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AN EXTENSION OF A THEOREM OF CHOW AND ROBBINS
ON SEQUENTIAL CONFIDENCE INTERVALS
FOR THE MEAN'
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1. Introduction. Let X1, X;, --- be a sequence of independent observations
from a population with mean p and finite nonzero variance o*. We wish to esti-
mate the unknown p by confidence intervals of prescribed ‘“‘accuracy’” and pre-
scribed probability of coverage «. Let

(1) X, o= X, - (n=12,---).

We speak of “absolute acecuracy’” when estimating u by

(2) In = (”:,X-n - /"'l = d), (d > O)’

and, if u # 0, we speak of “proportional accuracy’” when estimating p by

(3) Jn = (f‘:an—.“l éP,FD; 0<p<I).
Denote by p the coefficient of variation o/|u| and define

(4) n(d) = min,s, (n:e® < n(d/a)?),

(5) m(p) = min,z; (n:p" = n(p/a)’)

where a is the $(1 — «)th fractile of the standard normal distribution. Then (4)
and (5) increase without bound as the arguments tend to zero. Hence for small
arguments we can achieve (at least approximately) the required probability of
coverage o by taking the “sample size”’ n no smaller than n(d) (for absolute ac-
curacy) or m(p) (for proportional accuracy).

If, however, o (the “appropriate parameter” for absolute accuracy) is un-
known, or if p° (the “appropriate parameter” for proportional accuracy) is un-
known then (4) or (5) are not available. On the other hand if we let

(6) V= (14 2 (X - X)), (n=12--),
then the stopping rules

(7) N = min,z1 (n:V,? < n(d/a)?)

and

(8) M = min,s: (n:(V./X,)" £ n(p/a)?)
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are well defined. In the event that o’ is known (but not ¢’) and one insists on
absolute accuracy, or if o” is known (but not p°) in the proportional case, then one
arrives at

(9) N* = min,»: (n: X, + n”° = n(d/pa)”)
and
(10) M* = min,s; (n:X,} = n'(ac/p)")

as the sequential analogues of (4) and (5). (The purpose of the o(1) terms in (6)
and (9) is merely to ensure that the sample sizes diverge as d or p tend to zero.)

Denote by K any one of (7) thru (10), let £ be the corresponding fixed
“sample size” (4) or (5) and let Hx be the corresponding interval estimate (2)

or (3)).
THEOREM.
(11) lim K/k =1 a.s.,
(12) lim P(pe Hg) = « “asymptotic consistency,”
(13) lim EK/k = 1 “asymptotic effictency,”’

as d or p tend to zero.

Chow and Robbins [4] have proved this theorem in the case of K = N. In this
case we improve on (13) by giving a uniform upper bound on EN — n(d). We
also show that EM™* — m(p) is bounded above. Under the additional assumption
that the distribution function F of X; is continuous with a finite fourth moment,
we show that EM — m(p) is also bounded above. We do not know of reasonably
general conditions on F that would ensure that EK — k is bounded below (see
remark (b)).

REeMARKS. (a) In practice one may wish to replace the constant “a” in (7)
thru (10) by positive convergents (a,:n = 1, 2, - --) in the hope of improving
the coverage probability for non-infinitesmal d or p. It is shown in [6] that that
may be done without invalidating the asymptotic results. The same is true if the
range of K is restricted to certain infinite subsets of the positive integers ([4]).
(b) Anscombe [2] made asymptotic expansions for the distribution of (essen-
tially) N — n(d) on the assumption that F is not purely discrete, that F has a
finite eighth moment and that the tails of the distribution of N — n(d) satisfy
certain order of magnitude conditions. The latter are not given in terms of F.

2. Proof of the theorem. For every definition (7) thru (10) of K, (11) and
(12) follow from (a trivial modification of) Lemma 1 of [4] and a result of
Anscombe [1], just as in [4]. We have from (11) and Fatou’s lemma that

(14) lim inf EK/k = 1.
To prove that
(15) limsup EK/k < 1

and to find upper bounds, we consider the separate cases.
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2.1 Thecase K = N.Lett = (ac/d)*and forn = 1,2, - -- let

(16) o8y =1+ 2o (X — p)k
Define
(17) N(t) = min,z; (n:8, < n*/t).

Then N (¢) is well defined, it is no smaller than N and it can be shown (e.g. by
truncating N (t) and proceeding as below) that EN(¢) < «. By Wald’s theorem
for cumulative sums

o+ EN(t) = ESye

(18) 2 [ww-n S + [wmsy Svw-

2 7 fawsy (N(1) — 1)* = BN — 1) 2 'BX(N — 1)-
Thus
(19) EN@) efz:d® — 4+ 2)z+ (1 —ta?) £ 0}

whence for all ¢ > 0 we have EN(t) — t < 2 + o °. If F is continuous then the
n~" term in (6) can be dropped and we obtain the same way that for all ¢ > 0
andalle > 0

(20) EN() —t =2
2.2 The cases K = N* and K = M*. In these cases (15) is a consequence of the
following

LevmMa. Let Z, , Z, , - - - be a sequence of independent and identically distributed
random variables such that 0 < EZ; < . Denote by S, (n = 1, 2, ---) their nth
cumulative sum. Let ¢ be a positive number.

(i) Assume Z; = Oas. Lety > O0andt = (EZi/c)'".

Define
(21) T = min,y; (n:8, < en'™).
Then T is well defined, ET'"" < o and the family (T/t:0 < ¢ < 1) is uniformly
integrable.
(ii) Let0 < v < landt = (¢/EZ)""™. Define
(22) T = min,y; (n:]S,] = en’).

Then T is well defined, ET < o and lim,., ET/t = 1.

The lemma can be proved by truncating both the stopping rule T (to T")
and the Z, in each case (i) and (ii) and then approximating the roots of a poly-
nomial in the variable ET”. The lemma is related to a result of Chow [3] and it has
been generalized by Siegmund [7].

In the case K = N™ (13) is established by using (i) above to prove the uni-
form integrability of the family (N*/n(d):0 < d < 1). In the case K = M™ (13)
follows by a change of notation in (ii) above. The boundedness (from above) of
EM* — m(p) can be shown by the method of 2.3 below. The same is true for
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EN™ — n(d) provided we make the (highly unsatisfactory) assumption that the
X, are positive. We omit the details.

2.3 The case K = M. With no loss of generality we assume u > 0. Let
t = (ap/p)’ and put, forn = 1,2, -,

(23) Sy =20 Xe and Q=1+ 20 (Xi — w)"

The random variable

(24) M(t) = min,z: (n:8, 2 7' (6@a))

is well defined and it is no smaller than M. Forr = 1, 2, - - - define

(25) R = min (M(¢),r) and B = (1 < M(t) < r).

We apply Wald’s theorem for cumulative sums to each of Sz, @z — 1 and

X" + -+ 4+ Xz to obtain
RER = ESp = [y X1 + [58e-1 + [uws>n Sr + [5 Xz
S EIXy + o7 5 (tQr)t + 07 Sanwsn (1)1 + [5]Xa|
(26) < BX 4 0 E(tQR) + B i X
< (" + )+ 07Nt + t"ER) + (¢ + uNER
@+ )+ o+ (il + (O + HDHE'R.

fIA

Thus

(27)  ERef{nid — ¢+ G+ Dhz— ¢+ (' + 1)) <0

whence

(28) ER = (& + o(th))™

It follows from the a.s. monotone convergence R T M(¢) as r — o that

EM(t) < « and that (28) holds with M (¢) in place of R.
Hence

(29) lim sup:. EM (t)/t = 1

50 (15) holds in this case also.

To show that EM — m(p) is bounded above, assume EX;* < . Assume also
that F is continuous so that the constant term 1 in the definitions of nV,’ and
Q. can be omitted. Consider the line

(30) L(z;t) = 3u(x + 1), x>0, t>0,

which is the tangent to the curve u(tx)i in an £ — y plane, at the point of inter-
section of the curve with the line px.
Then

M(t) = min,s; (018, = p(tQuo )’
(31) < minus (018, = L(Quo "5 1))

= min,z1 (71D i1 Zi = £)
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where we have set

(32) wy = 2Xi — p(Xi — p)*/d’, (k=1,2---).
Let ¢4 denote the indicator of the set A. If we denote by
(33) Ut) = E 2 nsoch izt

the “renewal measure” of the transient (EZ; > 0) random walk Y Z; then
it follows (see e.g. [5] p. 372) that

(34) lim SUpsoe EM — ¢ < limyo U(t) — ¢t = EZ/2E'Z; < .

ReMaRrKs. (¢) The idea of approximating a convex stopping boundary for a
random walk by the appropriate tangent appears in [2], [7].

(d) We offer a minor insight into the nature of (13) by noting that in the case
K = N, (13) is equivalent to

(35) limg,o EVy = o

(e) The stopping rules U = max (N, M) and L = min (N, M) are appropri-
ate for some ‘“mixed” accuracy criteria that arise in practice, i.e. for estimating
the mean by the intervals

(36) IU nJU = (:u:]XU - /"'I min (d) p ,/"',)))
(37) I ud, = (u:|Xy — p| < max (d, plu])).

Let u(d, p) and I(d, p) be the corresponding fixed “sample sizes,” and let the
ratio d/p be fixed. It is fairly easy to see that the theorem holds for L, and that
it holds for U is a straightforward consequence of the uniform integrability of
(N/n(d)) and (M /m(p)).
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