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SCORES!
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0. Summary. The purpose of the present investigation is to develop a class of
rank order tests for the equality of treatment-effects in the presence of a set of
concomitant variates for the analysis of covariance (ANOCA) model relating
to completely randomized layouts. The proposed procedures are shown to be
conditionally distribution-free and to have some desirable large sample proper-
ties. :

1. Introduction. Let Z@+Uxt = (X1 X*) be a (p + 1)-stochastic vector,
where X, (Scalar) is the primary variate and X = (Xj, - -+, X,) is a concomitant
stochastic vector, p = 0. Let Z,* = (X{¥, X.®),a =1, ---, m, be m in-
dependent and identically distributed (vector valued) random variables (iidrv)
having a continuous cumulative distribution function (cdf) Gi(z), (z ¢ R” Me=1,
-+, ¢, where all the ¢(=2) samples are assumed to be mutually independent.
The marginal (joint) cdf of X.* is denoted by F.'’(x), x ¢ R?, and the condi-
tional cdf of X given X.*® = x is denoted by Fi® (2 |x), & = 1, -+, c.
The basic assumption of the paper is that the distribution of the concomitant
variate is not affected by the application of the treatments, i.e.

(1.1) P (x) = FP(x), k=1,---,c, xeR"
Such an assumption is often found justified in practice [cf. Scheffé (1959),

Chapter 6, where the corresponding parametric theory is thoroughly studied].
Consider then the following ANOCA model

(1.2) FPy|x) = F®(y — n|x), E=1,---,¢

where £ = (71, -++, 7.) is the treatment-effect vector. The null hypothesis of

no treatment effect states that = = 0, that is

(1.3) Hp:F®(y|x) = FP(y|x) forall k=1, ---,c which implies
that = = 0 under (1.2).

The classical ANOCA test in the parametric case [ef. Scheffé (1959), Chapter
6] is based upon the linearity of regression of Xy on X and the normality of the
cdf’s Fx®, k = 1, -+ -, c. In the nonparametric set up, though a test for Hy has
recently been studied by Quade (1967), no unified theory for general rank order
tests has yet been developed. The present paper aims in this direction. This has
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been made possible by establishing a correspondence of the ANOCA problem
with the multivariate multisample location problem and then utilizing the
results of Puri and Sen (1966) on the ANOCA problem. The proposed tests are
shown to be conditionally distribution-free, and they also include as a particular
case, the test proposed by Quade (1967).® Various asymptotic properties of the
proposed tests are studied and compared to the corresponding parametric (vari-
ance-ratio) test.

2. Preliminary notions. Let us denote the sample point by
(21) Cy = (Zl(l); Tty Z5511)) ) ZS'»CB)); Za(k) = (X(()]f!)’ X{ﬁ)) ) X;’ki),)

a=1,--,m,k=1,---,c,whereN =n,+ --- —hnc.RankingtheNelements
in each row of €y in increasing order of magnitude, we get a (p + 1) X N
matrix

(R --- R& -+ R,
) ) (e)
(22) Ry = R.ﬁ e Bin e Rli‘“ ,
R‘l) R;};! R;",{c
where by virtue of the assumed continuity of Gx, k = 1, - - -, ¢, the possibility

of ties is neglected, in probability. Thus, each row of Ry is a permutation of the
numbers 1, - - - , N. We replace the ranks 1, - - - , N in the ¢th row of Ry by a set

of general scores {E5x, @ = 1, --+, N}, which is a set of N real (known) con-
stants, for 7 = 0, 1, - - -, p. This leads to the following rank-score matrix
EI(V%‘():) e E(O}zu, “e E)iroge(‘)
E(p%(l) e E’(”;u) . E(”)(c)

Consider now the (p + 1)c random variables
(24) T = (1/m) 2k By rp for ¢ =0, -, p k=1 -,¢

(Suitable conditions will be imposed on the scores Ex (%5 at a latter stage). Define
also

(2'5) EN(ﬁ) = (1/N) Za=1 1(\;»22’ = (EN(O), EN(D) ] -E-’N(p))'

The proposed test statistic is based on T(k) — By i=01,--,pk =1
, ¢, and the rationality of the test procedure is explained in the next section.

3. The permutation-invariance principle and the test statistic. The (stochastic)
matrix Ey can have only (N!)®* possible realizations (constituting a set &x),

2 Note that whereas Quade (1967) did not consider the exact test but proposed instead
the asymptotically (unconditionally) distribution-free test, this paper deals with the
exact as well as the asymptotic tests.
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as each row of Ey can have only N! possible realizations (over the permutations
of the ranks). By a finite number of exchanges of its columns, the matrix Ey
can always be converted into another matrix Ex*, whose first row has the scores
EQY, -+, EYx, in natural order. Any two matrices, say Ey and Ey’ are said
to be permutatlona,lly equivalent if both can be converted to a common Ex*
by only interchanging their columns. Thus, for each Ey*(e€y), there exists a
set of N! possible Ey (to be denoted by S(Ex*)), all whose elements are per-
mutationally equivalent to Ey*, and there are (N!)” such elements Ex* of &y.
Because of the association pattern of the components of the vectors Z,, the
probability distribution of Ey over &y, will, in general, depend on the unknown
cdf’s, even under H, in (1.3). However, under (1.3), Gi(z) = -+ = G.(z)
= G(z), and hence, Z,", - - -, Z%? are all iidrv. Hence, the conditional distribu-
tion of Ey over the set S(Ey*) will be uniform under (1.3), whatever be the
common (unknown) @, that is

(3.1) P{Ex = ey|S(Ex")} = 1/N! whatever be eyeS(Ey")

and for all continuous G. Consequently, any test depending explicitly on Ex
and based on the permutational probability measure ®y in (3.1) will be con-
ditionally distribution-free, and hence, unconditionally too, will be a similar
test. [For details, refer to Puri and Sen (1966)]. To formulate the test statistic,
we define Vy = ((v4))4,5=01,---,0, Where

(32) vy = N4 BREP, — ENPEy®, 4, j = 0, -+, p,

where E{¥); is the value of EY @ : corresponding to the rank s = R & Then, it is
easy to verify that

(33) B(T¥: — Ex?|ow) =0, i=0, -, p k=1,
(34) E{(TH — E¥)(TW — Ex?) e} = (N — m)vii/m(N — 1),
forz,7=0,1,---,p;k,q =1, , ¢. It will be seen later on that under the
permutatlona,l measure ®y , the random variables N{T{) — By, =0, -+, p;
k=1, ¢} have asymptotically a multivariate normal distribution, with

null means and covariances specified by (3.4). Hence, to utilize the information
contained in the concomitant variates, we fit regression lines of TS on T,

, T\ foreach k = 1, - -+, ¢ and work with the residuals about these regres-
sion lines. Thus, it follows from (3.3) that the adjusted rank-scores for the c

samples are

Tl’l;k = j(vkt)) - .E_’N(O)
(3.5) — (the fitted value of T — Ex'® on TH, - T(")
= X2 (Vaso/ Vo) (TS — Ex®), k=1, -0

where Vy,i; is the cofactor of v;;in Vy ;4,7 = 0,1, - -+, p. A quadratic form in
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(Twa, Tx..) with the generalized inverse of their covariance matrix as
its discriminant leads to the following test statistic
(3.6) Exv = {Vuoo/|Val} ZZ=1nk(T;;,k)2; |[Va| = det Vy.

It may be noted that in the particular case when Efx = o/(N + 1), a = 1,
«++,N;2=0,1, ---,p, the statistic £y in (3.5) is a strictly monotonic function
of the test statistic VR(2), proposed by Quade (1967). Further, it may be re-
marked that in his procedure, Quade considered the residuals of the individual
ranks of X¢¥ on the coordinatewise ranks of X{%, -++ , X&) a =1, .-+, m,
E =1, .-, c, which may be replaced by the comparatively simpler (but iden-
tical) procedure in (3.4) for the residuals of the sample averages, as his \/s
are nothing but our Vu,0/Vae,? = 1, ---, p. In.the above discussion, Vy is
assumed to be positive definite. Later on, it will be observed that Vy is positive
definite, in probability (as N — ) under mild restrictions on Gy, - -, G..

From the remark made just after (3.1), it follows that the permutation dis-
tribution of £x will not depend on the unknown G (when (1.1) and (1.3) hold),
and hence, an exact (conditional) test of size @ (0 < a < 1), can bebased on
£x . The test will thus be a similar size « test for (1.3). To apply the above test
in practice, we really require to study all possible (N!/]Iiwim!) partition-
ings of @y into ¢ subsets of strength n;, - - -, n, respectively, and for each such
partitioning to compute the corresponding value of £x. (Note that Vy is in-
variant under such partitionings; so we require only to compute the values of
T¥s). The labor involved in this scheme increases prohibitively with the in-
crease in N. Hence, in large samples, we approximate the exact permutation
distribution of £x by a chi-square distribution with (¢ — 1) degrees of freedom.
This is the subject-matter of the next section.

4. Asymptotic permutation distribution of £y . Let us denote by Gyp:1(z) and
Gupii (%, y) the marginal cdf’s of X{¥ and (X%, X&), fori=j=0,1,---,p;
E=1,---,c Let then

(4.1) Hpyy(z) = Zlcc-sl (m/N)Grra (),
Hun(z, y) = 2ia (m/N)Grpin(z, 9),

fori s j = 0, ---, p. We denote by H(z) = D im (m/N)Gi(z), z ¢ R™™.
Now, concerning 7, - -+, %, , we assume that for all N,

(42) 0<NEMP =m/N=1—-2N<1; (0<N=1/k), k=1,---,¢
hold. Furthermore, we let
(4.3) ES), = Juw(a/(N + 1)), 1<a<N, i=0,---,p,

where Jx(,’s satisfy the extended Chernoff-Savage (1958) conditions, studied
for the multivariate case by Puri and Sen (1966), in detail. For the sake of
completeness, we state these briefly as follows:
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(I) limN—moJ Nm(u) = Ju(u):0 < u < 1 exists and is not a constant, for
all7 = 0, 1,
(II) T(k) - (1/nk) da @(RE/(N 4+ 1)) = 0p(N ), k=1, -+, ¢

1= 0 D
(III) J @ (u) is absolutely continuous in %:0 < u < 1, and
(44) |3/ W o) £ Klu(l — w)}7" ™ for r =0,1,2,

where 6 > 0 and K(0 < K < «) are constants independent of ¢ = 0, 1, - - , p.

(IV) (1/m) 222k ExewEQ% m — (1/nk) 2ok J(z)(R(k)/(N + 1))J(n
(RE/(N + 1)) = op(1) forall4,j = 0, -- - ok =1, -

(V) The matrix v(H ), defined below, is positive deﬁnite. Let

(45) vi(H) = vis = [eJo(w)du — u;  wi = [oJ 0 (u) du;
(48) vi(H) = [Z4 [Zud o (Hn ()W oy (Hin (y)) dHpeon (2, y) — panss s
fori=#j =0, ---,p, and let
(4.7) v(H) = ((vij(H))ijm01,
Then, we have the following theorem whose proof is an immediate consequence
of Theorems 4.1 and 4.2 of Puri and Sen (1966), and is therefore omitted.

TrEOREM 4.1. Under the assumptions (I) — (V), (i) Vy is stochastically equiva-
lent to v(H), defined by (4.5)-(4.7), and hence, Vy 1is positive definite, ©n prob-
ability (as N — ), and (ii) the joint distribution (under ®y) of the (p + 1)-
(c — 1) random variables {T\} — Ey'®, 4 = 0,1, -, p; k=1, ---,¢} 1s
asymptotically, in probability, normal with a null mean vector and a covariance
matriz with elements defined by (3.4). Hence, the permutation distribution of the
statistic £ , defined by (3.6), converges asymptotically, in probability, (as N — )
to the chi-square distribution with (¢ — 1) degrees of freedom.

By virtue of the above theorem, the permutation (conditional) test procedure
based on the statistic £5 asymptotically reduces to the following:

reject or accept Ho in (1.3) according as £y is = or <x%..1, where
(4.8) X%, is the upper 100 &% point of the chi-square distribution with r
degrees of freedom.

We shall see in the next section that this conditional test is also asymptotically
equivalent to an asymptotically distribution-free unconditional test based on the

same statistic Ly .

b. Asymptotic distribution of £y for shift alternatives. It follows from (3.5)
that the study of the unconditional distribution of £y requires the same for the
statistics T\, 4 = 0, 1, ---, p; k =1, ---, ¢, and this has essentially been
studied in detail by Puri and Sen (1966) for arbitrary G1, - - - , G.). In the present
situation, we have a relatively simpler model, where the marginals F,, - .-, F,®
are all identical. Thus, for any fixed Gy, - - - , G., the joint asymptotic normality
of T$¥¥s follow readily from Theorem 5.1 of Puri and Sen (1966). Since, the
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consistency of the test based on £ can be easily established for any fixed (shift)
alternative (i.e., referred to the model (1.1) and (1.2) with = % 0), we shall con-
sider here the following sequence of alternatives {Ky}, specified by

(5.1) Kyit =<y =N, [¢f. (1.2)].

where 0 is a p-vector with real and finite elements. Let us assume that

(5.2) limyae ™ = AP0 <A <1 for k=1,---,¢

Also, we assume the existence of the following integral

(5.3) B(Gy) = JZw (d/dz)] 0(Gro(2)) dGioy(2),

where G refers to the cdf Gy when Gig = -+ = Goop = Gop . Finally, let
v(G) = v(H) |g—¢, and

(54) v (@) = (@) = ((is(@))) gm0,

TueoreM 5.1. Under the conditions (1)-(V) of Section 4 and (5.1)-(5.3),
the statistic £x has asymptotically a noncentral chi-square distribution with ¢ — 1
degrees of freedom and the noncentrality parameter.

(5.5) Ae = (OB (Gu) NP — 0% § = >iinP,.

Proor. From Theorem 5.1 of Puri and Sen (1966), it follows that under the
conditions of the theorem, the random variables N*(T(k) — By, TE — By,
t=1,---,p;k =1,---,¢c) have (jointly) a limiting multi-normal distribution
w1th means (po?, ui(k), t=1---,p;k =1, ---, ¢) and covariance matrix

= ((+$?)), where

(5.6) = (6 — 6)B(Go), k=1,--,¢
(5.7) B =0, i=1,-,p;k=1,+-, ¢
and

(5.8) 7H? = (/NP — 1)rii(@), Li=0,1,-,pkg=1 -, ¢
8 being the usual Kronecker delta. Since T;,k is a linear compound of T} ,
1=0,1,---,p,fork =1, .-+ ¢ [see (3.5)] and as by Theorem 4.1, under

{Ky} in (5.1), V,io/ Voo ~p v(G)/»"(G) for alli = 0,1, ---, p, we obtain
from the above result on using Sverdrup’s (1952) results (on the limiting dis-
tribution of a continuous function of random variables) that under {Ky},
(N*Tys.,k =1, -, ¢) has asymptotically a (singular) multi-normal distribu-

tion with mean vector ((6r — §)B(Gio), k = 1, - - -, ¢) and a dispersion matrix
with elements
(59) (67011/)\\10) - 1)/VOO(G): k: q = 17 crr, G

Thus, under {Ky} in (5.1), the statistic
(5.10) ex* = "(@) i NP (Tya)
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has asymptotically a noncentral chi-square distribution with ¢ — 1 degrees of
freedom and the noncentrality parameter Ag, defined by (5.5). Again, by
Theorem 4.1, we obtain from (3.6) and (5.10) that under (5.1) and (5.2),

(5.11) Sy ~p Ly
Hence the theorem.
In particular, under the null hypothesis 71 = -+ = 7, = 0, £5 has asymp-

totically a chi-square distribution with ¢ — 1 degrees of freedom. Thus, from
(4.9) and (5.11), we may conclude that the permutation test in Section 4 and
the asymptotically distribution-free test based on the asymptotic (unconditional)
chi-square distribution of £y are asymptotically equivalent for the sequence of
alternatives { Ky} in (5.1). The next section is devoted to the study of the asymp-
totic power efficiency of either of these tests with respect to the standard
parametric test.

6. Asymptotic efficiency of the proposed tests. Let us denote the covariance
matrix of Z,® by =,k =1, --- ,c. Under (1.1) and (1.2), 5, = -+ =X, = X
(say). We assume that X is positive definite, and let =(G) = ((¢“(@)))
(where G denotes its dependence in the cdf ) denote the inverse of X. The
classical parametric test under the assumptions that G is normal, and the regres-
sion of X¢% on X,® is linear, is based on the variance ratio criterion with proper
adjustments for the concomitant variates [ef. Scheffé (1959), Chapter 6].
It can be shown that under (5.1) and (5.2), and the existence of moments of
the order 2 + 8,6 > 0 of G, (¢ — 1) times the variance ratio criterion has asymp-
totically the noncentral chi-square distribution with (¢ — 1) degrees of freedom,
and the noncentrality parameter

(6.1) As = a2 i \® (6, — §)%

(The proof is a straight forward application of the multivariate central limit
theorem, and the consistency of the least squares estimators of the regression
parameters of Xy on X, and is therefore omitted.)

Thus, the asymptotic (Pitman) relative efficiency (ARE) of the test based
on £y with respect to the variance-ratio test is equal to

(6.2) ecs = Ae/As = (°/a™)B*(Gy).

It is clear that (6.2) dependes on B(Gq) as well as on »(@) and =(@&).
By virtue of the following two simple inequalities

(63) VOOVoo =1 and 0’000'00 = 1,
we obtain
(64) B2(G[o])/vooa'00 § €g.5 é o'oovoo.

Now from the results of Puri (1964 ), it follows that the ARE of the £y test
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with respect to the parametric ANOVA test (when there is no concomitant
variable) is

(6.5) es.s = B*(Gro)ooo/voo -
From (6.2) and (6.5), we obtain

(6.6) ees = €0.5(1™v00)/(0%o00).
Using (6.3), we deduce

(6.7) e 5(0000™) " £ ee5 < €2 500”

Now, since for some well-known statistics such as the rank-sum statistic or
the normal scores statistic, the bounds for e% 5 are well-known (cf. Puri (1964)),
(6.6) and (6.7) can be used to study the bounds for eg 5 for some specific cases.

(a) Case 1. Generalized rank sum test. Let BEG ) = a/(N 4+ 1),a=1,---, N
and ¢ = 0, 1, ---, p. In this case, it is well-known that

(6.8) ee.5 = 1200 [ 20 gla(z) dz)*

(where gjo; is the density of Gyo) is bounded below by 0.864 for all Gy, is equal
to 3/ when Gjo is standard normal cdf, and is greater than 1 for many non-
normal Gy . Consequently, if = is nonsingular (so that (cee™)™ > 0), (6.7)
provides analogous lower bound for e¢ 5. However, it is not possible to find
lower bound to (cec™)™ for all Ge G = {G:=(G) nonsingular}, and hence to
ec.5 . However, some interesting results are given below for specific cases.

(i) Let X, be uncorrelated with the elements of X. Thenoo; = 0,2 =1, -+, p,
and hence coc® = 1. In such a case [cf. (6.7)],

(6.9) ee.5 2 12000( [ 20 gta (2) dz)?,
which implies that
(6.10) es.5 = 0.864 forall Geg.

This case indicates that if the concomitant variates are (linearly) unrelated to
Xo (though there may or may not be a nonlinear defendence), the generalized
rank sum test has a better behavior.

(ii) If Gis a (p + 1)-variate normal distribution, then (6.2) reduces to

(611) (2 37!'——1'(|67T~:l SiIl_1 (pij/z)Ii,]‘=1,...,p/161r_1 SiIl_:l (Pij/z)li,j=0,---,p)
“(lpisliimo.1,0 5/ piils i1, )
where p;; is the product moment correlation of X,;, X;,¢,7 = 0,1, ---, p.

For p = 1, Quade (1967) has shown that (6.11) has maximum value 37 '
when pp; = 0 and decreases to 0.866 when po; approaches to +1 or —1. It is
easy to show that (6.11) is bounded above by 3« * for all p = 1. To prove this
it suffices to show that ((2 sin™ ps;/2 — py;)) is positive semi definite for all
p = 1. Now writing
(6.12) 2sin™ py/2 = py; + awly + @i + -+,
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where a; > 0 for all 7, it follows that
(6.13) ((2 sin™ piy/2 — piy)) = i a;i((pi™)), a; > 0 for all j.

Since ((ps;)) is positive (semi-) definite, so also are ((p5i")),s = 1, and hence

the result. It may also be noted that (6.11) may be quite close to zero, as can
always be shown by some pathological examples. We conclude that the asymp-
totic relative efficiency of the generalized rank sum test with respect to the
classical parametric test can be very low when p = 1 and the underlying cdf
is normal.

(b) Case 2. Generalized mormal scores test. Let Ei» denote the expected
value of the ath order statistic in a sample of size N from the standard normal
distribution, @« = 1, -+, Nandz = 0, 1, - - - , p. In this case [cf, [3]],

614) s = on(G)([Zugin(@) de/ole™(Cu(@)])? 2 1

for all Gy, and is 1 if and only if Gy is normal. Here ¢(-) is the density func-
tion of ®(-), the standard cumulative normal distribution function. Hence, if
X) is uncorrelated with the elements of X, (6.2) will be bounded below by 1. If
Gis a (p + 1)-variate normal cdf, then v = = and hence (6.2) will be equal to
1 for all p = 1. Thus the generalized normal scores test is asymptotically as
efficient as the classical test based on the variance ratio criterion when the
underlying distribution is normal. The ARE of the generalized normal scores test
and the corresponding rank sum test may be studied in a similar manner.
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