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ON FINITE PRODUCTS OF POISSON-TYPE CHARACTERISTIC
FUNCTIONS OF SEVERAL VARIABLES

By RoceEr CurpPEns!

The Catholic Unversity of America and Faculté des Sciences, M ontpellier

1. Introduction. A characteristic function f of the n variables ¢t = (4, -« -,
t.) is a Poisson-type characteristic function if it is of the form

F(8) = exp {iP(t) + oAy, n(€ AT H ORI _ 1),

where P is a polynomial of degree one without constant term and with real co-
efficients, the A are non-negative constants, @ = (a1, * -+, @,) is a real vector,
¢=0o0rl(j=1,---,n)and Y. indicates the summation on the 2* — 1 values
ofe = (&, -, ¢,) different from (0, -- -, 0).

Therefore, the product f of two Poisson-type characteristic functions is of the
form

(11) (1) = exp {iP(2) 4 Doeepoor e, (g7 1o1iHFeneat) _
+ ”51."',5”(ei €181¢1+- -+ +enBntn) _ 1)]}

with evident conditions on P, & = (a1, -+, @), 8 = (B1, -+, Bx) and the
constants A and u. In the case n = 2, we modify the notations and write (1.1)
ijn the form

(1.2) f(t) = exp (3P () + M(e™" — 1) 4 w(e*?' — 1) + py('Crir22) — 1)
+ )\2(61'61:1 -1+ M(efﬂztz -1+ v2(ei(ﬂ1t1+ﬂztz> — 1)},

In the case of one variable, it is known since P. Lévy [3] that the product
of two Poisson-type characteristic functions has no indecomposable factor (in
the sense of the decomposition of characteristic functions). But in the case of
two variables, it is not the same: There are products of two Poisson-type charac-
teristic functions which have indecomposable factors as it is shown in Section 2.
Nevertheless, it is possible to find simple conditions assuring that the product
of two Poisson-type characteristic functions has no indecomposable factor as
it is shown in Sections 3 and 4. Finally, in Section 5, we give some results on the
finite product of Poisson-type characteristic functions.

2. A counter-example. Let f be the product of two Poisson-type characteris-
tic functions defined by
flh, &) = exp {M(e™ — 1) + u(e™ — 1) + (™™ — 1)
+ ha(e = 1) + (e = 1) 4 (e — DY,

where \;, p;, v; ( = 1, 2) are all positive. Then f has an indecomposable factor.
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The proof is almost identical to the one showing that the product of three
Poisson-type characteristic functions of one variable may have an indecomposable
factor (see, for instance, [4], pp. 178-179). Let P be the polynomial defined by

Pla,y) = 14+ Nz + wy’ + nay’ + M2’ + my + w2’y — kxy, (k> 0).
If k is taken small enough, the expansion of
exp [P(z, y)] = 270 [P(x, y))/j!

in an entire series of the two variables x and % has only non-negative coefficients.
Indeed we may choose % small enough so that the polynomials P* and P® have
only non-negative coefficients. In this case, all the polynomials P" (m > 1)
have only non-negative coefficients and only the coefficient of xy in exp [P(z, y)]
can be negative. But this coefficient is

Mpe — 2k + C,
C being non-negative, and therefore if
k é %)‘11"2 ]

the expansion of exp [P(z, ¥)] has only non-negative coefficients. The function
defined by exp [P(x, y) — P(1, 1)] is then a generating function so that the
function g defined by

g(h, b) = exp [P(e", €*) — P(1,1)]
exp {M(e™ — 1) 4+ m( — 1) 4 n (PP — 1) 4 N(e¥ — 1)
+ ”z(eitz _ 1) + Vz(ei(2t1+tz) _ 1) _ k(ei(h—Hz) _ 1)}

is a characteristic function which cannot be infinitely divisible from the Lévy’s
representation ([1], Chapter 1, Section 2). Therefore ([1], Theorem 1.6), g has
an indecomposable factor. Since g divides f, f is a product of two Poisson-type
characteristic funections which has an indecomposable factor.

3. A general theorem. Case n = 2. Recall (cf. [1], Chapter 4) that a function
¢ of the n complex variables 2 = (21, - - , 2,) is said to be a ridge function if it
is an entire function satisfying the condition

(3.1) le(2)] £ ¢(Rez), Rez = (Rez, .-+, Rez,); zeC".

TureoREM 1. Let ¢; and ¢» be two ridge functions of the two variables z = (21, 2)
such that

(32) ¢l(z)¢2(z) = exp {7(‘(2) + )\leouzl + Mleagn + ylea121+a222
+ )\265121 + #265222 + yzeﬁlzﬁ"ﬂzn}’

where m s a polynomial of degree one, N\;, uj, v; (7 = 1, 2) are non-negative constants
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and & = (a1, ), B = (B1, B:) are real vectors. If one of the following conditions™

(a) aps £ 0;
(b) 0<a<pP, 0=oa=p;
(e) 0< a1 < B, 0< B < oy, BiBs + oy — Piae > 0;
(d) 0< < B, Bi/ay trrational

s satisfied, then
<p1(2) = exp {P(Z) + llealzl + mle“m + nle“‘“““‘*
+ l26ﬂ1¢1 + m2eﬂ2=2 + nzeﬂlzz-"ﬂzzz}r
where P, l;, m; , n; have respectively the same properties as m, Nj, w;, vj.
Proor. The idea is the same as the one used for the proof of the Theorem

5.1 of [1]. We use the following theorem which can be deduced from Theorem
VII of Ostrovskiy [5] (see also [6], p. 122).
Let ¢1 and ¢2 be two ridge functions of the variable z such that
e1(2)ea(2) = exp {m(2) + N + ue™},
where 7 is a polynomial of degree one, « and @ are real constants and A and u
are non-negative constants. Then
o1(z) = exp {P(2) + ™ + mé™},
where P, [, m have respectively the same properties as m, \, u.

We may suppose, without loss of generality, that ex < 81, B1 > 0, B2 > 0.
We fix 2z, real. ¢1 and ¢, are ridge functions of z; which satisfy the conditions of the:
above theorem. Therefore
(3.3) ¢1(2) = exp {a + ba + pe™*t + ¢},
where a, b, p, q are functions of 2, , real for 2z, real. Then, fixing z; real, we obtain
the representation
(34) ei(2) = exp {d' + b'a + p'e™™ + ¢,
where o, b, p’, ¢’ are functions of z , real for z real. Therefore we obtain from
(8.3) and (3.4) the equation for any z; and 2, real

a + bz 4 pe™ + g = o' + b + ple™ + g

Using the well-known properties of linear independence of polynomials and
exponentials, we can solve this equation and obtain the representation for

21, 23 real
o1(z) = exp {P(z) + caee + he™ + mpe™ + ppe T A

(3.5) + mzeﬁzzz + n2615111+ﬂ222 + ne“l'ﬁﬂz'z + rzeﬂltri'“zzz + slzge“"‘

+ 020" + 826" + LY.

? We have not written the symmetrical conditions obtained by exchanging the roles of
z1 and 2z .
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Since, in the two members of (3.5), we have two entire functions of z; and 2,
the representation (3.5) is also valid for 2; and 2, complex. Setting

u(‘”} Z/) = Re IOg [Sol(x + zy)], T,Yye Rz)
we obtain, by a simple calculation,
u(z, 0) — u(z, y)

171 gin® L(ay) + me™®™? sin’ 3 (0212)

= cyye + 2[Le
+ ne®T gin® Loy, 4+ asyp) + Le®™ sin® 1(Buws)
+ M’ sin® 3(Baye) + ma® TR sin® 3(Bun + Baya)
(3.6) + e 6in? L(anyy 4 Ba) + 1N sin® 1By + awyn)

X171

+ sitse sin® (awn) + hxe” sin® 1(Bun)

+ so116°? sin® (asys) + b’ sin® (Baye)]

+ sype™ sin axyr + Lyed® T sin By + syne™™? sin ooy,
+ tayse”**% sin oy,

and, from the definition (3.1) of a ridge function, we must have

(3.7) u(z, 0) — u(z, y) = 0.
Letting 11 = y» — =+ in (3.6) and using (3.7), we obtain ¢ = 0; similarly,
letting y1 = —y. — + ®, we obtain ¢ = 0. Hence
¢c=0.

Let z; and 3 be arbitrary, but fixed, and |ys| — . Then we can conclude from
(3.6) and (3.7) that

B1z1

81" sin agyr + 4" sin By = O.
Hence
st =4 = 0.
In the same way, letting |y| — «, we find
s =1t = 0.

‘We obtain now for y1 =
(3.8) u(x, O) - u(x, y) = 26'12332 Sin2 %’(azyz)[ml + nlealml + rzeplzl]

+ 26°%°2 sin® 1(Bay) [ma + Mt + 11e*"Y]
and for ys = 0

(3.9) u(z,0) —u(z,y) =2 sin® L (o) [ + me™™® + e
+ 26°%1 sin® L(Buyn)[la + ne’™? + 6™

We distinguish now the different cases.
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Case (a). In the cases a2 = B and au = 0, there is nothing to prove. We sup-
pose that as < B2, ax < 0 (the proof is the same if az > 82, a1 < 0). Comparing
(3.7) and (3.8), we obtain for 2, — +

(3.10) ma + nee” 4 1™t = 0
and for z, —» — »
(3.11) my 4+ me™ 4 1 2 0
From (3.10), we obtain for x; — —

n 2 0,

and therefore r, = 0, since the corresponding term in ¢, has the same sign and
since their sum is zero from (3.2). We obtain then for z; — — =,

me = 0
and for 2; — 4
ne = 0.
From (3.11), we obtain in the same way
re = 0, my = 0, n = 0.
Comparing (3.7) and (3.9), we obtain
Lzo, l.z 0,

and the theorem is demonstrated in this case.
Case (b). We can suppose 0 < az < B, the cases a; = 0 and az = (3, being
trivial. Comparing (3.7) and (3.8), we obtain in the same way

ry = 0, m =0, m =0, my=0, 1m0,
and comparing (3.7) and (3.9), we obtain
ry = 0, L=z0, lhb=0,

and the theorem is demonstrated.
Case (¢). Comparing (3.7) and (3.8), we obtain as in the case (b)

’l"2=0, mlgO, ’nléo, ngO, nng
and comparing (3.7) and (3.9), we obtain
L =0, I, = 0.

It remains to demonstrate that r1 = 0 and it is sufficient, from the remark made in
the Case (a) to demonstrate that r; = 0. Because of condition (¢), we can choose
w1 and y, such that

a1 + QoY = 21!',
By + Baye = 2m.
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We have then
u(z, 0) — u(zx, y)
(3.12) = 2[he™™ sin® L(agys) + M2 sin® L(onys) + Le® sin® 1(Bw1)
+ mae’ sin® $(Baye) + 1€ sin® Loy + Bay)]
From the condition
o + 1By — Bz > 0
we may choose 2 = kx: (k constant) so that
s + Bats > only,
s + Bate > Pis.
Letting then 2 — c, we obtain from (3.7) and (3.12)
u(z, 0) — u(z, y) = ¢ “"*Yr, sin’ §(ouys + Boy) + 0(1)]
and since ouyy + Bays # 2ma for any integer m,
=0

and the theorem is demonstrated in this case.
Case (d). We may suppose that 0 < 82 < o (the other cases are contained in
the cases (a) and (b). Asin the case (¢), we obtain from (3.7) and (3.8)

7‘2=0, mlgO, nlgO, ngo, ’nzgo,
and from (3.7) and (3.9)
L =0, Iy = 0,

and it remains to demonstrate that r; ig zero and for that it is sufficient to show
that r, = 0. Setting y» = 27/az, since B1/a; is irrational, from a theorem of
Kronecker ([2], Theorem 444), it is possible to find y1 = 1:1(x2) such that

sin 3(aagn) = o(e7*?),  sin $(Bun + Bup) = o(e#*?)
when z; — + . We have then
w(z, 0) — u(z, y) = ¥ ms sin® $(Baye) + 71€™* sin” §(ouys + Bagp) + o(1)]

when z; — -+ =, so that letting x; great enough, we obtain 7; = 0 and the theorem
is demonstrated.

From this theorem and from the relations between entire characteristic
functions and ridge functions (see [1], Chapter 4), we deduce almost immediately
the

CoroLLARY. Let f be the product of two Poisson-type characteristic functions of
two variables t = (&, t.) defined by (1.2). If the vectors @ = (o1, az) and
B = (B1, B2) satisfy one of the conditions of the Theorem 1, f has no indecomposable
factor.
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REmARK. The example of the Section 2 satisfies the condition
0 <o < By, 0< B < as, BB + awoy — Bz = 0.

4. The case n arbitrary.
THEOREM 2. Let ¢ and ¢, be two ridge functions of the n variables
2= (21, -+, 2,) such that

¢l(z)¢2(2) = exp {ﬂ'(z) + Ze [)\q'm'eneqalz1+...+ena,,z,. + 'u’el'm""eelﬂlz1+...+¢nﬂ,.z,.]}

where w 18 a polynomial of degree one, a = (a1, *+-, as) and 8 = (B1, -+, Bn)
are real vectors (we may suppose, without loss of generality, that 8 is positive), the
N and p are non-negative constants, ¢; = 0 or 1 (j = 1, --- , n) and 2. indicates
the summation on the 2" — 1 values of € = (e1, - - - , €,) different from (0, -- -, 0).

If for all couples of indices (j, k), a;, B;, ax, Bx satisfy one the conditions of the
Theorem 1, then

01(2) = €XD (P(2) F Dt lly g™ i g0 )

where P, the | and m have respectively the same properties as w, the A and u.
Proor. We proceed by induction and suppose that this theorem is true for the
ridge functions of k( <n) variables. We suppose also that n is greater than 2.
If we fix 2 real, we may apply the induction hypothesis and obtain the
representation

(41) @i(2) = exp {a + 2 iabpy
+ Ze' [Ee'eew”“"""‘"“n’" _I_ ne,e€2ﬁ222+--~+enﬁnz"]}

where a, b;, £ , ne are functions of 2, real for 2; real and where . indicates a

summation on the 2" — 1 values of € = (e, - - - , €,) different from (0, - -+, 0).
If we fix 25, - - -, 2, real, we may apply the Ostrovskiy’s theorem cited above

and obtain

(4.2) e1(2) = exp {y + 621 + pe™* + oY)

where v, 8, p, ¢ are functions of the variables 2., - -, 2., real for z;, ---, 2,

real.

If we compare (4.1) and (4.2), we obtain an equation which can be solved by
a use of the linear independence of polynomials and exponentials. We obtain
for z;, - -+ 2, real the representation

ei1(2) = exp {P(2) + D2ia Crrzs
+ Ze [l€e€1a121+"'+€n°‘nzn + meeelﬂlzl'l‘"""enﬂn’n]
(4 3) + Z , [p /ea121+€2ﬂ2z2+--.+enﬂnzn + qeleﬂlzl+€2a232+'"+€nanzn
o € €
_I_ relzlee2°‘2z2+"'+enan’n _I_ se'zlef2ﬂ222+"'+€nﬂnzn]
+ Dor [ze™t + wize’ )

where P is a polynomial of degree one and where all the constants Cy, I, m.,
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Der s Qer 5 Ter , Ser , Ui , Wy, are real. Since in the two members of (4.3) we have entire
functions of 2;, ---, 2., the representation (4.3) is also valid for 2z;, --- 2.
complex.

If we take all the variables other than z; and z; fixed and real, we may apply
the Theorem 1 and obtain the representation

(44) @i(2) = exp {r + vz + &'z + fie™* + qe* + het
+ £+ g 4 he eﬂlzl+ﬁjzj}-

Comparing (4.3) and (4.4), we obtain from the independence of polynomials
and exponentials

Cj=0, Uj=0, w,-=0‘
and
Per = Qo = Ter = S = 0
for all ¢ such that ¢; = 1. Since j is arbitrary, we obtain finally the representation
(4.5) @(2) = exp {P(2) + Dellerrrttenonmn 4 gy gerbrovttenbuin)y
It remains to demonstrate that
(4.6) .20, mz20.

Fixing z; , we may apply again the induction hypothesis and obtain the repre-
sentation

e1(2) = exp {P;(z)
+ Ze" [ler exp (aa121 + - - + g0 1zjo1 + €0z +  + + enn2a)
+ mer exp [afi2r + -+ + €1Bi-12im1 F €11BitiZiy T+ o0t €nBaza)l}
with evident notations. Moreover

lee = 0, mer = 0.

[\%

Since, from (4.5)
le. = lq.ez."',€j~1-0-€j+1-"’-€n + lel,ez,---,e,-_l,l,ejﬂ,---.eneam
Bjzj
Mer = Meg,en, 0+ ,65-1,0,6541 16 + My e, e ej1.1i65 41,0 en ’

we obtain easily (4.6).

From this theorem, we obtain easily the

CoRrOLLARY. Let f be the product of two Poisson-type characteristic functions of
the n variablest = (11, - - - t,) defined by (1.1). If for all couples of indices (J, k),
aj, B;, ai, Br satisfy one of the conditions of the Theorem 1, f has no indecompos-

able factor.
6. Other results. With the method used here, we can also deduce from the

corresponding results of Ostrovskiy in the case of one variable ([5]) the follow-
ing results on the finite products of Poisson-type characteristic functions.
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TrrEorEM 3. Let f be the product of three Poisson-type characteristic functions
defined by

f(t) = f(tl7 ] tn) = exp {iP(t)
+ Z?=l Zé )\i’q,”.'enle’i(“jdéltl-h--+aj,,,e,,t,,) _ 1]}.

If for k = 1,2, --- n, the o, satisfy one of the following conditions

(a) ap <0,a30>0,0 < g, < min (g, —ur);

(b) o1 < 0,036 >0,0> s > max (—asr, a1,r);

() 0< o < app < min (2001, ask);

(d) 0> oqp > asp > max (2ou, ask)
then f has no indecomposable factor.

TeEOREM 4. Let f be the product of four Potsson-type characteristic functions
defined by

f(t) = f(tly Tty tﬂ)
= exp {'LP(t) + Z§=l Ze )\j,el'...,en[ei(aj'l afrkectaimentn) 1)]}

If fork = 1,2, ---, n, the a; satisfy the following condition: There exist integer
numbers my, and ni; and tncommensurable numbers pr, > 0, o > 0 such that

ary = (e + 1og, aer = Mok, azse = Mrpr, car = (Mpy + 1)px and
max {(my — 1)px, nxox} < min {mwps, (nx — 1)as} then f has no indecomposable
factor.

We prove also the
TurorEM 5. Let f be the product of p Poisson-type characteristic functions of

the n variables t = (&1, - -+ , t,) defined by
(51) f(t) = exp {lw(t) + E]z_;l Zt [)\j’el'”"eﬂ(ei(élaj,lt]+--.+(naj.ntn) _ 1)]}

where w 18 an homogeneous polynomial of degree ome, \j.,,....., are non-negative

constants, the vectors (a1, -+, ajq) arereal (7 =1, ---,p), ¢, = 0or 1 and
> indicates the summation on the 2" — 1 values of (e, -+, €,) different from
0, ---,0). If for k = 1, ---, n, the components a1, * -+, apx are rationally

independent then f has no indecomposable factor.

Proor. The theorem in the case n = 1 has been obtained by P. Lévy ([3],
p. 56). It is sufficient to demonstrate it in the case n = 2, the transition of these
cases to the case n arbitrary following the same lines as the proof of Theorem 2. In
the case n = 2, we change our notations and write (5.1) as

(52) f(t) = f(h, &) = exp {ir(t) + D2 PaD(e™* — 1)
+ wi(e®i* — 1) + py(e"I — 1))

(N, ui, v; = 0). Let f; and f. be two characteristic functions such that for ¢

and & real
(5.3) f(t, &) = filh, &)fao(h, ).
We show that f; satisfies a relation of the kind (5.2). From the Theorem 2.3 of
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[1], it follows that f; and f. are entire characteristic functions and that (5.3) is
satisfied for any ¢; and ¢, complex. On the other hand, it follows from the Theorem
2.8 of [1] that f is defined by (5.2) for # and ¢, complex. We use also the following
lemma which is an evident consequence of the Theorem 2.2 of [1].

Lemma. If f is an entire characteristic function and t’ a real constant, the func-
tion fi,0 defined by

Fipo(t) = f(ta, i) /1(0, &)

18 an enlire characteristic function.
For the following, it is simpler to introduce now the “moment generating
functions” ¢ and ¢; (j = 1, 2) defined by

f(=i2) = o(2);  fi(—12) = ¢i(2).
If we fix 2, real, applying the lemma and the theorem of P. Lévy, we obtain

(5.4) e1(2) = exp {a + ba + D7 g™}
where a, b and g, are functions of 2, real for z; real. Then fixing 2; real, we obtain
(5.5) e1(z) = exp {d' + bz + 2l gd)

where a’, b’ and ¢ are functions of 2 , real for z real. From (5.4) and (5.5),
we deduce as in the proof of the Theorem 1 the relation

(5.6) @(2) = exp {h + P(2) + coren + 2P0 D Faomypei PR
+ Z};l -S‘jzleﬂsz + tjz2e°‘""}

where all the constants and coefficients of P are real with the convention oy = By
= ng,o = 0. If we introduce for z, y ¢ R* the function

u(z,y) = Reen(z + 1)
we have the ridge property
(5.7) u(z, 0) —u(z,y) =0
and from this property, it follows as in the proof of Theorem 1 that
c=8 =1t =0.
We have now
u(@, 0) — u(z, y) = 22202 Fonise®™ ™2 sin® Loy + Bie).
If we show the relations
(5.8) nix =0
it follows from the remark made during the proof of the Theorem 1 that

nik = 0
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forj £ 0,k % 0,7 # k, and the theorem will be demonstrated, the value of 2
being determined by the condition ¢1(0) = 1.
We can suppose without loss of generality that

a > ag > e D> ap, Br > 0.

We suppose that the relation (5.8) is satisfied forj = 1, ---, m — 1 and we
show that

Nk = 0.

From the theorem of Kronecker ([2], Theorem 444), we may choose y2 = ya(x2)
such that

sin 3(Ban) = o(e @), qg#k x—
and
sin 3(Biy2) = 1 — e
Then, we choose y; = y1(x2) such that when x, — + «
sin $(an + Bn) = o(e7¥P), =1,k — 1
and
sin J(an + Bap) = o(¢ ), jo=k e, myg # ke
We have then when z; —
(59) u(z, 0) — u(z, y) = O(F"*(Ljennine®™ sin’ §(ag + Bus))).
Comparing (5.7) and (5.9), we obtain if z; is great enough

nm,k = O

and the theorem is demonstrated.
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