ON CONVERGENCE RATES IN THE CENTRAL LIMIT THEOREM¹

BY ELLEN S. HERTZ
Columbia University

1. Introduction and summary. Let X_1 , X_2 , \cdots be independent random variables with distribution functions V_1 , V_2 , \cdots , zero means and finite non-zero variances σ_1^2 , σ_2^2 , \cdots .

variances
$$\sigma_1^2, \sigma_2^2, \cdots$$
.
Set $s_n^2 = \sum_{1}^{n} \sigma_i^2$ and $\Phi(x) = (2\pi)^{-\frac{1}{2}} \int_{-\infty}^{x} e^{-t^2/2} dt$. Define

(1.1)
$$\psi_n(c) = \sum_{i=1}^n \int_{|x|>c} x^2 dV_i(x).$$

According to the well-known Lindeberg-Feller Theorem [1] the condition

$$s_n^{-2}\psi_n(\xi s_n) \to 0$$
 as $n \to \infty$ for all $\xi > 0$

is both necessary and sufficient in order that $P[(X_1 + \cdots + X_n)s_n^{-1} \leq x] \to \Phi(x)$ uniformly in x as $n \to \infty$ and that

$$\max_{1 \le j \le n} \sigma_j s_n^{-1} \to 0$$
 as $n \to \infty$.

Using the method of [3] and [4], it is shown that there exists an absolute constant K, independent of n and of the particular sequence V_1, V_2, \cdots such that

$$(1.2) \quad \sup_{-\infty < x < \infty} |P[(X_1 + \dots + X_n) s_n^{-1} \le x] - \Phi(x)| \le K s_n^{-3} \int_0^{s_n} \psi_n(u) \ du.$$

Some corollaries are deduced and the accuracy of this bound is investigated.

Using a truncation scheme, an absolute upper bound is also derived for $\sup_{-\infty < x < \infty} |P[(X_1 + \cdots + X_n)B_n^{-1} \le x] - \Phi(x)|$, where the assumption of finite variances is now dropped and B_n is a norming constant defined in (4.1).

2. Main results. Define

(2.1)
$$\Delta_n = \sup_{-\infty < x < \infty} |P[(X_1 + \dots + X_n)s_n^{-1} \le x] - \Phi(x)|.$$

Then we have

Theorem 1. There exists an absolute constant K such that

(2.2)
$$\Delta_n \leq K s_n^{-3} \int_0^{s_n} \psi_n(u) \ du.$$

PROOF. The proof follows from a result of Petrov [4], i.e.,

(2.3)
$$\Delta_n \le s_n^{-2} [(1 + \frac{1}{3} \cdot 14(2\pi)^{-\frac{1}{2}}) \psi_n(s_n) + 64C_0 e_n(s_n)]$$

where $e_n(c) = c^{-1} \sum_{1}^n \int_{|x| \le c} |x|^3 dV_i$ and C_0 is the absolute constant in the Berry-Esséen theorem. To obtain (2.2) from (2.3) it suffices to note that

(2.4)
$$c^{-1} \int_0^c \psi_n(u) \ du = \psi_n(c) + e_n(c)$$

which is easily established by inverting the order of integration on the left side of (2.4).

Received 13 May 1968.

¹ Adapted from the author's doctoral dissertation, Columbia University, 1967.

The constant K may be taken to be $1+\frac{1}{3}\cdot 14(2\pi)^{-\frac{1}{2}}+32C_0$. To obtain this from (2.3), it is necessary to halve the constant 64 appearing in (2.3). This can be done using the estimate $E|X-EX|^3 \leq 4E|X|^3$ which can be demonstrated with the aid of the identity $|X-EX|^3-|X|^3=(|X-EX|-|X|)(|X-EX|^2+|X|\cdot|X-EX|+X^2)$ and the moment inequality $(E|X|^s)^{1/s} \geq (E|X|^r)^{1/r}$ (s > r).

COROLLARY 1. Suppose for some $0 < \delta < 1$, some $M < \infty$ and some $\sigma^2 > 0$ we have $E|X_i|^{2+\delta} \leq M$ and $\sigma_i^2 \geq \sigma^2$ for all j. Assume, also, that

$$\beta_j(c) \equiv \int_{|x|>c} |x|^{2+\delta} dV_j \to 0 \quad as \quad c \to \infty$$

uniformly in j. Then $\Delta_n = o(n^{-\delta/2})$ as $n \to \infty$.

Proof. Letting $\beta(c) = \sup_{j} \beta_{j}(c)$, we have

$$\int_{|x|>c} x^2 dV_j = \int_{|x|>c} |x|^{2+\delta} |x|^{-\delta} dV_j \le c^{-\delta} \beta(c).$$

In view of the fact that $n \leq s_n^2 \sigma^{-2}$, the right side of (2.2) is at most $K\sigma^{-2}s_n^{-1} \int_0^{s_n} u^{-\delta}\beta(u) \ du$.

Select p > 1 such that $p\delta < 1$ and q such that 1/p + 1/q = 1. By Hölder's inequality,

$$s_n^{-1} \int_0^{s_n} u^{-\delta} \beta(u) \ du \le s_n^{-\delta} (1 - \delta p)^{-1/p} [s_n^{-1} \int_0^{s_n} \beta^q(u) \ du]^{1/q}.$$

The first factor is at most $(1 - \delta p)^{-1/p} \sigma^{-\delta} n^{-\delta/2}$. The second factor approaches zero by Kronecker's lemma. This proves Corollary 1.

COROLLARY 2. There exists a sequence of random variables that satisfies the central limit theorem for which

$$\Delta_n = o(1/s_n).$$

PROOF. Let V_i have a jump of $\frac{1}{2}$ at $\pm \sigma_i$, $i = 1, 2 \cdots$, where $\{\sigma_i\}$ is any sequence of positive constants for which $\sum_{1}^{n} \sigma_i^3$ remains bounded but $\sum_{1}^{n} \sigma_i^2 = s_n^2 \to \infty$ (e.g. $\sigma_i = i^{-\frac{1}{2}}$). Then

$$s_n^{-3} \int_0^{s_n} \psi_n(u) \ du = s_n^{-2} \sum_{1}^n \int_{|x| > s_n} |x|^2 \ dV_i + s_n^{-3} \sum_{1}^n \int_{|x| \le s_n} |x|^3 \ dV_i$$

= 0 + s_n^{-3} \sum_{1}^n \sigma_i^3.

This proves Corollary 2.

3. Some properties of the bound. Throughout this section B_n shall denote

$$Ks_n^{-3} \int_0^{s_n} \psi_n(u) du.$$

THEOREM 2. $B_n \to 0$ as $n \to \infty$ is necessary and sufficient to ensure that $\Delta_n \to 0$ and $\max_{1 \le k \le n} \sigma_k s_n^{-1} \to 0$ as $n \to \infty$.

Proof. Since $\psi_n(u)$ decreases with u, this follows from the Lindeberg-Feller theorem and the inequality

(3.1)
$$\epsilon s_n^{-2} \psi_n(\epsilon s_n) \leq s_n^{-3} \int_0^{\epsilon s_n} \psi_n(u) \, du \leq B_n K^{-1}$$

$$= s_n^{-3} \left(\int_0^{\epsilon s_n} \psi_n(u) \, du + \int_{\epsilon s_n}^{s_n} \psi_n(u) \, du \right)$$

$$\leq \epsilon + (1 - \epsilon) s_n^{-2} \psi_n(\epsilon s_n)$$
for all $\epsilon > 0$.

THEOREM 3. There exists a sequence of distribution functions for which B_n is sharp in the sense that $B_n\Delta_n^{-1}$ is bounded.

PROOF. In [2], the sequence $\{V_j\}$ is considered, where $V_j(x)=(1-e^{-j})G_1(x)+e^{-j}G_2(x), j=1,2,\cdots,G_1(x)$ is the symmetric Bernoulli distribution with jumps at the points ± 1 and $G_2(x)$ is any absolutely continuous symmetric distribution function with unit variance and infinite moments of order $2+\delta$. Moreover, it is shown that $s_n^{-2}\psi_n(\epsilon s_n)<(e-1)^{-1}n^{-1}$ when $n>\epsilon^{-2}$ and that $\Delta_n>e^{-2}(2\pi n)^{-\frac{1}{2}}$ for n sufficiently large. Taking ϵ to be $2n^{-\frac{1}{2}}$ and using the right half of (3.1) we obtain that $K\Delta_n B_n^{-1}\geq \frac{1}{3}e^{-2}(2\pi)^{-\frac{1}{2}}$ for n sufficiently large. Theorem 4. Let $V_j=V,j=1,2,\cdots$, where $V_j(x)$ is a symmetric distribution

THEOREM 4. Let $V_j = V, j = 1, 2, \dots$, where $V_j(x)$ is a symmetric distribution function and the restriction of 1 - V(x) to $(0, \infty)$ varies regularly with exponent -e, 2 < e < 3. Then there is a slowly varying function K(x) such that $B_n \Delta_n^{-1} \leq K(n)$ for all n.

Proof.

$$P[|X_1 + \cdots + X_n| > t] \ge \frac{1}{2}P[\max |X_i| > t]$$

for symmetric random variables [1] so that

$$(3.2) \quad 1 - F_n(x) \equiv P[(X_1 + \dots + X_n)(n\sigma^2)^{-\frac{1}{2}} > x] \ge \frac{1}{4}(1 - V^n(x(n\sigma^2)^{\frac{1}{2}})).$$

On the other hand it is well-known that

$$(3.3) 1 - \Phi(x) < (2\pi)^{-\frac{1}{2}} e^{-x^2/2} x^{-1}.$$

Set $\sigma^2 = \int x^2 dV$. As $\Delta_n \ge |1 - F_n(t_n \sigma^{-1}) - (1 - \Phi(t_n \sigma^{-1}))|$ for any choice of $\{t_n\}$, our aim is to select the sequence $\{t_n\}$ increasing rapidly enough so that $1 - \Phi(t_n \sigma^{-1})$ is small in comparison to $1 - F_n(t_n \sigma^{-1})$ since, by (3.2),

(3.4)
$$[1 - \Phi(t_n \sigma^{-1})][1 - V^n(t_n n^{\frac{1}{2}})]^{-1} \to 0$$
 as $n \to \infty$ implies

$$\Delta_n \geq \frac{1}{2}(1 - F_n(t_n\sigma^{-1})) \geq \frac{1}{8}(1 - V^n(t_nn^{\frac{1}{2}}))$$
 for n sufficiently large.

However, $\{t_n\}$ must increase slowly enough to keep $B_n[1-V^n(t_nn^{\frac{1}{2}})]^{-1}$ slowly varying. Let

(3.5)
$$t_n = (2\sigma^2 \gamma \ln n)^{\frac{1}{2}} \text{ where } \gamma > \frac{1}{2}(e-2).$$

The hypotheses imply that $1 - V(t) = t^{-\epsilon}L(t)(t > 0)$ with L(t) slowly varying. Now,

$$(3.6) \quad 1 - V^{n}(t_{n}n^{\frac{1}{2}}) = (1 - V(t_{n}n^{\frac{1}{2}}))(1 + V(t_{n}n^{\frac{1}{2}}) + \cdots + V^{n-1}(t_{n}n^{\frac{1}{2}}))$$

$$\geq nV^{n}(t_{n}n^{\frac{1}{2}})(t_{n}n^{\frac{1}{2}})^{-e}L(t_{n}n^{\frac{1}{2}}).$$

Also,

$$V^{n}(t_{n}n^{\frac{1}{2}}) = (1 - L(t_{n}n^{\frac{1}{2}})t_{n}^{-e}n^{-e/2})^{n} = (1 + o(n^{-1}))^{n} \to 1$$

as $n \to \infty$ in view of (3.5). Then by (3.6)

(3.7)
$$1 - V^n(t_n n^{\frac{1}{2}}) \ge S(n) n^{(2-\epsilon)/2}$$
 for n sufficiently large,

² For the definitions of slowly and regularly varying functions and their properties, the reader is referred to [1].

where $S(n) \equiv \frac{1}{2}t_n^{-e}L(t_nn^{\frac{1}{2}})$ is a slowly varying function of n. Because of (3.3), (3.5) and (3.7) we have

$$[1 - \Phi(t_n \sigma^{-1})][1 - V^n(t_n n^{\frac{1}{2}})]^{-1} \leq \sigma(2\pi)^{-\frac{1}{2}} t_n^{-1} S^{-1}(n) n^{(e-2)/2 - \gamma}$$

for n sufficiently large so that by (3.4) and (3.7),

(3.8)
$$\Delta_n \ge \frac{1}{8}S(n)n^{(2-e)/2}$$
 for n sufficiently large, say, $n \ge n_0$.

But $\psi_n(c)n^{-1} = \int_{|x|>c} x^2 dV = 2L(c)c^{2-e} + 4\int_c^{\infty} x^{1-e}L(x) dx$ and using the results in [1] it is seen that

$$\psi_n(c)n^{-1} = c^{2-e}N(c)$$

with N(c) slowly varying. Then

$$B_n K^{-1} = \sigma^{-3} n^{-\frac{1}{2}} \int_0^{\sigma_n \frac{1}{2}} u^{2-e} N(u) du$$

and the same results show that

(3.9)
$$B_n = M(n)n^{(2-e)/2}$$
, with $M(n)$ slowly varying.

Then by (3.8) and (3.9)

$$B_n \Delta_n^{-1} \le 8M(n)(S(n))^{-1}$$
 $(n \ge n_0).$

To complete the proof, set

$$K(x) = \max_{k=1,\dots,n_0} B_n \Delta_n^{-1}$$
 if $x \le n_0$;
 $K(x) = 8M(x)(S(x))^{-1}$ if $x > n_0$.

4. The case without variances.

THEOREM 5. Set

$$U_{i}(c) = \int_{|x| \leq c} |x|^{2} dV_{i},$$

$$A_{n}(c) = \sum_{i=1}^{n} c \int_{|x| > c} |x| dV_{i}.$$

Assume

(4.1)
$$B_n^2 = \sum_{i=1}^n U_i(B_n) > 0.$$

Define $G_n(x)$ to be $P[(X_1 + \cdots + X_n)B_n^{-1} \leq x]$,

$$\Delta_n = \sup_{-\infty < x < \infty} |G_n(x) - \Phi(x)|.$$

Then there is an absolute constant K' such that

$$(4.2) \Delta_n \leq K' B_n^{-3} \int_0^{B_n} A_n(u) \ du.$$

PROOF. Let $X_i' = X_i$ if $|X_i| \leq B_n$ and 0 if not, $i = 1, 2, \dots, n$. Set

(4.3)
$$b_n(c) = c^{-1} \sum_{1}^{n} \int_{|x| \le c} |x|^3 dV_i,$$
$$s_n^2 = \operatorname{Var} (X_1' + \dots + X_n').$$

Using an argument that parallels the one in [4], we obtain that

$$A_n(B_n)B_n^{-2} > \frac{3}{4}$$
 if $s_n < B_n/2$ and $B_n^2 \Delta_n \le 1 + \frac{1}{3} \cdot 10(2\pi)^{-\frac{1}{2}} A_n(B_n) + 32C_0 b_n(B_n)$

if $s_n \geq \frac{1}{2}B_n$, where C_0 is the absolute constant in the Berry-Essén theorem. The conclusion follows from the fact that

(4.4)
$$c^{-1} \int_0^c A_n(u) \ du = \frac{1}{2} (A_n(c) + b_n(c)).$$

Theorem 6 shows that Theorem 5 is non-vacuous, and gives sufficient conditions that the bound of Theorem 5 approach zero.

Theorem 6. If V_1 , V_2 , $\cdots = V$ where V is in the domain of attraction of the normal law and $B_n \to \infty$ as $n \to \infty$ then the bound approaches zero. Also, if V is continuous and in the domain of attraction of the normal law, then for n sufficiently large, there exist solutions $\{B_n\}$ of (4.1) so that $B_n \to \infty$.

Proof. The hypotheses imply that $U(c) \equiv \int_{|x| \le c} x^2 dV$ is slowly varying.

 $U(c)c^{-2} \to 0$ as $c \to \infty$. There exists c_0 such that $U(c_0) > 0$. Let n_0 be the smallest positive integer such that $U(c_0)c_0^{-2} > n_0^{-1}$. Then, if U(c) is continuous, there is some $B > c_0$ such that $U(B)B^{-2} = n_0^{-1}$. Call it B_{n_0} . Inductively, if $U(B_n)B_n^{-2} = n^{-1}$, select $B_{n+1} > B_n$ so that $U(B_{n+1})B_{n+1}^{-2} = (n+1)^{-1}$. If $c_0 < B_n < M$ then $U(B_n)B_n^{-2} > U(c_0)M^{-2}$ so it must be that $B_n \to \infty$.

This proves the second assertion.

The bound is

$$\frac{1}{2}K'[\int_{|x| \leq B_n} |x|^3 dV[B_n U(B_n)]^{-1} + B_n \int_{|x| > B_n} |x| dV[U(B_n)]^{-1}]$$

because of (4.1)-(4.4).

Denote the terms in brackets by T_1 and T_2 respectively. For arbitrary $\epsilon > 0$,

$$T_1 \leq \epsilon + [U(B_n) - U(\epsilon B_n)][U(B_n)]^{-1}$$
.

Since U is slowly varying, $T_1 \to 0$ as $B_n \to \infty$.

Integrating by parts,

$$T_2 = -1 + B_n[U(B_n)]^{-1} \int_{B_n}^{\infty} U(x) \cdot x^{-2} dx.$$

The results of [1] on slowly varying functions show that

$$B[U(B)]^{-1} \int_{B}^{\infty} U(x) \cdot x^{-2} dx \to 1 \text{ as } B \to \infty.$$

This proves the first assertion.

REFERENCES

- [1] Feller, W. (1966). An Introduction to Probability Theory and its Applications, 2. Wiley, New York.
- [2] IBRAGIMOV, I. A. and OSIPOV, L. V. (1966). On an estimate of the remainder in Lindeberg's theorem. Theor. Prob. Its Appl. 11 125-128.
- [3] KATZ, M. L. (1963). Note on the Berry-Esséen theorem. Ann. Math. Statist. 34 1107-1108.
- [4] Petrov, V. V. (1965). An estimate of the deviation of the sum of independent random variables from the normal law. Soviet Mathematics 6 242-244.