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SEQUENTIAL INTERVAL ESTIMATION FOR THE MEANS OF
NORMAL POPULATIONS!

By Epwarp PauLson

Queens College of the City Unversity of New York

1. Introduction and summary. The theory of sequential analysis was originally
developed by Wald [12] in the context of testing a simple hypothesis against a
specific alternative. Wald and Stein [11] subsequently considered the problem of
finding a sequential confidence interval of prescribed width (w) and confidence
coefficient (1 — a) for the mean (m) of a normal distribution with known variance
(¢*). Their basic result, to the effect that no sequential procedure existed for this
problem which had an average sample size less than the number of measurements
required by the classical single-sample procedure, implies a substantial limitation
as to what sequential interval estimation for the mean can accomplish in the case
of a normal distribution. However, as we hope to show in this paper, by suitably
redefining the problem, we can find sequential procedures either for obtaining a
confidence interval for the difference in the means of two normal populations or
for obtaining simultaneous confidence intervals for the means of & normal popu-
lations, which promise to be useful in some applications.

The basic idea in the reformulation of the problem is that the requirement to
be put on the width of the confidence interval should depend on the location of
the confidence limits, either with respect to some standard value or with respect
to the confidence limits for the means of other populations. When this reformu-
lation is appropriate to the problem at hand, Tables I and II indicate that a
substantial saving is possible with the sequential procedure developed here at
the risk of a relatively small (about 15 or 20 %) increase in the average sample
size if the least favorable parameter configuration should occur.

In the next section we will find a sequence of random intervals (J,.) such that
Plmedoforalln,ng =n = T] =1 — a. When T = «, sequences of this type,
which might be called “confidence sequences” seem to have been first introduced
into statistics by Wald in Chapter 10 of [12]. Such sequences were used by the
present writer [7], [8], [9] as an important tool in finding sequential solutions to
problems involving the selection of one of a finite number of possible decisions.
Recently Darling and Robbins [2], [3], [4], [5] Robbins and Siegmund [10] have
introduced and studied the properties of some new types of confidence sequences.
Their work will be commented on briefly at the end of the paper.

2. Derivation of sequential confidence limits. Let X;, X,, -- - be a sequence
of independent and normally distributed random variables with mean m and
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. 2
variance o°. Let

d(z) = (2m)~F [Zaexp (—£/2) dt,

and let
Z(p) Dbe defined by the relation ®(Z(p)) =1 — p.
We define T} to be the smallest integer =407[Z(a/4)]*/w’, and let A; = wTy/2.
We will now show that
(1) P[—A; £ 221 (X; —m) < Ay forall n, 1=n=T=z1-—oa

By considering the complement of the event in (1) we have
P-4, € X2 (Xi—m) £ 4, forall n, 1Znz T
> 1 — 2P[D " (X: — m) > A, for at least one n, 1 £n £ Ty

Now if X (¢) denotes a Wiener process such that X(0) = 0 and X (¢) has zero
mean and variance = o’t, it is obvious that

P> 7i (Xi —m) > A, foratleastone n, 1=n= T
(2) < P[X(t) > A:1 for at least one ¢, 0<t< T
= 21 — ®(41/eTH)]
by a standard result (see page 221 of [1]). Collecting these facts, we have
Pl—A:1 £ 20 (Xi—m) < Ay forall n, 1=nz=T
21— 41 — (A1/oTH] =21 — 41l —d(a/4)] =1 — a
If we now define U,™ and £,® by U, = min, (1 £ r < n)[& + Ai/r]and

£.? = max, (1 £ r £ n)[& — Ay/r], then it follows from (1) and the definitions
of A and T} that Us, — £5) < wand

Ple.® =m < w, forall n, 12n=E=T)=21- a

For the case when ¢ is unknown, let s be an estimate of o with f degrees of
freedom such that s is independent of > 2. X, and fs’/o” has the chi-square dis-
tribution with f degrees of freedom. Let ¢(p, f) denote the value of ‘Student’s’
distribution with f degrees of freedom which is exceeded with probability p and
let T, denote the smallest integer = max {n,, 4s7[t(a/4, f)I*/w’}, and let
Ay = wTe/2.

We will now show that
(3) P[—Az < ?:1 X,, —_ m) é A2 for all n, No _S_ n _S_ Tz] z 1 — o

Since D_m% X; was assumed to be independent of &, it follows by essentially re-
peating the preceding analysis that for a fixed value of s*

Pl—4, £ 200 (Xi—m) £ Ay forall n, mng=<n=T,s)
= 1 — 4{1 — ®[(s/0)t(a/4, N]}.
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Taking expectations, we obtain for the unconditional probability
P[—4, < D 2 (X:; —m) £ Ay, forall n, ne < n < Ty
z 1 — 4{1 — E®[(s/0)t(e/4, )]}
=1 — 4Pty > t(o/4, Nl =1 — a,

where the random variable ¢, is distributed as Student’s ¢ with f degrees of freedom.
(For values of « or f for which ¢(a/4, f) is not tabulated, the approximation
tp,f) = Z(p){2f/{2f — 1 — [Z(p)]}}? given by Elfving [6] should ordinarily be
accurate enough for most application.)

We now define £, and U,® forn = ng,ne + 1, - -+, To by

‘LLn(2> = min(r) (no =r=s n)[Xr + AZ/T]

and

IIA

£,% = maxg) (no £ 7 < n)[X, — Ao/7].

Then Uy, — £ & < w and from (3), we have
(4) Ple.? <m 2 U,? forall n, mne<n=T=1—a

3. The sequential interval estimation procedures.

3.1 Interval estimation for the difference of two means. Let X1 and X denote the
measurements taken at the rth stage of the experiment (r = 1, 2, --.) with
categories II; and IT, . We assume that all measurements are normally and inde-
pendently distributed and that X, has mean m; and variance ol (i =1,2). Let
Tin = D2 rei Xir/n,and let X, = X1, — Xy, so that the variables X, (r = 1,2, -+ +)
are normally distributed with mean m = m; — m. and variance o = o + o).

In finding a confidence interval for m = m; — ms , it would seem reasonable in
some applications to insist that the width of the confidence interval for m; — ms
should not exceed a pre-assigned value w as long as the value m = 0 is included
in the confidence interval, but to progressively relax this requirement as the
distance between zero and the confidence interval increases. These general con-
siderations will now be made more precise. Suppose that {(£,, U.)} denotes a
confidence sequence for m = m; — mo that is, P[€, £ my — me < U, for all n]
> 1 — a. Let \ denote a positive constant which together with w and « is selected
in advance of the experiment on the basis of practical considerations. When I
and II, both represent experimental categories, the following solution to the
problem of obtaining a confidence interval for m; — ms would appear to be useful
in some applications: stop the experiment and decide that £, =< m; — m, =U, as
soon as one of the inequalities

(a) Uy — L4 = W,

(b) £, > 0and U, — £ = W + \L&n,

(¢) U < O0and WU, — £ = w — U,
are satisfied. When II, represents an experimental category and II, represents a
standard or control, suppose because of cost consideration, side effects, etc. that
the experimental category is not of practical value unless m; — my = A, where A
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is a non-negative constant also specified in advance of the experiment. Then the
following procedure would seem to be a reasonable solution: stop the experiment
and decide that £, < m; — my < U, as soon as one of the inequalities

(al) U, — & =W

(b1) £, = Aand U, — Lo £ w + N(Ln — A)

(Cl) Cun < A
are satisfied.

When o™ = ¢,® + o4’ is assumed known, we take U, = mingy (1 < r <n)-
[(#1r — &2r) + Ai/r] and £, = maxy (1 £ r = n)[(&F1, — Tor) — Ai/r] where
A; = wT1/2 and T is the smallest integer =4¢""[Z(a/4)]’/w’. With this choice
of £, and U, , it follows directly from the results of Section 2 that the sequential
procedure which results from taking pairs of measurements until (a), (b) or (c)
oceurs (or (a1), (b1), (¢1) when comparing an experimental category with a

TABLE I
Empirical Results of the Sequential Confidence Interval Procedure for m?* 3
@ =05 w=.302 A=0, N=7 a=01, w=.515 A=.5 ar=1
m 7 Ln Un m 7 Ln Un

-.5 51 —1.06 —.01 0 63 —.53 .49

0 122 —.20 .19 .5 114 .25 .76

.5 90 .23 77 1.0 90 .66 1.33

1.0 63 .60 1.40 1.5 61 1.00 2.00
1.5 50 .98 2.03 2.0 46 1.35 2.68
2.0 39 1.36 2.67 2.5 37 1.68 3.32

control) is a closed sequential procedure with n < T and at the termination of the
experiment

Pl =m —me 2 U] 21 — 0

A slight complication is caused by the possibility that at the termination of the
experiment we might have £, > U, , in which case the resulting confidence inter-
val is empty. This event never occurred in any of the empirical sampling studies
and it seems that the probability that it will occur is very small. However, if it
should happen, we would at present recommend repeating the experiment.

To get some comparative idea of the average sample size of this sequential pro-
cedure as contrasted to the classical single-stage procedure with fixed width w, a
number of sampling experiments were carried out for the situation where m is
the experimental and m, the control category.

The results are summarized in Table I.

2 For & = .05 and m = 0, .5, 1.0 and 1.5, the values of 7, £n ,U» are means, each based on
200 trials. For each of the other cases, 100 trials are used.

3 The value ¢ = 1 was used throughout. The corresponding fixed sample size for both
combinations of @ and w was N = 100.
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Now we consider the case when ¢* is unknown. First a sample of n, pairs of
‘measurements (X, Xo), (X2, Xo2), -+, (Xing » Xono) is taken. If we know
a priort that oy = o2, We estimate o =o' + o5 by

§ = 200 (X1 — &1ne)” + 2250 (Xor — @200))/ (0 — 1)
with f = 2(ne — 1) degrees of freedom; otherwise we estimate o by
32 = Zr—l [(Xlr XZT) - ("‘Elno - £2no)]2/(n0 - 1)

withf = (no — 1) degrees of freedom. Next, we take U, = ming) (1, = r = n)-
(&1, — T2r) + Ao/7] and £, = maxy (e = 7 = n)[(T1y — Tor) — z/r],where
A, = wT:/2 and T, is the smallest integer = max {no, 4s°[t(a/4, )P /u’}. After
the sample of 7, pairs is taken, one pair of measurements is to be taken at a time
until one of the inequalities (a), (b), (¢) (or (a1), (b1), (1)) are satisfied. The
resulting sequential procedure is closed in the sense that at most T, — mo ad-
ditional pairs will be needed to terminate the experiment.

The choice of 7o when ¢ is unknown is obviously important in determining the
efficiency of the sequential procedure. It seems to be difficult to give a precise
rule. The problem hereis similar to the determination of the size of the first
sample in Stein’s well known two-sample test When there is little or no a prior:
information available about the value of ¢* we might select o as the smallest
integer so that t(e/4, f) is within a specified percent (perhaps ten percent) of its
limiting value Z(«/4) correspondlng to the situation when ¢* is known. Whena
moderately accurate estimate ¢ of o" is known a priori, this can be used to see
that 7 is not too long or too small in relation to the single-sample size that would
be required for a confidence interval of specified width w with confidence coefficient
1 —aife” =6

3.2 Simultaneous confidence intervals for the means of k populations. In this
section we consider the situation where we are dealing with k categories
m,m, -+, m . Let Xi denote the rth measurement with category ; and assume
that all measurements are normally and independently distributed with a
common variance ¢°, and the measurements {X;}(r = 1,2, ---) from =; have a
mean m; (¢ = 1,2, -+, k). For simplicity we will suppose the greater the value
of the mean, the more valuable the corresponding category.

In applications, it would seem that the width of the confidence interval for a
particular category is unimportant if that category is clearly inferior to the other
categories. This suggests that in practice we can relax the requirement that the
statistical procedure provide a simultaneous confidence interval of width <w for
all & categories and only require that the width of the confidence interval for the
‘superior’ categories be <w (while keeping the requirement that the overall con-
fidence coefficient is =1 — ).

A sequential procedure which meets the revised requirement is easily obtained
using the results of Section 2. First, let n; denote the number of measurements
taken with category =, and say that category =, is ‘eliminated’ when we stop
taking any more measurements with this category. We now consider the case when
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o is known a priori. Let ey = 1 — (1 — ) 4% = wTy*/2 where T,* is the
smallest integer >40°Z (a1 /4) /W, let & = D se1 Xio/7, and for each ¢ we define
£ and U, by

w,? = min (Wi<r<r [Fo + (A7) for 7 = n,

a,? =al) for r>n,

,G,(i) = max (1/)1_5_y§r [fi,, - (Al*/ll)] for r = ng,

£ = ,Gﬁf,) for r» > n;.

Then we have the following sequential procedure. At the first stage, we take one

measurement with each of the k categories. At the rth stage (r = 2, - - -) we take
one measurement with each category not yet eliminated after the ﬁrst (r—1)
stages, and then eliminate any category m for which either a? — e =wor
TABLE II
Average Total Sample Size for Simultaneous Confidence Limits for § Means*
Parameter Configuration Average Total Sample Size Total Sample Size for Single-
(ma , me , M3, M4 , M) for Sequential Procedure Stage Procedure
(0,0,0,0,0) 606 530
(0,0,0,0,1) 376 530
(0,0,0,2,2) 334 530

q,? < £, for some j # i. The experiment is concluded as soon as all categories
are eliminated with the statement that £ < m; < uf] for each i,
i=1,2,--, k. From theresultsof Section 2 it follows that for each 7,n; = T,%,
and P[ n'2=1 (€n, S m; < ‘uﬁf,.)}] > 1 — . In order to obtain someidea of the
efficiency of this sequential procedure as compared to the corresponding single-
stage procedure where all k confidence intervals have width = w, a number of
sampling experiments were carried out and the results are summarized in

Table II.
When ¢ is unknown, we start by taking a sample of 7, measurements with each

category, and estimate o’ by
= Z’?=l Z:‘L:Ol (X,,r — fin°)2/k(no — 1) Wlth f = k(no — ].)

degrees of freedom. Let ap = a/lc A% = wTy*/2 and Ty o the smallest integer
> max {no, 4st(c/4, f)] */w?}. We now define &% and U, for each
i(i=1,2,---,k) by
cur(i) = min (V)nogv_s_r [a_;w + <A2*/V)] fOI' o ..S_ r é ni;
Q,® =
oer(i) = max (V)no_s_vgr [i:w - (A2*/V)] for Mo é r

£ = e for r>n,.

for r > n,,

IA

ng,

4 The values k = 5,0 = 1, « = .05 and w = .5 were used throughout. Each entry in the
second column is based on the results of 500 trials.
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After taking the sample of 7o measurements with each category, at each succes-
sive stage of the experiment we take one measurement with each category not
yet eliminated, where any category m; is eliminated as soon as either
W, — P cworw,? < &P foranyj#Z i (r =mno,ne + 1,+--, To%). As
before, we conclude that £ < m; < Ul fori = 1,2, --- ,kand P[ iz {£5) <
m; < UG}l = 1 — . When the experiment is concluded, we can consider the
categories {m;} for which Uy} — &) < w as forming the ‘superior’ group and the
remaining categories as forming the ‘inferior’ group.

4. Concluding remarks. Different confidence sequences lead in general to
different solutions to the statistical problem. There are an infinite number of
different confidence sequences available, and the selection of one which is op-
timum in some reasonable sense is still an unsolved problem. The particular con-
fidence sequence developed in Section 2 was used in preference to an earlier con-
fidence sequence for the mean given in [8], since it seems to come fairly close to
minimizing the average sample size in the least favorable situation when the
population means are equal while still allowing a substantial saving when the
parameter configuration is favorable.

Recently some new types of confidence sequences have been developed by
Darling and Robbins [2], [3], [4], [5], and Robbins and Siegmund [10]. Their
sequences have the desirable property that the width of the confidence interval
approaches 0 as the sample size increases, and hence do not require that the con-
stant w be specified in advance of the experiment. A preliminary calculation indi-
cates that these confidence sequences lead to sequential procedures for the prob-
lems of the present paper which would require a great increase in the average
sample size in the least favorable situation when all the means are equal. How-
ever, the Darling-Robbins confidence sequences are still in the process of being
improved and a definitive verdict on their value in statistical applications is best
left to the future.
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