the former STP is no less resolvent than the latter. M oreover,
it 1s strictly more resolvent for some values of ¢, i.e., those for which

(45) Puy(Ze" > 9(¥) 2 9(Zo)) > 0,

where g satisfies (4.3a, b, ¢, d).

Proor. According to the proof of Theorem 4, P,,,(Zo* > g(¢)) = Puo(Zo > ¢)
for all ¢ with strict inequality if (4.5) holds. Hence, if the levels of the two STP’s
are to be equal, ie., if Puy(Zo* > ¢*) = Puy,(Zo > ¢) (condition (4.1a)), one
must have {* > g(¢), with strict inequality condltlonal on (4.5). Now, mlmma,l
hypotheses w5, 7 € Imin , will be rejected by {QF, Z*, ¢} when (Z > ¢*). But,
in view of (4.3a)

(Zi* > %) = (9(Z) > ) S (9(Z3) > 9(§)) = (Z; > 1),

the containment being proper if (4.5) holds. Thus (4.1b) is established generally
and the resolvence of {2, Z, {} shown to be always no less, and strictly whenever
(4.5) holds. The latter occurs for at least some values of {, as argued in Theorem
4 for (4.4). ‘

ExampLE 4.8. Again, comparing the pairwise ANOVA studentized range STP
(QF, Z%, ¢*} with the contrast ANOVA F-ratio STP {Q°, Z, ¢}, the critical
values may be chosen to ensure equal levels. In view of the narrowness com-
parison of the testing families in Example 4.6, it follows from Theorem 5 that
{QF, Z%, ¢"} is more resolvent than {Q° Z", ¥}, as stated in Example 4.1.

ExampLE 4.9. Numerical calculations have shown ([25], [26], Chapter 3) that
neither Tukey’s nor Scheffé’s method is more resolvent for all contrasts (i.e.,
narrower confidence bounds—see Section 5, below). This accords with the finding
in Example 4.5 that neither of the corresponding testing families is narrower than
the other.

It is evident from these theorems that narrower testing families have the
advantages of providing more® resolvent STP’s of the same level (Theorem 5)
and more’ parsimonious STP’s for the same decisions on minimal hypotheses

¢ ¢“Providing more resolvent and more parsimonious STP’s’’ must be understood as in
Theorems 4 and 5 as strictly more for some critical values and no less for all other critical
values.
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(Theorem 4). In practical applications many multiple comparisons techniques
have been criticised precisely for insufficient resolution or excessively frequent
overall rejections for given minimal decisions. Hence, the use of narrower testing
families may help to provide more practically useful techniques.

The next lemma gives a sufficient condition for one testing family to be nar-
rower than another. In the following corollary this condition is applied to show
when some STP’s will be more resolvent than others.

Lemma C. Let {9, Z} be a strictly monotone testing family and {Q*, Z*} be a
monotone testing family such that @ C QF, Quin C Qmin and wo = wo™. A sufficient
condition for {Q, Z} to be narrower than {Q*, Z*} is the existence of a function g
satisfying (4.3a, b) and also

(4.3e) P (Ze* # g(Zo)) > 0.
If (4.3e) 1s replaced by
(4.3¢") Zo* = g(Zy) ae.,

one obtains a sufficient condition for strict narrowness.

Proor. If (4.3¢) holds, (4.3e) implies (4.3d) and thus narrowness, whereas
(4.3¢') implies (4.3d") and thus strict narrowness. It therefore suffices to es-
tablish (4.3c).

Now, for any 4 € I — I, strict monotonicity of {Q, Z} gives, by (2.3), that

Z; = max {Z;|1 < j,je I} ae,
whereas monotonicity of {Q* Z*} requires, by (2.1) that
Z* 2 max {Z;*|i < j,jeInn} ae.
Under the conditions of this lemma
max {Z;* |4 < j,j € Inia} = max (Z;*|5 < j,j & Lnia}
max {g(Z;) |7 < J,J & Lmin}

g(max {Zle < j)jSImin}),

so that, for all e I — I, Z:* = g(Z:) a.e., which is condition (4.3c).

ExampLE 4.10. In the subset ANOVA set-up for equal sample sizes the
studentized range testing family {Q°, Z"} was noted (Example 2.7) to be strictly
monotone and the augmented F-ratio testing family {Q°, Z*} to be monotone
(Example 2.6). The family of hypotheses is the same in both cases and the
monotonic increasing relation Z;" = (Z;%)?/2 holds for all minimal (pairwise)
hypotheses (Example 4.4). For any other hypothesis w: on k:;(>2) means, the
statistic

) ZiF = Elfil‘l n":h(j"h - ii)z/sz
where .
a.:”: ZZ‘.;I nih = Z:‘i’l nihjih )



MULTIPLE COMPARISONS 239

and the statistic
(Z#)/2 = max {|Fi, — Ziln'/s 2} |4a, ta e84

are equal only if ki — 2 of the means Z;, are exactly equal to the average of the
other 2 means, clearly an event of probability zero. Hence Z:" = (Z.%)%/2 a.e.,
and all the conditions of Lemma C are seen to obtain. Thus the unproven
statement in Example 4.3 is established and the proof that {Q° Z*} is narrower
than {Q° Z'} is complete.

COROLLARY 3. Let {Q, Z} and {Q, Z*} be monotone testing families such that
Q C Q¥ Quin C Qi and wo = wo™ and let there exist a function g satisfying (4.3a, b).
Then each of the following are sufficient conditions that {Q, Z} provide more
parsimonious and more resovent STP’s than {Q*, Z*},

(1) If {Q, Z} 4s UI related and g also satisfies (4.3e) or (4.3¢');
(I1) if both {Q, Z} and {1Q%, Z*} are UI related and

(4.6) 7 P.,(max {Z;*|j e Imin} > max {Z,;* |7 & In} > 0.

Proor. By Lemma B, both (I) and (II) require {®, Z} to be strictly monotone.
Hence, by Lemma C, condition (I) is sufficient for {Q, Z} to be narrower than
{Q*, Z*}. The rest follows from Theorems 4 and 5.

Under (II), both testing families are strictly monotone so that, a.e.,
Zo* = max {Z,*|jeItn} and Zo = max {Z;|] e Inn}. Now by (4.3a, b)
9(Zo) = max {g(Z;) |j € Inw} = max {Z,;"|j & I}, so that (4.6) of (II) is
equivalent to (4.3d) and this implies (4.3e). The rest of the argument is as for
(I), above.

ExampLE 4.11. The conclusions of Example 4.7 regarding equal sample size
ANOVA STP’s for subsets would also follow from Corollary 3(I) upon noting
the existence of a g function satisfying (4.3a, b, ¢) as in Example 4.10, and the
fact that the studentized range testing family is UI related (Example 2.12).

ExampLE 4.12. Similarly, the conclusions of Example 4.8 regarding pairwise
and contrastwise STP’s follow from Corollary 3 (II). Note first, by Example
4.6, that a function z’/2 exists which satisfies (4.3a, b). Next, note that both
{QF, Z%} and {Q° Z*} are UI related (Examples 3.8 and 3.5, respectively).
Finally, condition (II) is established since (4.6) holds, i.e.,

max {ZjR|Cj,£V(C’)} > max {Z," |7 e Inin} a.e.,

for otherwise a number of contrasts in means &, have to be zero, an event of

probability zero.
ExampLE 4.13. In the equal sample size ANOVA set-up let Q = {wo, ws,
ws, **+, k), where wo: py = pp = -++ = g as before and w;: 1 = p;,7 = 2,
, k so that
wo = ﬂ§=2 wj
is the intersection of @°, and w;,j = 2, - - - , k, are minimal. Let Z;%,j = 2, -+ , k,

be the absolute value of Student’s ¢ for wj, so that Z;> = (Z;" ) = (Z}* ) /2’
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j =2, -+, k. Further, let Z,” = max {Z;°|j = 2, ---, k} so that {Q°, Z®} is
UI related. An « level STP {7, Z”, ¢°} may be obtained by choosing ¢ from
the tables provided by Dunnett [5].

To compare Dunnett’s technique with Tukey’s (Example 3.8) note that
Q° c @F, Q2in C Qfin and wo is the intersection of both. The two testing families
are UI related, so it remains only to check whether (4.6) holds. This is so since
the event max {Z;% |j & I} > max {2 Z;%|j = 2, - - -, k} may obviously occur
with positive probability (but less than one) under wo.

It then follows from Corollary 3 (II) that if ¢ = 2! ¢* the STP {Q7, Z°, ¢}
will have identical decision on w;,j = 2, -+, k, as STP {QF, Z%, ¢*}, but it will
be more parsimonious. On the other hand, if ¢ and ¢* are chosen so that both
STP’s are of the same level, the former will be more resolvent than the latter.

An analogous result was proved by Krishnaiah for the related confidence state-
ments ([13] and Example 5.9, below).

Corollary 3 allows parsimony and resolution comparisons of different STP’s
with equivalent statistics for minimal hypotheses. Condition I of the corollary
may be used to compare STP’s testing the same family of hypotheses (as in
Example 4.11) in which case it shows those with UI related testing classes to be
preferable to any others. Condition (II) of the corollary may be used to compare
STP’s all of which have UI related testing classes (Examples 4.12, 4.13). In that
case the most preferable STP is shown to be the one whose subfamily of minimal
hypotheses is contained in that of the other STP’s. This is so unless the contain-
ment is trivial in the sense that the maximum of the STP’s statistics for the con-
tained subfamily equals that for a containing subfamily with probability one.
The importance of using the UI principle with as restricted a family of hypothe-
ses ag possible was already stressed by Roy and Srivastava [24]. Krishnaiah has
demonstrated a confidence bound analogue of condition IT (see Corollary 3'(11)
below) but has not pointed out the need for non-triviality of containment ([13],
Theorem 6.4).

b. Simultaneous confidence statements. If the hypotheses of a family relate to
parametric functions, simultaneous confidence statements may be made regard-
ing the values of all those functions. The correspondence between such state-
ments for certain functions and STP’s for the hypotheses regarding particular
values of these functions allows the extension of the foregoing properties of
STP’s to corresponding properties of these confidence statements. A number of
additional definitions will be introduced to clarify this correspondence.

Consider a family ® = {¢:|Ze I} of parametric functions, the range of ¢:
being denoted A;. A typical value of ¢:(8) will be denoted \;, it being under-
stood that \; & A;. Then ‘

(5.1) wi(\) = {0]¢:i(0) = N}

is a hypothesis regarding the value of $:(8), and the class {wi(\:) | Nie As} of
such hypotheses forms a disjoint partition of the parameter space w.
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For each value \;, let Z,(Y; \;) be a statistic whose distribution is the same
for all 6 € w;(\;) and is independent of the value of \;. Write Z for the collection
of all such statistics with N\; € A;, 7 & I. The collections of parametric functions
¢; and corresponding statistics Z;(Y; \;) will be denoted [®, Z] and referred to as
an estemation family. For any given probability a; let ¢ be such that

(5.2) Poiop(Zi(Y;N) £¢) = Po(Zi(Y;6:(0)) £¢) =1 — ay,

this probability clearly being independent of the value of \; or 8. Then the sub-
set of A;

(5.3) A(Y58) = (NI Zo(Y5 M) = ¢

is a confidence region for ¢;(8) with co-efficient 1 — a;. The confidence statement
¢:(0) € A:(Y; ¢) is equivalent to the statement 8 ¢ ©;(Y; ¢), with

(54) O:(Y; ) = {8]Z:«Y; 6:(0)) < ¢}

being a set in w. Either of these statements is understood in the sense of accept-
ance of hypothesis w;(\;) for any value N\; € A;(Y; ¢) by a test of level ;.
The family of statements

(5.5) 19:(0) e A(Y;¢) [ded} = (0 0u(Y;¢) i}

based on estimation family [®, Z] and critical value { is referred to as a Simul-
taneous Confidence Statement (SCS) and denoted [®, Z, {]. Clearly, all statements
of [®, Z, {] are true if and only if 6 ¢ 01 0,(Y; (), i.e., if the true parameters 6
are in each one of the confidence regions @.;(Y; ¢), ¢ ¢ I. The probability that
this event occurs, i.e.,

(58)  C = Po(¢:(8) e Ai(Y; )Viel) = Po(0e N:O(Y; ¢)),

is referred to as the joint confidence co-efficient of [®, Z, ¢]. By introducing (5.4)
this may be written

(5.7) C = Py(max {Z;(Y;¢i(0)) |2el} £¢).

It is important to distinguish a joint confidence region for several parametric
functions from a simultaneous confidence statement. The former is a confidence
region in the sense of (5.3), where ¢, is a vector valued parametric function and
is equivalent to a single region in parameter space—(5.4). The latter consists
of a family of such regions, each one relating to either a scalar or a vector &;.
Note that Roy and Bose [22] have restricted consideration to the case where each
¢; was scalar valued and specifically to the case where each A;(Y; ) could be
expressed as an interval on the real line.

ExampLE 5.1. In the one-way ANOVA set-up a simultaneous confidence
statement on all contrasts ¢;'u, ¢, € V(C"), in expectations is
{c/'w e Ag;(x, {")Ve; e V(C)},

5
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where x indicates the observations, {* = (k — 1)F 41;n,)1- and
Ae;(x,¢7) = {c/ule/® — (£7S¢/N7c)! < ¢/u = /2 + (¢"s'c/ N7y},

with N = diag (n1, ms, -+, m), is a confidence interval for contrast c; u.
Furthermore, since C'u generates all such contrasts

{C'y| Dbt @ — ) — (b ma(@n — m))/ Dohem < 7S

is a single joint confidence region for all contrasts in expectations. Since this
region is the intersection of all the A¢;(x, ¢°) regions in the space of contrasts
C’u (and in that of the parameters u, ¢”) the joint region and the simultaneous
statement have, by (5.6), the same confidence co-efficient 1 — «.

This was first pointed out by Scheffé [25] (see also Example 3.3 for the related
STP on null contrasts).

An estimation family is said to be related if the functions of ® have a transitive
relation § which is neither symmetric nor reflexive, such that if ¢ < 7 then
w;(A;) implies w;(N\;) for a particular value \;, and 0 < < for all 21 — {0}.
For ¢ < j the relation § defines a function r;; such that A\; = r;;(\;). Since ¢ is
transitive, ¢ < 7 and j < g require ¢z < g so that if w;(\:;) C w;j(N;) S wy(Ny),
N = 1gi(N) = 15;(N;) = r4i(r;i(\i)), which imposes the relation r,; = r,;(r;:)
on these functions. From these definitions it follows that for ¢ < j

(5.8) w;(N) = Upiirjion=ag wi(h).

The functions ¢; for which there exists no ¢, ¢ ® such that j < ¢ will be indexed
by 7 & Imin. The adjective minimal will be applied to these functions and all
other concepts depending on these functions, as, for instance, the confidence
regions {A;(Y; ¢) |7 € Inin}. Similarly, the adjective related will be applied to
SCSs based on related estimation families.

ExamprLe 5.2. In the subset ANOVA set-up one may be concerned with
estimation of all contrasts in the expectations of each subset. For each subset
S:, ieI%, of k; expectations let C; be a k; X (ks — 1) matrix such that C'u
generates all contrasts of S;. It is well known that whenever S; C S; there exists
a Bj: such that C; = B;.C/. Hence, if C;'w = A; this implies that Cilu = %
where %; = Bj;. Thus, the functions ¢;(u) = C.u, are defined for each ¢ & I°®
and a relation ¢;(u) = B,’-idn(y) exists whenever S; C S;. An estimation family
for these contrast sets will thus be related.

A simultaneous 1-a confidence statement on all these linear sets of con-
trasts is

{Clueix, ) |ie I}
where, with the same definitions as before,
Ai(x, ¢F) = {Cu| (2 — w)C(C/NT'CHT'C/ (& — w) = 'S
= {Ci,y| Zhes; na(En — m)” — (ZhsS; (& — #h))Z/ZheS; m < ¢'8%)

is the confidence region for C;'u, using the augmented F-ratio.
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The corresponding STP for hypotheses of null contrast sets was given in
Examples 3.1 and 3.4.

ExampLE 5.3. In the same set-up as that of Example 5.2 Roy and Gnana-
desikan [23] have proposed putting confidence bounds on non-centrality param-
eter

éi(y) = {WCIC/NT'CIC/u}

for each ¢ ¢ I°. It is readily checked that if S; < S;, then for any \i, ¢i(u) = \;
does not generally imply a particular single value \; for ¢;(u), (except that if
Ni = 0 then also A\; = 0). Hence these non-centrality parameter functions do not
allow of a related estimation family.

Defining statistics

Y. = ¥C{C/N'C'Ci'z
for each i e I°, the Roy-Gnanadesikan confidence statement is {¢:(u) € A"
(x, ) |7 I°}, with the confidence regions
A%, €)= (| YE = () = LS Y - (YL

The sense in which this SCS is non-related is illustrated in Example 5.5, below.
For a related estimation family [®, Z] consider, for any Ao & Ao, the family of
hypotheses

(5.9) Dy = {wi(N) [N = r0(M)},
and the family of statistics
(5.10) Zy, = {Z:i(Y;N) [N = rio(No)}.

It is easily checked that g is an implication relation for @\, and that {Q,, Za,}
satisfies the requirements of a testing family (Section 2, above). Hence
{D,, Zn,, ¢} is an STP of level

(5.11) a = Pyyog(Zo(Y; M) > §).

This STP accepts w;(\:), where \; = 7:(No), if Z:(Y; N\;) = ¢. Thus, acceptance
of wi(\i) by STP {Q\,, Zy,, ¢}, where \i = 70(Xo), is determined by the same
event as inclusion of the parametric value \; in SCS [®, Z, ¢], i.e., i e Ai(Y; ¢)
as in (5.3). This brings out the correspondence between the STP’s {Q,, Zy,, ¢}
for all o e Ao and the related SCS [®, Z, ¢]. The experimentwise error rate of
D, , Zn, , £} is, provided Zo(Y; No) = max {Z:(Y; i) | Ni = ro(No)} (see (5.16)
below),

a = Poyap(max {Z:(Y; Ni) | N = rao(No)} > ¢)
= Py(max {Z:i(Y; ¢:(0)) |21} > §)

which is seen to be 1 — C, for joint confidence co-efficient C.
Implication relations have been defined for a related estimation family;
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hence the terms coherence and consonance may also be defined for a related
SCS. For non-related SCS’s these terms have no clear meaning. Coherence was
defined in Section 3 as the requirement that if w:;(N\:;)C w;();), acceptance of
wi(N;) would entail acceptance of w;()\;). Consonance was defined as the require-
ment that w;(\:;) be accepted if all w;()\;) were accepted for which w;(\;) C
w;(7;). Correspondingly, related SCS [®, Z, {] is said to be coherent if, when
N = 7ri(N) then N e A;(y; ¢) ensures N\je A;(y; ¢). It is said to be consonant
if ;e Aj(y; O)VN; = rjs(N:) ensures N; € A;(y; ¢). Thus [®, Z, ¢] is coherent and
consonant when the statements \; € A;(y; ¢) and N\; € A;(y; ¢) for all 7 such that
N\; = r;:(\;) must oceur together for all 7 ¢ 1.

In terms of the 0 set formulation the coherence requirement is that for all ¢ ¢ J

(5.12) 0:(y; £) < Nii<©;(y; ¢)

and the consonance requirement is that for all z¢ 7

(5.13) 0i(y; ) D Nii<i O5(y; ©).

Thus [®, Z, ¢] is coherent and consonant if
(5.14a) Bi(y; £) = Nyji<n Oi(y; &)

for every ¢ ¢ 1.

In view of the analogous definitions of coherence and consonance for STP’s
and SCS’s, it is immediately seen that a SCS is coherent and/or consonant,
if and only if every one of the corresponding STP’s is coherent and/or consonant,
respectively.

Finally, to complete the analogy between [®, Z, ¢] and {Qy,, Zy,, ¢} for all
Mo & Ao, the estimation family [®, Z] will be called monotone if

(5.14b) Zi(y; No) =2 Zi(y; N;)  ae.
whenever \; = r;;(\;), and strictly monotone if

(5.15) Zi(y; M) = max {Z;(y; ) | N = (M)} ace
for all ¢ ¢ I. In particular, for any monotone [®, Z]

(5.16) Zo(Y; M) = max {Z:(Y; N) [N = ra(No)}.

These definitions correspond, for any {Q,, Zy,} to (2.1), (2.2) and (2.4), so that
(strict) monotonicity of [®, Z] corresponds to the same property of {Q, , Z,} for
each \o € Ag. Also, estimation family [®, Z] will be said to be UI related if testing
family {Q\,, Z,} is UI related for each \o.

With these analogous definitions and properties of STP’s and SCS’s it is
clear that the theorems and corollaries that have been proved for STP’s will
apply, mutatis mutandis, to SCS’s. They will be stated below without further
proof; the number of each statement being the same as for STP’s except for a
prime,
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Traeorem 1'. All SCS’s based on [®, Z] are coherent if and only if [®, Z] is
monotone.

Cororrary 1. If Z,(Y; \,) is a LR statistic for wi(\;) for all Z(Y; \) e Z,
then all SCS’s based on [®, Z] are coherent.

TuaeoreM 2'. The joint confidence co-efficient of coherent [®, Z, ¢]isC = 1 — a,
for o of (5.11). The confidence co-efficient of any ¢ is at least 1 — a.

TueoreM 3'. All SCS’s based on [®, Z] are coherent and consonant if and only
if [®, Z) is strictly monotone.

CoroLLARY 2'. All SCS’s based on [®, Z] are coherent and consonant if, and
only if, [®, Z] is U related.

ExampLE 5.4. To show the monotonicity of the estimation family of Example
5.2 and the coherence of the resulting SCS’s one may argue as follows. It follows
from a well known theorem (applying 1f.1.1 of [19] with ¢’ = x'C/"), that

maXerev(ci?) '{C,<}_{ - UO)}z/Szc,N_lC
= (C,L,}_{ —_ Ci,vo),(Ci,N_ICi)_l(Cili - Ci/v())/sz,

where the right hand side is Z:(Y; C'u0), the statistic for w; in Example 5.2.
Now, hypotheses w;(\:) : Ci'y = A; have implication relations wi(\:) C w;(A;)
for all 8; © S, provided these s, 7 & I® are such that there exists a uo for which
C/wo = \VieI®. Further, S; O S, is equivalent to V(C.') D V(C;) so that

maXereye [€ (X — w0)]/s¢’'N e 2 maxeeve; [¢' (8 — wo)l'/s'¢’N 7,

ie., Z:(Y; %) = Z;j(Y; &;), which proves monotonicity.

Coherence of the SCS of Example 5.2 follows by a similar argument. Let
8: D 8;, let A; be a value of C'u and write o for any value such that 2 = C;'uo.
Now 2 £ Ai(x, ¢) is equivalent to saying that Z.(x; C/w,) < ¢. Hence, by the
inequality above, also Z;(x; C;wo) = ¢, which is equivalent to saying that
2 Aj(x, ¢), where &; = C; wo, the value corresponding to % = C'uo. Inclusion
of &; in the SCS implies inclusion of 3;, establishing coherence.

ExampLE 5.5. In the Roy-Gnanadesikan set-up of Example 5.3 one notes,
arguing as in Example 5.4, that if S; D S; then for any u, ¢:(u) = ¢;(u) and
Y, = Y,. Now, for any given u the random event

Y+ ")z eu(u) 2 0i(w) 2 Vi + (7Y

may oceur. In that case ¢:(u) € A"6(x, ¢¥) but ¢;(u) £A,;(x, ¢F). Thus for a
given set of expectations y, the non-centrality parameter ¢;(u) may be included
in the Roy-Gnanadesikan SCS whereas the other non-centrality parameter ¢;(u)
is not. Note also that in the even that

di(w) 2 Y+ Dz ¥+ (59 = 6i(w)

the converse would occur, ¢;(u) being included whereas ¢:(u) was excluded.
Evidently there is no coherence in the inclusions within this SCS.
ExaMpLE 5.6. An alternative approach may be taken in the subset ANOVA
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set-up if sample sizes are equal. For any subset S; of k; expectations u;, , pi,,
“**, ki, one may define ¢(u) as the set of (5°) differences Wiy — Mig, ba # 18.
For any values &; of the differences in set ¢.°(u) one may define statistic

ZE(x, %) = n' max {[£, — Tip — (i, — pip))/s | iy, ig €S}

The distribution of Z,*(x, %;) under wi(®:) = {u|¢:°(u) = A is that of a
studentized range of %; means and n. d.f. irrespective of the value of X;. Hence
[®°, Z] is an estimation family.

Defining, for any <, j such that S; D 8;, rj; as the function picking out the
subset ¢,°(u) from the set ¢:°(u) of differences, ¢;°(u) = r;i(¢:°(u)) whenever
S:D 8;. NOW., if ¢¢S(9) = A;, clearly ¢js(y) = 7;(%:), so that w(X;) C w;(%;)
if 2; = r;i(%:). Hence the estimation family [®°) Z] is related, and so is the SCS.

The resulting SCS of confidence co-efficient 1 — « is {¢:°(u) € A (x, ¢*) |
i € I} where ¢* is the upper a point of the k mean studentized range distribution
with n, d.f. and

AR(x ) = (N Z8(x, ) = ¢7)

Note, in particular, that for S; consisting of just two expectations ¢;°(u) =
Mia — Mg, and the confidence region becomes the interval

AF X, EF) = (N | B — B35 — Cs/0F S piy — pig S Fiy — Fip + 7s/nt)

on the value of the difference \; = u;, — u ;. This type of SCS is due to Tukey
[28], being referred to as the method of allowances. The corresponding STP for
null differences was discussed in Example 3.7.

Since ¢:°(u) D ¢;°(u) for 8; D S; it is clear that Z.7(x, %) = Z;%(x, 2;)
provided &; = r;:(%:). Moreover, it is readily apparent that

Z(x, %) = max {Z;°(x,%) | % = r;i(%), 8; < 84}

so that [®°, Z”] is strictly monotone.

Coherence and consonance of SCS [®°, Z%, ¢¥], which follows from Theorem
3’, may be checked as follows. From the above relation between Z,*(x, ;) for
S; and the statistics Z,;%(x, &;) for all pairs of expectations S;(< S;), it follows
that (Z:8(x, 2:) = ¢F) is equivalent to (Z;%(x, &;) = ¢F, where &; = r;:(%i), ¥
pairs 8;(<=8:)). Thus the statement &; e A®(x, ¢¥) is equivalent to the state-
ment that &; & A;%(x, ¢¥) where &; = r;:(%:), for all pairs S;(CS;:), and this
establishes coherence and consonance.

Resolution may be defined and compared for SCS’s analogously to the way it
was for STP’s in Section 4, above. However, a comparison of SCS’s [®, Z, ¢] and
[®*, Z*, ¢*] has meaning only if the hypotheses on the functions ® are the same as
those on some of the functions of *. Thus, for example, for each value Ao of ¢y & ®
there must exist another value N\, say, of ¢* £ ®* such that wo(No) = wo*(No™).
If that is so and if Tmin < I then the conditions

(5.17a) Pagony(Zo(Y; M) = §) = Pugragm(Ze* (Y5 M) = ¢)
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equally for all A € Ag, and
(5.17b) Ai(y;8) © A (g5 87 ae,

define [®, Z, {] to be no less resolvent than [®*, Z*, ¢*]. If the containment in
(5.17b) is proper the former SCS is said to be strictly more resolvent than the
latter. Thus, if two SCS’s which can be compared have the same joint confidence
co-efficient, but the minimal confidence regions of the one are contained in the
corresponding regions of the other, the former is said to be more resolvent.

Again, let estimation families [®, Z] and [®*, Z*] have related hypotheses, and
for each No& Ao and the corresponding Ao* such that wo(No) = wo (No*), let
%, © SZ;:,t also hold. Then [®, Z, ¢] will be said to be no less parsimonious than
[®%, Z*, ¢ if

(5.18a)  forall jelam Aj(y;¢) = A (y; 8% ae,
(5.18b) forall zel Ai(y;¢) © AS(y; &%) ae.,
(5.18¢) , and for wo(No) = wo (Ne*) C = C*.

Again, if the latter inequality is strict the former SCS is said to be strictly more
parsimontous than the latter. In other words, for equal minimal confidence
regions the more parsimonious SCS has all non-minimal confidence regions con-
tained in the corresponding regions of the less parsimonious SCS, and its joint
confidence co-efficient is larger. Parsimony must here be understood in the sense
of increasing joint confidence, and that is equivalent to reducing the experiment-
wise error rate.

Further, estimation families with related hypotheses may allow narrowness
comparisons. Thus [®, Z] is said to be narrower than [®*, Z*] if, for each N\, and
the corresponding No* (i.e., wo(No) = wo (N*)), {@,,Z,} is narrower than
{Q%» , Zx,}. The requirements for this are that for each \o there exist a function
o, Satisfying (4.3a, b, ¢, d) for the corresponding hypotheses. This function may
or may not be the same for all N\ € Ao . Thus, narrowness of estimation families is
defined simply as narrowness of the testing families which they generate.

Again, the following theorem and corollaries may be stated in view of these
further analogies between properties of STP’s and SCS’s.

TueoreM 4. If [®, Z] is narrower than [®*, Z¥|, then for every ¢* there exists ¢
such that [®, Z, ¢] is no less parsimonious than [®*, Z*, ¢*]. Moreover, the former
SCS s strictly more parsimonious than the latter for some values of ¢, i.e., those for
which

Pugo (20" (Y5 %) > ¥ 2 01y(Zo(Y5N))) > 0,

where gi, satisfies (4.393 b, ¢, d) for all o € Ao . _

TraeoreM 5. If [®, Z] is narrower than [8%, Z*| and i [®, Z, ¢] and [, Z*¥, ¢
have the same co-efficient, then the former SCS is no less resolvent than the latter.
Moreover, it is strictly more resolvent for some values of ¢, i.e., those for which

Puoao(Zo*(¥50) > ro(§) Z 9e(Zo(Y;N0))) > 0
where g, satisfies (4.3a, b, ¢, d) for all Mo e Ao .
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Clearly, narrower estimation families have the advantage of providing more
resolvent SCS’s with the same joint confidence co-efficient and more parsimonious
SCS’s for identical minimal confidence regions.

ExampLE 5.7. In a subset ANOVA set-up with equal sample sizes, compare the
estimation families [®°, Z%] of Example 5.6 and [®°, Z"] of Example 5.2. The rela-
tion Z¥ = g(Z®) = (Z")*/2 holds for all Z,"(x, \,) and Z;%(x, \,) if S, is a pair.
As in Example 4.4, above, so also here Z,"(x, %) > [Z%(x, %:)]*/2 if S: contains
three or more expectations and these inequalities are strict a.e. Hence [®°, Z7] is
narrower than [®°, Z"] and it follows from Theorem 4" and 5’ that for all subsets
the SCS’s due to Tukey are more parsimonious or more resolvent than the corres-
ponding subset SCS’s based on Scheffé’s approach.

ExampLE 5.8. The comparison in Example 5.7 between Tukey and Scheffé con-
ﬁdence statements for subsets of expectations also follows, by virtue of Corollary
3’, condition (I), from the UI and LR relations of the respectlve estimation
famlhes and the fact that Z,"(x, \; ) = [Z(x, \;))]*/2 for all pairs S;.

COROLLARY 3. Let [®, Z] and [®*, Z¥] be monotone estimation families such that
® C B Bpin S Pamin and wo(Mo) = wo* (No™) for all N & Ao and let there exist for each
Mo € Ao a function g, satisfying (4.3a, b) for the corresponding hypotheses. Then each
of the following are sufficient conditions that [®, Z] provide more parsimonious and
more resolvent SCS’s than [%, Z],

(I) f [®, Z] s UI related and g\, also satisfy (4.3e) or (4.3¢') for each \o,

(II) 4 both [®, Z] and [®*, Z*] are UI related and

(5.19) PwoOo)(maX {Zj*(Y; 7'1'0()‘0))“3 Imin}
> max {Z;*(Y; rp(N))|j & Tuim}) > 0

for all No€ Ag .

This corollary covers some results of Krishnaiah for ANOVA and MANOVA
set-ups [13]. He uses Ul related families throughout and his Theorem 6.2, 6.3 and
6.4 establish that for an identity function g and finite I nin < I oin , the minimal
confidence regions of [®, Z, ¢] will be properly contained in those of [®*, Z*, ¢*]
where both SCS’s have the same co-efficient. Apart from cases where (5.19) might
be zero his conditions are seen to correspond to (II) of Corollary 3, and his con-
tainment conclusion corresponds, again apart from possible sets of probability
zero, to the greater resolution conclusion of Corollary 3'. He does not explicitly
discuss anything corresponding to parsimony.

The following are two examples of Krishnaiah’s results:

ExampLE 5.9. Dunnett’s simultaneous 1 — « confidence bounds on compari-
sons of the expectations under (k£ — [) treatments with that under a control [5]
are more resolvent than Tukey’s simultaneous 1 — a confidence bounds on all
pairwise comparisons of these & expectations [27]. (Krishnaiah, [13], Corollary
6.3).

The corresponding comparison of STP’s was given in Example 4.13.

ExamprLE 5.10. Simultaneous SANOVA 1 — « confidence bounds on a finite
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subset of contrasts in £ expectations are more resolvent than Scheffé-type simul-
taneous 1 — a confidence bounds on all contrasts (Krishnaiah [13], Theorem
6.2).

6. Other methods of multiple comparisons. The previous discussion relates
almost entirely to STP’s and SCS’s which are based on monotone families, and
thus provide coherent decisions. Some examples have been mentioned of pro-
cedures for non-monotone families in which case the decisions are not always
coherent and the properties in the theorems do not apply. In particular, we may
mention the use of the Kruskal-Wallis statistic for nonparametric ANOVA
(Example 3.2) proposed by Nemenyi [17] (see also the Miller’s discussion [16],
Section 4.6). One would presume that incoherences, though possible with this
technique, are pretty rare, especially with large samples. In that case such a
technique might be said to be asymptotically coherent. This way warrant fur-
ther investigation.

Other techniques have a step-wise procedure built in which ensures coherence
but destroys simultaneity. Thus, Newman [18] and Keuls [10], in the equal sam-
ple size ANOVA, decide on each subset of means according to whether the
studentized range for that subset or any other set containing it is o significant in
the distribution of its range. Duncan [3] proceeds in a more intricate way, choos-
ing a different percentage point for each one of the ranges. He also extended the
method to F-statistics [4].

In these methods the decision on a particular w; depends not only on the
statistic Z; but on all Z; such that j < 7. Clearly, this does not provide a testing
family in the sense of Section 2 and the STP results do not apply. These methods
have the disadvantage of making the decision on w; depend in part on statistics
Z; whose distribution depends not only on w; but also on w; — w; which is irrele-
vant to w;. On the other hand, these methods offer better resolution—in the
sense of Section 4—than STP’s and are therefore preferred by some workers. (For
a detailed discussion see [6], Section 9.)
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