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1. Introduction. Let £, - -+, & be n mutually independent and identically
distributed random variables (rv). For every k¥ (1 < k < n) denote by &
the rv that assumes the kth value in descending order of size among the values
agssumed by &, ---, £&. So, e.g., we have

f1n = max (&, -+, ).

Many authors (ef. [1], [2], [11]) have investigated the asymptotic behavior of
the distribution function (df) of the maximal term &. as m — . The most
complete results, which may be said to summarize in a sense this series of in-
vestigations, were obtained by B. V. Gnedenko [3]. In particular, he determined
the class of all df’s which can be a limit of the df of the normalized maximal
term (&, — ba)/as, as n — «, where a, > 0 and b, are suitably chosen real
numbers.

Gnedenko’s results were generalized by N. V. Smirnov [12]. He showed that
the class of all proper limit distribution laws for the normalized rv £, consists
of the following:

@a(z; k) = 0 if ¢ < 0,

= exp (—2™) 2iSoa "/s! if z = 0;

(1.1) Vo(z; k) = exp (—|2]*) 220t |2f*/s! ifz <0,
=1 if z = 0;

where a > 0, and
A(z; k) = exp (—e ) Qs e */s!

The limit distributions for the maximal term are obtained by putting ¥ = 1.
The variable &, is a well-defined function of the rv’s &, -+ , & and the index
k(1 =<k=n)

(1-2) gkn:f(&y"';éfb;k)
which satisfies the identity
f(gly et ’Eﬂ;k) = _f(—gl’ ) _En,n - k+ 1)'

This relation permits us to carry over results found for the df of &, to the df
of £n—ky1,n and conversely.
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Gnedenko’s problem was generalized in another direction in [4] and [7]-[10],
where the limit distributions of the maximal term &, were considered in the case
where the initial rv’s &, ---, £ are not necessarily identically distributed.
It is the purpose of the present paper to generalize Smirnov’s result in this
direction.

2. Statement of the problem. Let &, -- -, £, be mutually independent rv’s
and let

Fiz) = P(& £ ), i=1,--,n.
It is easy to see that for every & (1 £ k < n)
(21) ®in(2) = P(lin £ z) = [[7aFi(2)
+ 2205 2tk U sewso” Fi(@) ILicnsny (1 — Fi())]

where (n * s) is any subset of the set (1, --- , n), consisting of s indices, (7 * s)°—
its complement and the inner summation is over all such subsets. Since

(2.2) B1a(z) = [[iFi()

then, whenever z is such that Fi:(z) > 0 (¢ = 1, ---, n), then the df &,(x)
may be written also in the form

(2.3) Bin(2) = B1a(2) 22550 22 [T oo (1/F i) — 1),

where for the sake of brevity we write ) H(n*x) instead of Z(n*s) ) § PR

and put Loxo = 1.
TrEOREM 2.1. For every df ®(x) and every k there exists a sequence of df’s F;(x)

such that
(24) limyoe ®ra(x) = ®(2).

Proor. Consider an auxiliary sequence of mutually independent rv’s »; with
df’s
(2.5) Gi(z) = P(n: = )

0, ifz <0,
1—2/(1+¢%), ifzz=0.

For arbitrary k and n (1 = k& < n) let us denote

Nkn = f("h; e 777n;k)7
where the function f is the same as in (1.2), and let
(2.6) Tin(z) = P(mn = ).

It is clear that I'y,(z) = 0if z < 0, and for z > 0, in view of (2.3), the df
Tw.(z) may be represented in the form

2.7) Tin(z) = 2m0 Ton(),
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where
(2.8) Ton(z) = 2 J]51Gi(2) 22 [ ws (6 — D)7
For fixed s and @ > 0 consider the expression
Bpn(2) = |Tomim(2) — Tan(2)],

where z = a. We have
Aun(z) < 2TED A + 2/ = 1)) = 12 [T (7 — D7

+ 2 Inmsn (€% — 1) = 2 TLawe (67 — )7
It is easy to see that
T (1 4 2/(e® — 1))

< i (1 + 2/(6° — 1)) < exp 2XEma(e® — D7)
< exp (4077 D nya® 1),
> Moo (6 = D= (Xia(e® — DT = (207250,

and for s = 1 we have
> TLiwiman (€% — 17 = 22 T inwn (6 — 17

< il (€™ = DY TS (¢~ DT

< 8(2/a") (2t i) (i d D).
Thus we obtain

Amn(z) < C(a, s;n) = o(1), (n— )

where z = a and m are arbitrary. This estimate proves the existence of the limit
(2.9) limpse Ten(z) = T(2)

and the uniform convergence of the sequence T'x,(z) in any interval of the form
[a, ©), where @ > 0. It follows in particular that the limit function I'(z) is a
distribution, i.e. T(+») = 1.

We will now show that

(2.10) r+) = 0.
Because of (2.5) and (2.8), we have for any positive =
To(z) < (2 2 Tewe € )/ TTia (1 4 ),
and since
S e €™ < (2tae ™) < 1/(e" — 1),

we also get

Ton(z) < 2°(¢° — D7/T]0m (1 + 7).
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Therefore, if 0 < x < In 2, then by (2.7) we get
I(z) < k2% — 1)7/[[5a (1 + ).
It is easy to verify that 1 + o > ¢¥?if 0 < a < 1. Hence if z > 0, we have
T (1 4 67) > exp (27 D 2ae ™) = exp (2(¢° — 1))
Thus, for positive values of z close enough to 0 the inequality
I'(z) < k2°(&" — 1) */exp (2(° — 1))

holds—which proves (2.10).

The df’s G;(z) defined by (2.5), as well as the I'y,(x), are everywhere con-
tinuous. Therefore, by virtue of (2.10), and the uniform convergence in [a, «),
the limit I'(2) is also continuous (which shows, incidentally, that the convergence
of Tkn(z) is uniform in — o < 2 < ©).

The function I'(x) is strictly increasing on [0, « ) so that the inverse function

(2.11) g(z) = I''(2)
exists and is also increasing and continuous on [0, 1) and satisfies the conditions
(2.12) g(0) =0, g(1) = 4.

Now let ®(x) be an arbitrary df and consider a sequence of functions F;(x)
defined as follows:

(2.13) Fi(z)

It

Gi(g(®(x))) if @(z) <1,
=1 if ®(z) =1;

where the G;(x) are as in (2.5). Due to (2.12), the F;(z) are df’s.

Let £; be a sequence of mutually independent rv’s such that P(¢; = z) = Fi(z).
It follows from (2.5) and (2.13) that P(¢& < z) = P(n: < g(®(x))), therefore
we get for any k and n (1 < k < n) also P(&, < ) = P(ma = 9(®(2)))
which by (2.6) can be written in the form

q)lm(x) = Fkn(g(é(x) ))'

Hence by (2.9) and (2.11) we conclude that (2.4) holds. This proves our theorem

Let us remark that the theorem becomes trivial in the case k¥ = 1: for a given
df ®(z) we can take Fi(z) = & (z). However, in the general case we have not
been able to invent such a simple construction for the Fi(z).

The theorem just proved shows that, if apart from the mutual independence
no other restriction is imposed on the rv’s &;, then any df ®(x) may be considered
as a limit law for the kth term of some variational series. However, it is natural to
require that the initial suitably normalized rv’s £; should—in some sense—be
individually negligible in the limit, so that the role of a single component par-
ticipating in the formation of the variable #:, becomes vanishingly small as
n — o, Keeping the above notations, let us introduce the following definition:

We will say that the df ®(x) belongs to the class Gy if there exist a sequence
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of df’s F;(z) and real constants a, > 0 and b, such that
(2.14) limy o0 Pra(a.x + by) = ®(x)

at each point of continuity of the function ®(x), and such that for every =z,
for which ®#(z) > 0,

(2.15) limpaew Fi(ax + b,) =1

uniformly inz (1 £ 7 £ n).

(Let us remark that in the case when the rv’s &; are identically distributed
then (2.15) is contained in (2.14).)

Our aim is to give an exact description of the class Gy .

For sake of brevity we will use the following notations

+® = inf {z:®(z) > 0}, &, = sup {z:®(z) < 1}.

If ®(x) is a df, then «®(P) will be called its left (right) end.

Since each improper df trivially belongs to G, the limit distributions ®(z)
are assumed to be proper, i.e. & < 4.

Finally, let us note that as a consequence of the weak convergence required
in (2.14), every non-decreasing function ®(x) which satisfies the conditions
P(— o) =0, d(+») = 1is a df, and equality of two df’s means equality at
their points of continuity.

3. The class Gi. Let P be the class of all df’s ®(z) that have the following

property: for every 8 > 0 there exists a non-decreasing function ¢g(z), such that
for all

(3.1) ®(z) = ®(z + B)os(x).
Let @ be the class of all df’s ®(z) that have the following properties:

and for every o (0 < a < 1) there exists a non-decreasing function ¢.(x), such
that for all

(3.3) ®(z + Px) = P(ax + Px)da()

(observe that P n Q = ).

Let R be the set of all ®(x) ¢ @, which are continuous at the point £ = Py .

The case &k = 1 was studied in [7]-[10] under somewhat more restrictive re-
quirements: it was assumed that a df is—by definition—continuous from the
left and that the convergence in (2.4) holds at every point. With these assump-
tions, the class of the limit distributions was called class G and it was proved
[10] that @ = P u R. In the present—more general—situation, we get the fol-
lowing.

TaEOREM 3.1.

G1=PUQ.
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Proor. By [7] it is sufficient to prove that @ C G;. So let us suppose that the
df ®(z) belongs to Q. Without loss of generality we can assume, because of (3.2),
that ®x = 0. Let us first assume that «® > — . Then, by (3.3) [the function

(34) H(z;a) =0, if z< 49,
= &(2)/®(azx), if x> 49,
is a df for every fixed a (0 < a < 1). Define

D(z) =0 if x < —1/e,
=1+1/Injz] if —1/e<z<0,
=1 if x>0,

and
®(0—-) =a 0<a=1).
We define the desired sequence F;(z) by
(3.5) Fi(z) = H((i + 1)z; a;)D"(2), t=1,2:-,

where a; = 4/(4 + 1), t; = (In ;) In a. Taking a, = 1/(n + 1), ba = 0, we
verify that for x > «®

raDY%(ax) > a (n— »)

and
P H(GE + Dagr; a;) — &(x)/a (n — »),
since
= H(( + 1)az; ai) = &(x)/2((n + 1)z).
Hence, it follows in virtue of (2.2) and (3.5) that (2.14) holds for all x > 4.

On the other hand, by (3.4) and (8.5) it is clear that (2.14) holds also for
x < *<I>.

It is easy to check that if z > 4@, then (2.15) is fulfilled by any fixed ¢ and by
¢ = n. Hence, since the sequence a, is monotone, we conclude that (2.15) is
fulfilled uniformly in 2 (1 < % < n). Thus the df ®(z) belongs to Gi.

The case s® = — o can be treated in the same way by defining the function
H(z; a) by

H(z;a) =0 if v<af(a—1),
= &(z)/®(ax) if z>a/(a—1).

An example of a df which belongs to G; but is discontinuous at its left end
(and, therefore, does not belong to () is given by

&(z) =exp (x — 1) if <0,
=1 if >0,
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A more transparent characterization of the class G is contained in

TueoreMm 3.2. [9] The df ®(x) belongs to G1 if and only if it is logarithmically
convex (®(x) e P) or the function ®(+® — e ) is logarithmically convex
(®(x) € Q).

It follows from this that the only possible points of discontinuity of a df be-
longing to G: are its ends. Moreover, the right end can be a point of discontinuity
only if the df belongs to Q.

In the sequel we shall need the following;

LemMa 3.1. Let ®(x) € G1 and assume @ > — . Then the sequences F.(z),
ay and b, that appear in (2.14) and (2.15), can be chosen so, that for every x < x®
and k we will have

(3.6) Fo (e +b,) =0, . s=0,1,-- .k,

for all sufficiently large n.
Proor. Let ®(x) ¢ P. Then by (3.1) the function

H(z;8) =0 if 2 < 4@,
= d(x)/®(x +B) if x> 49
is a df for every 8 > 0. Taking
Fiz) = H(s — 252 (1/4); 1/4), i=1,2-,
an =1, b= 23 (1),

we verify the validity of (2.14) and (2.15). On the other hand, for every s
(0 = s = n) we have

Fo(anz +b,) =0 if &< 3@ — D fenopr (1/7).

Thus (3.6) holds for x < «® and n > k/(+® — x) + k — 1. The case ®(z) ¢ Q
may be handled in the same way, by using the sequences that were constructed
in course of the proof of Theorem 3.1.

4. The class Gi(k = 1). The characterization of the class Gy is given by

TaEOREM 4.1. The df ®(x) belongs to Gy if and only if it can be represented in the
form

(4.1) ®(x) = ¢(x) 2oe=o [(—In ¢(x))"/sl],

where ¢(x) 1s a df of G1 and +® = «op.

Let 8:n and Nin (1 £ 4 < m;n = 1,2, --+) be numerical sequences. We shall
need the following two lemmas.

LemMmA 4.1, Let
(4.2) 8in 2 0 and maXicign Oin — 0 (n— «).

If D01 bim— b (n — «), then, keeping the notation of Section 2, we have
for every s

Z H(n*s) 8in — 8°/s! (n— ).
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TFor a proof see [5], Section 15.
LemMma 4.2. Let
(4.3) 0<An =1 and minjcicn Nin— 1 (n— ).
Denote
T = |1 Nin on = 2im1 (1 — Nin), Fn = Doty (1/Nin — 1).

(a) If one of the sequences n , o OF G, converges (to a finite or tnfinite limit) then
the other two also converge and

(4.4) limpow T = limMyaew exp (—o,) = liMaae (—64,).
(b) Let s be an arbitrary non-negative integer. If

(4.5) =1 >0  (n— o),

then

(4.6) 2 oo (/i — 1) = (=In7)*/s!  (n— «),

while if

(4.7) T — 0 (n— o),
then also
(4.8) n 2 Lot (1/Ain — 1) >0 (n— w).

Proor. (a) It is well known that forany 0 < « =1
exp (1l —1/a) £ a = exp (e — 1).
Therefore, for every n
(4.9) exp (—&n) < m = exp (—oa).

On the other hand, for arbitrary ¢(0 < e¢ < 1) we will have, by (4.3), for suffi-
ciently large n

(410) on = 0',,,/(1 - é),

which, together with (4.9), proves this part of the lemma.

(b) Let us put é;» = 1/X;n — 1, then by (4.3) the conditions (4.2) hold and
D P48 = 6. Since by (4.4) and (4.5) lim,. » = —In =, then according to
Lemma 4.1 we get (4.6). Obviously

2 oo (1M — 1) S 32
Hence, putting e = 3 in (4.10) we have for sufficiently large n
2 Towo (/i = 1) £ (204)".
Finally, using (4.9), we see that for large n
(4.11) 7o 22 [Tty (1/Ain = 1) £ (204)° exp (—on).
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Suppose now that (4.7) holds. Then in virtue of (4.4) ¢, — © (n— ). Since
for any positive s we have

2’ exp (—z) =0 (x — w),

then (4.8) follows immediately from (4.11).

Notice that both lemmas obviously remain valid if the sequence of natural
indices n is replaced by any subsequence n’.

Proor oF THEOREM 4.1. Necessity. Let ®(z) ¢ G . Consequently there exist
Fi(z), a. and b, such that (2.14) and (2.15) hold. Consider the sequence of the
df’s of the corresponding maximal terms and let ¢(x) be any of its partial limits,
ie. i (anx + b)) = () (0 — «).

We first prove

Since for every k = 1 we have &;,,(z) < ®;,(x), then clearly
(4.13) xd = 5P,

Let x > 4«® be an arbitrary fixed number. For given 2 and n (1 < 7 < n) denote
)\in = Fz(anx + bn),

then by (2.15) our sequence \;, satisfies all of the hypotheses of Lemma 4.2 for
sufficiently large n. On the other hand, from some 7 on we can use the expression
(2.3). Therefore, introducing the notations of Lemma 4.2, we have by (2.2)

(4.14) Bpn(@n® + b)) = w0 D2bm0 2 Lty (1/Ain — 1).
Hence, should we assume
T — ¢(x) =0 (n' — o)

we would get according to Lemma 4.2 that ®(z) = 0 too, which is impossible,
since ¢ > ®. Thus 4¢ = +® and by (4.13) equality (4.12) is proved.
Now let  (x > 4®) be a point of continuity of the function ®(x). By (4.12)

o(x) = limpyrne e > 0.
Therefore, according to Lemma 4.2, and (4.14), the df ®(x) has the form (4.1).
It is easy to verify that for any £ = 1 the function
(4.15) Y(x) = 2= [(—Inz)’/sll,  ¥(0) =0,

is strictly increasing in [0, 1]. Hence the representation of a df ®(z) by means of
a non-decreasing function ¢(x) in the form (4.1) is unique. Thus we conclude that
¢(x) is a df and

(4.16) ¢(2) = limuse Pra(@n + bn).

Since (2.15) holds for all z > «¢, then ¢(z) ¢ Gy.
Sufficiency. Let the df ®(x) have the form (4.1). Then there exist F;(z), an



LIMIT DISTRIBUTIONS FOR VARIATIONAL SERIES 489

and b, such that (4.16) holds and so does (2.15) for z > x¢. Consider the
sequence P, (a.x + b,). It clearly follows from the arguments used in the first
part of the proof that this sequence converges to ®(x) if x > «¢. Therefore, the
proof will be complete if we show that

(4.17) Pin(@n + b)) 0 (n— )

for < 4¢. For these values of  we shall make use of the expression (2.1).

It is clear that if 1 < s < k — 1, then in each collection of indices of the form
(n * s)° which consists of n — s different indices, there exists at least one index
7 such thatn — & < ¢ < n.On the other hand, according to Lemma 3.1, there is no
loss of generality if we assume that for ¢ < ¢ and sufficiently large n equalities
(3.6) hold. Therefore, if x < x¢ then from some n on all the terms of the sum in
(2.1) vanish, i.e. we get (4.17) and the theorem was proved.

In the course of the proof we saw that if for some ¥ > 1 and some Fi(z), a, and
b, (2.14) and (2.15) hold, then—for the same F;(z), a. and b,—the sequence
®1,(anx + ba) converges too, i.e. (4.16), the left ends of both limits ®(x) and
¢ () coincide and the equality (4.1) holds. However, if (4.16) holds and (2.15) is
fulfilled for all > x«¢, then for k¥ > 1 the convergence of the sequence
Bin(@n® + ba) and the equality (4.1) are guaranteed only in the interval (¢, ),
and we assert nothing concerning the behavior of the sequence in (— o, x¢). (It
is for this reason that we needed Lemma 3.1.) However, the following proposition
can be easily established.

TarorREM 4.2. If (2.14) and (2.15) are satisfied for some k and some Fi(x),
an and b, and the left end of the limiting function is a point of continuity (or it is
— ), then (2.14) and (2.15) are satisfied for each k, the left end of the limiting law
s independent of k and (4.1) holds.

Remark 4.1. Now let the mutually independent rv’s & have the same df
F(x), then

(4.18) Ben(2) = 2 om0 (P (2)(1 — F(z))™™".

From Gnedenko’s result concerning the class of the limit distributions for the
maximal term &, we obtain immediately Smirnov’s laws (1.1), by using Theorem
4.2, since ®,(x; 1), ¥o(x; 1) and A(z; 1) are everywhere continuous.

The class of df’s F(z) for which constants a, and b, may be found, such that
(2.14) holds and &;,(z) is given by (4.18), is called the domain of attraction of
the law ®(z).

The domains of attraction of the df’s ®,(x; 1), ¥o(x; 1) and A(x; 1) were first
studied by R. de Mises [11]. A complete solution of this problem was given by
Gnedenko [3]. Another characterization of the domain of attraction of the law
A(x; 1) was given in [6].

Smirnov showed [12] that the domain of attraction of any df from (1.1) does
not depend on £, i.e. it coincides with the domain of attraction of the correspond-
ing df that is obtained by putting k¥ = 1. It is easy to see that also this result of
Smirnov is an immediate corollary of our Theorem 4.2.
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REMARK 4.2. The expression (4.1) admits also of another interpretation. Con-
sider normalized rv’s

££n=($'i—'bn)/an7 i=1)"')n:

where ¢, are mutually independent and a, > 0, b, are real numbers. For given
z and n let us denote by n,(x) the number of £:, whose values occur in the interval
(z, ), and let

Pkn(x) = P('ﬂn(x) = k).

Then
Pi.(2) = P1a(x) it k=0,
(4.19) = Bpaa() — Ba(z) if 1Sk<n-—1,
=1 — &,(z) it k=n.

Now let ¢:, a, and b, be such that the limit (4.16) exists and (2.15) hold for
x > x¢. Then it follows from (4.1) and (4.19) that for constant £ = 0 and
T > x¢ we have

Pin(z) — ¢(2)(—In¢(z))"/k!  (n— ).

Thus the distribution of the rv ,(z) converges to the Poisson distribution whose
parameter is equal to —In ¢(x). In particular, if ¢(z) = € (z < 0) and
x1 < 22 < 0, then the expected number of E:'n which occur in the interval (z:, za)
asymptotically equals the length of the interval.

We conclude with

TueorEM 4.3. For every k we have G, < Gy . In particular, if ¢(z) € P(Q) then
also ®(x) € P(Q), where ®(x) is defined by (4.1).

Proor. Let ¢ () be a non-decreasing function in [0, 1], 0 = ¢(z) < 1. If ¢(€7)
and ¢(z) (0 = ¢(x) = 1) are logarithmically convex, then so is the function

¥(o(2)).

Indeed, for any non-positive x and y we have

Y(EW(e) < ¥ (exp (= + 1)/2)),
hence

V(@)W (8(y) = ¥ ((s(2)e()).
But since

¢(@)o(y) = ¢"((x + )/2)

and ¢ () is non-decreasing then

V(@@ (e(y) = ¥ (¢((@ + y)/2)).

By straightforward differentiation we verify that the function ¢(z) given by
(4.15) possesses all the properties formulated above. Thus, by what has just been
proved, the theorem follows from Theorems 3.2 and 4.1.
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