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ON CONVERGENCE RATES IN THE CENTRAL LIMIT THEOREM!
By ELiLEN S. HErTZ
Columbia University

1. Introduction and summary. Let X;, X2, --- be independent random
variables with distribution funections Vi, Vs, - - - , zero means and finite non-zero

variances 012, @2, e, \
Set s, = D 7ol and ®(z) = (2r) 7 [Z, ¢ di. Define

(1.1) Yn(c) = 207 [1ai5ea” dV ().
According to the well-known Lindeberg-Feller Theorem [1] the condition
Sn () — 0 as n— forall £¢>0

is both necessary and sufficient in order that P[(X; + - -+ + Xa)s, ~ < 2] — ®(z)
uniformly in z as n — « and that

-1
maxi<;j<n0iSn — 0 as n-— o,

Using the method of [3] and [4], it is shown that there exists an absolute con-
stant K, independent of n and of the particular sequence Vy, V2, - - such that
(12) SUP—w<z<o0 IP[(Xl + e + Xn)sn—l é x] - @(15)' é Ksn_3 fgn ¢n(u) du-

Some corollaries are deduced and the accuracy of this bound is investigated.
Using a truncation scheme, an absolute upper bound is also derived for

SUP—w<a<eo |P[(X1 + -+ 4+ X,)B, " < 2] — ®(2)|, where the assumption of

finite variances is now dropped and B, is a norming constant defined in (4.1).

2. Main results. Define
(2.1) Ap = SUP_w<z<ew |P[(X1 4+ -+ + X8, ' < 2] — &(2)|.

Then we have
TurEOREM 1. There exists an absolute constant K such that

(2.2) An = Ksa 7 [0 ¥a(u) du.
Proor. The proof follows from a result of Petrov [4], i.e.,
(2:3) An = 5 1(1 4 §-14(2m) n(sa) + 64Coea(s,)]

where e,(c) = ¢ 2.7 [ls1<c |2/° AV and C, is the absolute constant in the
Berry-Esséen theorem. To obtain (2.2) from (2.3) it suffices to note that

(2.4) ¢ S vn(u) du = Ya(c) + eu(c)

which is easily established by inverting the order of integration on the left side
of (2.4).
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1 Adapted from the author’s doctoral dissertation, Columbia University, 1967.
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The constant K may be taken to be 1 + 1.14(27)"* 4 32C, . To obtain this
from (2.3), it is necessary to halve the constant 64 appearing in (2.3). This can
be done using the estimate £ |[X — EX|* < 4F |X[|* which can be demonstrated
with the aid of the identity |[X — EX|* — |X|" = (|X — EX| — [X|)(|X — EX[’
+ |X|-]X — EX| + X*) and the moment inequality (E|X|)"" = (E|X|)""
(s > r).

CoroLLARY 1. Suppose for some 0 < § < 1, some M < « and some o > 0 we
have E |X;*° < M and o} = o for all j. Assume, also, that

Bi(c) = [lose |2 dV;—0 as ¢ »

uniformly in j. Then A, = o(n™*) asn — .

Proor. Letting 8(¢) = sup; B;(c), we have
Jiei>e 2 AV = [paise 27 27 dV; = ¢7'8(c).
In view of the fact that n =< s, °, the right side of (2.2) is at most
Ko %, [oru”’8(w) du.
Select p > 1 such that pd < 1 and ¢ such that 1/p 4 1/¢ = 1. By Holder’s
inequality,
st [ uB(u) du = 8,70 (1 — op) Psat [ 8% (w) dul''e.

The first factor is at most (1 — 8p) %o *n~*"*. The second factor approaches zero
by Kronecker’s lemma. This proves Corollary 1.
COROLLARY 2. There exists a sequence of random variables that satisfies the central
limat theorem for which
A, = 0(1/s,).

Proor. Let V;have a jump of  at +=¢,,7 = 1,2 - - -, where {o,} is any sequence
of positive constants for which > 7 o remains bounded but Srel =8 —
(e.g.o; = 7 ). Then

sn_s fgn ‘pn(u) du

80 " D0 [rarsen [0 AVt 827" 208 [ o1 <o |22 AV
=0+ Sn_3 Zln 0'i3-
This proves Corollary 2.
3. Some properties of the bound. Throughout this section B, shall denote
Ks, " [0 ¥n(u) du.

THEOREM 2. B, — 0 as n — « 1s necessary and sufficient to ensure that A, — 0
and max; <x<n 048, — 0 asn — oo.

Proov. Since ¢, (u) decreases with u, this follows from the Lindeberg-Feller
theorem and the inequality

(3.1) €Sn Un(esn) < su° fff" Ya(u) du < B,K'
a0 (5™ Ya(u) du + [22,¥a(u) du)
Ze + (1 - e)sn_2¢n(esn)

forall ¢ > 0.
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TuEOREM 3. There exists a sequence of distribution functions for which B, s
sharp in the sense that B,A, " is bounded. .

Proor. In [2], the sequence { V} is considered, where Viz) = (1 — e )Gi(x)
4+ ¢7Gy(z),j = 1,2, -+, Gi(x) is the symmetric Bernoulli distribution with
jumps at the points =1 and Gy(z) is any absolutely continuous symmetric dis-
tribution function with unit variance and infinite moments of order 2 + 5. More-
over, it 1s shown that s, Yn(es,) < (¢ — 1)"n™" when n > ¢’ and that
A, > ¢ %(2mn)? for n sufficiently large. Takmg e to be 2n ! and using the
right half of (3.1) we obtain that KA,B,™ = 3¢~ 2(2x)"* for n sufficiently large.

THEOREM 4. Let V; = V,j = 1,2, .-+ , where V;(z) s a symmetmc distribution
function and the restriction of 1 — V(x) to (0, =) varies reqularly’ withexponent
—e, 2 < e < 3. Then there is a slowly varying function K(x) such that
B,,A,,_l < K(n) for all n.

Proor.

PlX: + -+ + X,| > #] =2 $P[max |X,| > {]

for symmetric random variables [1] so that
(32) 1 —Fu(z) = P[(X1+ - 4+ X)) > 2] = (1 — V'(z(na))})).

On the other hand it is well-known that
(3.3) 1 —a(z) < (2m) e

Seto’ = [2°dV.AsA, = |1 — Fo(tws ™) — (1 — ®(4,0"))| for any choice of
{t,}, our aim is to select the sequence {{,} increasing rapidly enough so that
1 — ®({yo ") is small in comparison to 1 — F.(t,c ") since, by (3.2),

(34) 1 — ®(tw DIl — V)™ — 0 as n - o« implies
A, = M1 — Foltas ™) = 31 — V*(t,n}) for n sufficiently large.

However, {f,} must increase slowly enough to keep B,[1 — V*(tnd)] " slowly
varying. Let

(3.5) t, = (2c°yInn)! where v > (e — 2).

The hypotheses imply that 1 — V() = ¢ °L(¢)(t > 0) with L(t) slowly vary-
ing. Now,

(36) 1 — V'(tnd) = (1 — V(tah))(L + V() + -+ 4+ V"7 (Enh)

> aV"(tan?) (tan?) L (Ent).
Also,
Vi(tnd) = (1 — L))t ™) = (1 + o(n ™))" — 1

asn — o in view of (3.5). Then by (3.6)
(3.7) 1 — V*(tnd) = S(n)n® 2" for = sufficiently large,

2For the definitions of slowly and regularly varying functions and their properties, the
reader is referred to [1].
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where S(n) = 1, °L(t;n}) is a slowly varying function of n. Because of (3.3),
(3.5) and (3.7) we have
[ — @t ™)L = V't = o(2m) 7787 (n)n >
for n sufficiently large so that by (3.4) and (3.7),
(3.8) A, = 38(n)n® " for n sufficiently large, say, n = ng.

But ¢u(c)n™ = [osea®dV = 2L(c)¢° + 4 [7 & °L(z) dz and using the
results in [1] it is seen that

Yale)n™ = *N(c)
with N(c) slowly varying. Then .
B,K' =o'} fg"* W N (u) du
and the same results show that
(3.9) B, = M(n)n® 2" with M (n) slowly varying.
Then by (3.8) and (3.9)
B.AT < 8M(n)(S(n))™ (n = no).
To complete the proof, set
K(z) = MaXieq,....ny BoAn " if 2z < mo;
K(z) = 8M(z)(S(z))™" if 2 > n,.
4. The case without variances.
THaEOREM 5. Set
Uie) = [ia1< lal* dVs,
Au(e) = 27 ¢ [rase 2] AV
Assume
(4.1) B, = 2.7 U«(B,) > 0.
Define G,(z) to be P[(Xy + -++ + X,)B,™" < 1],
A, = SUDP_wci<e |Gn(z) — ®(2)].

Then there is an absolute constant K' such that

(4.2) A, < K'B,” [T A (w) du.
Proor. Let X = X;if |Xi < B,and 0if not, s = 1,2, --- , n. Set
(4.3) ba(e) = ¢ 227 [ <o o’ dVs,

s = Var (X{ + -+ + X.,)).
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Using an argument that parallels the one in [4], we obtain that
Au(B))B, "> 3% if s, < B,/2 and
B.Ay £ 1+ %-10(27) *4,(B,) + 32Ceb.(B,)

if s, = 3B, , where Cy is the absolute constant in the Berry-Essén theorem.
The conclusion follows from the fact that

(4.4) ¢ An(u) du = L(A.(c) + ba(c)).

Theorem 6 shows that Theorem 5 is non-vacuous, and gives sufficient condi-
tions that the bound of Theorem 5 approach zero.

THEOREM 6. If V1, Vi, --- = V where V s in the domain of attraction of the
normal law and B, — «© asn — o then the bound approaches zero. Also, if V is
continuous and in the domain of attraction of the normal law, then for n sufficiently
large, there exust solutions {B,} of (4.1) so that B, — .

Proor. The hypotheses imply that U(c) = [ja<.2° dV is slowly varying.
U(c)c® — 0 as ¢ — . There exists ¢o such that U(c,) > 0.

Let no be the smallest positive integer such that U(co)co > > mo . Then, if
Ul(c) is continuous, there is some B > ¢, such that U(B)B™> = ng . Call it
B., . Inductively, if U(B,)B, > = n™", select B,y1 > B, so that U(Bus1)Bnt1
= (n+4 1) If oy < B, < M then U(B,)B, > > U(co)M* so it must be that
B, — .

This proves the second assertion.

The bound is

3K ([ 10125, |2 AVIBLU(BW)]™ + B (155, |2| dVIU (B

because of (4.1)-(4.4).
Denote the terms in brackets by T and T respectively. For arbitrary ¢ > 0,

Ty = e+ [U(Ba) — U(B)IU(BLI™

Since U is slowly varying, Ty — 0 as B, — o,
Integrating by parts,

T, = —1 4 B,JUB)]" [3, U(z)-2° de.
The results of [1] on slowly varying functions show that
BIUB) ™ [3U(z)-a*dz—1 as B— .

This proves the first assertion.
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