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AN APPROXIMATION TO THE SAMPLE SIZE IN
SELECTION PROBLEMS!

By Epwarp J. Dupewicz

The University of Rochester

0. Summary. Let f(x | P1) be the pdf of a (k — 1)-dimensional normal dis-
tribution with zero means, unit variances, and correlation matrix P; . Consider
the integral, for § > 0,

(1) S5 [Z5f(x|Py) de - dmsy = (5), say.

Assume that no element of P; is a function of 8. Note that «(8) is an increasing
function of 8 and a(8) — 1 as  — . The problem is to obtain an approximation
to 6, for a large specified value, a, of «(8). This is given by the theorem of Section 1.

This result is used to obtain approximations to the sample size in a selection
procedure of Bechhofer and in a problem of selection from a multivariate normal
population. The closeness of the approximation is illustrated for the procedure
of Bechhofer (Table 1).

1. The Approximation to é.
TarEOREM. For large a (near 1), an approzimation to 8, which satisfies the equation

(2) ffa .. f:;f(x | Py day -+ doey = a,
158" ~ —2log, (1 — a). The ratio tends to 1 as a — 1. This approximation s inde-
pendent of k.

Proor.
(3) 0((5) = °_°5 :;f(X|P1) dxl d(l?k_l

= PINZH{Z: > —8}] = PIN:EJ, say.

Then,
Expressing the union as a disjoint union, we obtain
(5) 1 — a(3) = X PIEAE, - B
Now

PIEE, --- E) = [Z - [2 [Zofux | Py) day -+ dwsy das
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where fi(x | P,;) is the pdf of an ¢-dimensional normal distribution with zero
means, unit variances, and correlation matrix obtained from P; by deletingthe
last k& — % rows and columns. The jth of the ¢ — 1 integrals on (—4, « ) can be re-
placed by some multiplier C;(¢) between 0 and (wk_lk)’ which tends to a limit as
8— w(j=1,---,4— 1), and using problem 1 of Feller (1957), p. 179, the re-
maining integral on (— o, —3§), which equals the integral on (8, =), can be ap-
proximated as

1 — ®(5) ~ 57 (2m) "
Letting C; = Cy(2) -+ - Cia(7),
PlELE, - - Bi] ~ Ci(3(2m)) ¢,

and letting C = (C1 4+ -+ + Cia) (b —1)7,C = C-’(‘B) —> a limit as 8 — « and
an approximation to 8, such that «(8) = a, can be obtained from the equation

1 —an~ (k— 1)C62r)H) e "
Hence ° ~ —21log, (1 — a).

2. The approximation to sample size. Ranking and selection procedures
have been receiving increasing interest recently, one reason being that they
furnish a method of sample size selection which is appropriate in many situations.
However, the tables available for this use (e.g. those of Bechhofer (1954) and
Teichroew (1955)) are not extensive enough to cover all situations which arise in
practice, e.g. in drug screening where the number of populations may be very
large. Also, these tables do not apply if certain independence assumptions are
violated. The theorem of Section 1 provides an approximation to the sample size
in a selection procedure of Bechhofer and in a multivariate situation.

Consider the following problem: Given k populations 1, - - -, m the observa-
tions from which are known to be identically distributed except for a location
parameter (i.e., an observation X; from population m; has cdf F(z —»:), where
F(-) may be either known or unknown), select any one of the (at least one)
populations associated with iy = max (v1, - - -, »). For the case in which F' ()
is known to be normal with a known variance o”, Bechhofer (1954) has suggested
use of the means procedure: Take N independent vectors X; = (Xuj, - -+, Xij),
j=1,---,N, where X,; denotes the jth observation from the sth population = ;
choose the population associated with the largest DXy =1,-+-,k) as
being associated with vy . Let (N, P10 < N < o, 1K < P* < 1) be two
specified constants, and denote the ranked means by iy = -+ = v - Then N is
to be set as the smallest sample size which guarantees the following probability
requirement: We are to select the population associated with vy , 1.e. we are to
make a correct selection (CS), with probability P(CS) = P* whenever
VKl — Vike-1] = )\*O'.

It is known (see Bechhofer (1954), p. 23) that, if the means procedure is used
for this problem in the normal case, then subject to vjyy — vpe—1 = Ao the P(CS)



494 EDWARD J. DUDEWICZ

is minimized over vy, - -+ , v when
*
(6) vy =+t = Ve, Vi < Vel = N0y

the least favorable configuration (LFC) of the population parameters; call this
minimal P(CS) by a.
THEOREM. As a — 1,

(7) N~ —4(\")?log, (1 — a),

the ratio tending to 1 as N — « due to having o — 1.
Proor. From Bechhofer (1954), p. 20, eq. (13), we know that

(8) a = [Zuami - [Deami (x| P) day - -+ daes

where Py is the (k — 1) X (k — 1) correlation matrix with p;; = 1(¢ ¢ 7). The
theorem follows from (2).

3. Numerical study of the approximation. We can compare the N, calcu-
lated via (7) with N, from the tables of Bechhofer (1954) for moderate k&, ob-
taining Table 1. (We use \* = 1 for convenience.) The tables of Gupta (1963),
p. 810, and of Teichroew (1955) are useful in making comparisons for large k
and for high P*, respectively.

Note that the approximation (7) appears to overestimate N, thus being some-
what conservative, for &k < 10. If we had \* 5 1, each entry (N as well as N,)
would be divided by (A\*)2. Thus, the ratio (which by derivation approaches 1 as
N — « due to having @ — 1) is independent of \*. Although it does not appear
to be the case that [Ny, — Nz| — 0 (indeed the difference could conceivably be
unbounded) the approach of the ratio to 1 appears fairly rapid.

4. Extension to multivariate normal selection. Use of the special nature of
the correlation matrix P; in (8) has not been made. Thus, result (7) is valid
whenever a reduction of a to form (8) is possible, provided only that P; does not
depend on N.

Now, consider the following problem: Given one k-variate population II the ob-
servations from which are k-variate normal, select any one of the (at least one)
factors associated with vy . Suppose that the means procedure stated in Section 2

TABLE 1

a 0.90 0.95 0.97 0.99 0.995 0.999

Ny 9.2104 11.9829 14.0262 18.4207 21.1933 27.6310

k= 3 Nr 4.9738 7.3446 9.1397 13.0849 15.6159 21.5760
Nz/N4 .54 .61 .65 .71 .74 .78

k= 5 Nr 6.7584 9.3342 11.2419 15.3633 17.9725  24.0580
Nz/N4 .73 .78 .80 .83 .85 .87

k=10 Ny 8.8977 11.6841 13.7122 18.0251 20.7234 26.9537

Nz/N4 .97 .98 .98 .98 .98 .98
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is used. We then observe N independent Fk-variate normal vectors
X; = Xy, ,Xs),j =1,---, N, and select the factor associated with the

largest X, = 2 74 X;;/N (¢ = 1, --- , N) as being associated with vy .
Denote the k-variate normal distribution of any X;(7 = 1,---, N) by
N(vi,Z;) where vy = (v, - -+, ») is unknown and Z; is some covariance matrix,

say 21 = (o) foré,j7 = 1, --- , k. Let round brackets about a subscript denote
the quantity associated with that one of the ranked means; thus,
Xp( = 1,---, N) is N(vay, Z@w) where vay = (vm, -+, vwy) and
2o = (o) ford,j =1, -- -, k. Now, our development will be a generalization
of Bechhofer (1954), p. 20. Then (assuming vy — vpp—y > 0)

P(C8) = PXay < Xy, -+, Xa-n < Xw]
(9) = P[X(k) — X(l) >0,---, X(k) - X(k—l) > 0]
=P[Y1>Oy 7Yk—1>0]7 say,

where
(Xay, -+, Xw) is Nivgy, N 'Zw).

Now, (Y1, -+, Yia) is (k — 1)-variate normal say N (9, ;) with §; =EY,; =
Vik] — V[4] and

(10) (Ys) = N oty + oty — 200m)
o(Y:Y;) = N o — ovm — omrm + o)

Now, (9) is minimized subject to va; — vp—y = N (now ¢ > 0 is simply some
constant) by the LFC (6). Thus, :

(11) a = P[(Y; — \%)/o(Ys) > —N\'6/a(Y)), t=1,---,k—1]
= P[Z; > —\*/a(Y)), i=1,---,k — 1], say.
(Zy, -+, Zr) is (k — 1)-variate normal N (0, Z;) with
(12) (Zs) =1, o(ZiZ;) = o(Y:Y;)/o(Y)o(Y;).
Therefore,
o = |2/ 2n) " [Lamerny
Ortororiemy xp (—32'257'z) dan - -+ da

(13) = Izal_%/(QW)m_l) f?—x*mé/zéam

s f?—x*aN%/2§aM) exp (—%x/Eg_lx) dxy -+ dor_y,
where
(14) ou = Maxicici [3(oly + 0to) — cowl-

Since Z; is independent of N, our proof of (7) shows that the minimal N needed
to make the lower bound in (13) equal to «, say N, is such that we have the
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THEOREM. As a — 1,
(15) N~ —4(\*)"*(o/ou) " log. (1 — a),

the ratio tending to 1 as N — o due to having a — 1.

Due to its construction, N overprotects against an incorrect selection. Even
if one has no knowledge whatever of oa, result (15) allows one to obtain an
approximation to N, if one sets ¢ = oy, i.e. if one makes his probability require-
ment in terms of multiples of the (unknown) oy .

If one has special knowledge then o) may sometimes be evaluated. E.g., if

(7'12 = . = 0'k2 = 0'02 (say) anda@)(k) = —B (B = O) for7 = 1, e ,’CWIth at
least one equality, then oy = (oo> + B)*. In this case the “best” such B (in terms
of N) is B = 0. (If one knew only oy = C forz =1, --- , k, then one would

obtain oy = (0o — _C)%.) B
The upper bound N will be “exact’” as N isin (7) in that the minimal N = N iff
(13) is an equality; this is so iff

2 2
(16) iow) —ocwmwm = -+ = 3(0g-1) — Te—v® »

which occurs if, e.g., 00" = -+ = o andowm = -+ = ca_nw. For the latter to
be satisfied it is sufficient (but not necessary) that all covariances be equal.
(Note that the case when all covariances are equal and they and o are known has
been mentioned by Milton (1963), pp. 5-6, whose tables may then be used.)
N will be “exact” and approximation (15) identical to approximation (7) in
the case o = --- = o> = o and all covariances are equal to 0 (the case of in-
dependence). Now, if one knew that o)’ = -+ = oi. = o and that components of
any k-vector tended to vary together if at all (i.e.04; = 0 (4,5 =1, -+, k)),
then one might extend the LFC and choose the “worst” such covariances (those
which would maximize the approximation to the “exact’ N). One sees (from
criterion (16) and the role of o) in (13)) that all covariances equal to 0 accom-

plish this.
One may consider such extended LFC’s in other cases specified by one’s
knowledge. If one knows oy” = - -+ = o =dandoy =C (4 5# 734,75 =1, ,k)

then N will be “exact” and the worst value of C is the smallest possible
(smallest such that the variance-covariance matrix is positive definite). Since
for this case the matrix is positive definite iff o* > C > —d’/(k — 1), as
C| —d/(k—1),0u T [k/(k — 1)]%0. Thus, in this case approximation (15) to
N will differ from approximation (7) by a factor k/(k — 1) = 1 + (k — n™

Finally, since o < 2% (in the case ol = +-+ = gi’ = ¢°), the approximation to

N is at most twice that of (7). Thus, for large o at most twice as many observa-
tions per population will be required as in the case of independence.

6. Remarks. We make the following remarks.

1. For the case k = 2, result (7) may be derived in a manner similar to that
used by Dudewicz (1966), Section 2-B (i), in another context.

2. As the problem statement of Section 2 should intimate, result (7) is con-
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jectured to hold for a general location parameter family whose observations obey
the (classical) Central Limit Theorem. A similar result can be conjectured for
Section 4, and is not intimated by our problem statement there only so as to
avoid a cumbersome notation.

3. In their monograph, Bechhofer, Kiefer, and Sobel (1968) have inde-
pendently previously obtained (7) via a different proof. Although they obtain
higher order corrections, their proof does not appear to generalize to multivariate
problems. (See their Theorem 6.2.1, eq. 6.4.1, eq. 6.4.3, Lemma 6.5.1, and
eq. 14.2.10.)

4. Thanks are especially due to Professor Robert E. Bechhofer for his sugges-
tions for and guidance of Dudewicz (1966), which contains result (7), and
to a referee for substantial simplification of the presentation and for the reference
to Gupta (1963).
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