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ON AN A.P.O. RULE IN SEQUENTIAL ESTIMATION
WITH QUADRATIC LOSS'

By Perer J. Bicker AnD JosErH A. YAHAV®

Unaversity of California, Berkeley and Tel-Aviv University, Israel

1. Introduction and summary. Consider the problem of Bayesian sequential
estimation of a real parameter 6 with quadratic loss and fixed cost ¢ per observa-
tion. It is well known (cf. [1], [2]) that, under simple regularity conditions, this
problem reduces to the following one.

If Z,,Zy, -+, Z,, --- are the observations (independent and identically
distributed given 6) let
(1.1) n=Var (0] Z,, -+, Z,),
the posterior variance of 4, and,
(1.2) X.(¢c) =Y, + ne.

The problem is then to find a stopping time s(c¢) such that E(X,(c)) =
inf {E(X(c)):te T} where T is the set of all stopping times. In general, although
s(c¢) can usually be shown to exist finding it in explicit form is difficult.

In [2] we proposed the following stopping time #(c) for this problem: “Stop as
soon as Y, < ¢(n + 1)”’. We showed in [2] (generalized in [3]) that under some

regularity conditions this rule is asymptotically pointwise optimal (A.P.O.) i.e.,

(1.3) lime.o X ()X ()] =1
a.s. where,
(14) X (c) = inf, Xa(c).

In fact, we proved that,
(1.5) Xio(c) = 28V0) + o(d) aus.
and,
(1.6) Xiw(c) — X(c) = o(c)) as.

where V(8) is the reciprocal of the Fisher information number. Later, (in [3])
we showed, under some additional conditions that #(c) is asymptotically optimal
i.e., that,

(1°7) lil'nc_,o [E(Xs(c)(c))][E(Xi(c)(c))]—l = 1:
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and in fact, that

(1.8) E(X(c)) = 2¢E(V(8)) + o(ch)
and
(1.9) E(Xiw(c)) — E(X(c)) = o(ch.

In this paper we seek to refine the term o(c*) in (1.5)-(1.6) and (1.8)—(1.9).
Our analysis, as in our previous work, is based on looking at the asymptotic
properties of Y,. We showed in [2] and [4] that,

(1.10) Y.=V(®)n" +R,

where R, = o(n™") a.s. In [4] we further showed that, under suitable conditions,
(1.11) Y, = V()n™ + 8,.(0)n° + R,

a.s. where R,/ = o(n™*?) and

(1.12) 8a(8) = 2P Wi(6)

where the W; are independent and identically distributed with mean 0 given 8.
If W1(0) has a second moment and is non degenerate the law of the iterated
logarithm enables us to conclude that,

(1.13) R, = O(n *"[log log n]) a.s.
This suggests Theorem 2.1 which asserts that if (1.13) holds then,
(1.14) Xiw(c) — X(c) = o(c™™)

a.s. for all ¢ > 0. The analogues of (1.8) and (1.9) pose greater difficulty. In
Section 3 we show that (Theorems 3.1, 3.2),

(1.15) E(X(c) — 2[V(6)c]') = max (o(H™D7) " 0(c)),
for every ¢ > 0 where,
(1.16) SO\ b) = 3N = 1)b(b 4+ (A — 1)

and b and \ depend on the problem. (Typically X = 4.) On the other hand, in
Section 4 we establish, (Theorem 4.1),

(1.17) E(Xuq(c) — 2[V(0)c)* = max (0(c™), 0(c)),

for every ¢ > 0 where again typically A = #. Finally in Section 5 we apply our
general results to two special situations.

(i) Estimating the mean of a normal distribution with a normal prior.

(ii) Estimating p on the basis of binomial trials with a beta prior.

In case (i) our conditions yields O(c) in both (1.15) and (1.17) and this is
best possible. In (ii) when for instance we have a uniform prior the best A\ = §
and the best b = 1 and we therefore get o(¢™"'*) for every ¢ > 0in (1.15) and
0(*¢) for every e > 0in (1.17). We do not believe these are best possible. A
further analysis of (1.11) would seem to be required for anything better.
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2. The pointwise difference between the performance of the Bayes rule and
the A.P.O. rule. We will throughout use the representation (1.10) suppressing the
6 in V(6). In fact, in accordance with [3] we will not require that the ¥, originate
in the estimation problem but merely that they be a sequence of random vari-
ables such that Y, is measurable &, where {F,} is an increasing sequence of sigma
fields, and that P[Y, > 0] = 1. The V in (1.10) is then also supposed to be posi-
tive with probability 1.

TuroreM 2.1. If (1.13) holds then for the stopping rule t(c) we have,

(2.1) Xiw(c) — X(c) = o(c’) as.

for every e > 0.
Proor. Let us write.

(2.2) X(c) = min {XV(c), X®(c)}
where
(2.3) XP(c) = ming <n<n, Xa(c), X®() = Ming <, Xa(c),

and

(2.4) ne = [Ve™Po(c)

where

(2.5) o(c) =0

at a rate which is not o(c!). Then

(2.6) X(c) = min (2[Ve]!, X® (¢)) iz @sarvan + clixme §2[V¢.:]“

where I 4 is the usual indicator function of the event 4. It fellows that
[X(c) — 2(VelT
@27 = [XD%) = 2AVelT Txw@suxan + 120V — cllixm e stvan
< [XP(e) = 2VelT™ + (¢ + 2AVe) Iz satvan -

By Lemma 2.1 of [1] and (2.14) of [2] I;x« () <orvasy = O for ¢ sufficiently small\
so it is enough to consider [X®(c) — 2[Vc]|”. Let, '

(2.8) U = —[infysn, R, 1<A<E.

Choose ¢o 5o that V™ 4+ ne + n*UA“? is positive for all ¢ < ¢s. We can do this
since by (1.13), (2.8), Th* 1 0. Now we define

(2.9) Zu(c) = Vot + ne + n U
Then
(2.10) X®(¢) 2 inf, Z.(c), ¢ = co.

Define n¢(c) to be the first m such that
(2.11) Zn(c) = inf, Z,(c).
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Define
(2.12) ¥, = Vo™ + 200,

Then Z,(c) = Y, + nc and ¥, satisfies the conditions of Theorem 2.1 of [1].
Therefore

(2.13) no(c)[e/V -1 as.

By (2.10) for ¢ sufficiently small and any ¢ > 0

(2.14) X®(c) = 2[Ve + [(1 — &) VMU,
From (2.14), (1.13) and (2.7) we have

(2.15) X(c) = 2[Ve] + o(c¥*):

We now consider #(c). By definition

(2.16) Xi(c) = 2c(c) + ¢

and

(2.17) Yig-1 > ct(c).

Therefore by (1.10) we have
(2.18) (i(c) — 1)V (¥(c) — 1) + (((¢) — 1)Raw-» > ct¥(c) — ci(c).

Since {(¢) T « ([1]) by (1.13) for ¢ > 0, there exists M . possibly depending on
the sample sequence such that,

(2.19) V 4+ M (i) — 1) = d’(c) — ci(e).

By [1] ci’(¢) — V a.s. Hence for suitable M. we have

(2.20) de) =V + M/ "

Finally,

(221) di(c) = Vi1 + M VG < (vl + M.

Then (2.21) and (2.16) establish,
(2.22) Xi(e) < 2[Vel' 4 o(c"'™).
Combining (2.22) and (2.15) the theorem is established.

3. A lower bound for the Bayes risk in estimation. We continue to use the
general notation of Section 2. The following conditions will be required by our
main theorem, in addition to our general conditions on the Y, .

C, : Y, is an expectation decreasing martingale, with respect to the o fields &, .

C.(N): If

(3.1) U= — [Hlfn n)‘Rn]_,
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then
(3.2) E[U\V ™ < o

for some A > 1.
C3(b): For some b > 0,

(3.3) sup.n "E(Y, ) < .

Cy: Ess.sup. V < =,
As is well known C is always satisfied if Y, is the Bayes posterior risk, and in
particular is satisfied for estimation with quadratic loss. We have,

TuEOREM 3.1. If C;, C:(N), C3(b) and C, are satisfied, then,

(34) E(X(c) — [Vc]%)_ — O(C%+min(6()\.b2,§)).

Proor. We use the breakup of X (¢) given by (2.2) and (2.3). We begin with
LemMA 3.2. If our general conditions and Cy(N\) hold, then

(3.5) E(X®(c) — [Vel)~
< E{|UJV PR (0) "™ + (0 = 1)/( + 1))P.

Proor or LEmMA 3.2. Recall that,

(3.6) XP(c) = infpzn, [VR + ne + 2 UL
Let
(3.7) QM= w) = Va ' + cx + Un(w)z™

and suppose . () is the smallest z = n, for which Q. (z, ») achieves its minimum
in the range x = n,. Define the variable A by z = [Vc‘l]*(l + A) and let A} (w)
correspond to 2. (). Note that A, < 0, since V&~ + cx achieves its minimum
for A = 0, and Uy = 0. Consider,

(3.8) 00N dz = —c(1 4+ A + ¢ — DGOy oD
and

(3.9) H(a) = @28+ a1 +4a)7,  A> -1
Then,

(3.10) sgn Q. /oz = sgn (H(A) — ARG D=0y
Moreover,

(3.11) H(A) = A+ M2+ 200+ DA+ (A + 1)a%
and hence, for —1 < A < 0, H'(A) § 0 according as

85 —1+10—1D/0+ DP
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Using, (3.12) and (3.10) we see that

{) EAGEPV I < H(—1 + [(A — 1)/(\ + 1)]) then Q. /ox = 0
for allz > 0.

(i) I NGO PV M S m(—1 + [(N — 1)/(\ + 1)]) then there exist
0 < ; < 2, such that 8Q,"(z, w)/dz = 0 for = 1, 72, x; is a local maximum
of Q.', @, is a local minimum of @ and 1 < [Ve ' TH((A — 1)/(A + 1)) < 2.
Of course, 2; and 2, are the only local extrema of Q. for z > 0.
From (i) and (ii) it follows that either z,* = n, or 2. = z» (where z», of course,
depends on ¢, » and w).

Clearly, the second of these eventualities must hold if there exists an z > n,
such that Q. (z, w) < Q}(n., w), and hence in particular if,

(3.12) QM (ne, 0) = [Ve' 2 QA(IVE, ).
The first inequality, of (3.12) holds if and only if,
(3.13) Uy 2 V() [~ (o(c) — 1)"/n(c)]

Iftp <% (p— 1)/p 2 (4) 7 Let A; = {w: Uh(w) = —3V* ™ (chp(c)™)' .
From (3.6), (i), (ii), (3.12) and (3.13) we see that on 4.,

(3.14)  X9(c) = inf, (Vo™ + nc) + Uszs ™ = 2[Ve] + Usz ™
Decomposing X (¢) according to A, and using (3.14) and (ii) we see that,
(315) (X¥(e) — V) = [V (N = 1)/ + I + [Vel'L.s
where I, is the indicator of the event A and ' denotes complementation. Now,
| E(VMa:) = [4,V dP
(3.16) < [far IV dPI o () 7T
< B[OV p ()

The lemma follows from (3.15) and (3.16).
We now analyze, E(V izt <ovarty). Using Cy, let esssup V = s

(3.17) E(Vizm@<an) < $PXY(c) < 25'¢).
But

S
A
A

(3.18) =

P <K —nc forsome 1=mn=n]
<P[Y,=K —mnc forsome 1 =n

< sco(e)]
= P[Y, > [K — nc]® forsome 1=mn =< s*c_*p(c)].

Now, Cy implies that ¥, is an expectation sncreasing nonnegative martingale.
We recall Chow’s [6] generalization of the Hajek-Renyi inequality which states
that if Z, is a nonnegative expectation increasing martingale, c, is a nondecreas-
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ing sequence of constants, and E(Z,) = d, which are monotone increasing, then
(8.19) P[Z, = ¢, forsome 1 <n = m] £ difer + D=y — dislei

Substituting ¥, > = Z,., [K — ne]” = c., and m = s'¢ *p(c), we get using
(3.18)

(3.20) PX%(c) £ K] £ [K — JE(Y,,") < m[K — ] sup, E(nY,)™".
After some simplification we get from (3.17) and (3.20) with K = 2stct
(3.21) E(Vxwezvan) < £°70@28¢ — )7%%(c) ~ 2% (c).

Using (2.7) and combining Lemma 3.2 and (3.21) we get under the conditions
of the theorem

(3.22) E[X(c) — 2V~ = ME{|U\V 410V ()
+ (N =1/ + D) + () /2P (1 + 0(1)).

It is an easy exercise in the calculus to see that an optimal choice of p(c) is p(¢) ~
APBFADITY which yields the theorem.

We now replace the unpleasant condition Cs by

Cy. All moments of V are finite.

Using €, we can obtain the weaker,

TaeoreEM 3.3. If Cy, Ca(N), Cs(b), and C. are satisfied, then

(3.23) E(X(c) — 2[Ve)™ = max (o(c™*P74), 0(c))

for every e > 0.
Proof. It clearly suffices to show,

(3.24) E(Viftx(n(c) s2lvald)) = o(p"*(c))

for every ¢ > 0.
Now

(325)  E(VIxw@suvan) < B (VPCOMXY(e) < 2Vl
by Hélder’s inequality for every » > 1. Using C. we see that (3.24) follows if,
(3.26) PIX®(c) = 2[Vel'] = o(s"*(c))
for every ¢ > 0. On the other hand,
P[X®(c) = 2[Ve]]
< D RaP{XP(c) < 2k, k-1 =V < k)
< 2 PXa(k, o) < 2lkef, (k — 1) S V < K]

where X1(k, ¢) = inf,<pie=ip (Ya + nc).
Again by Holder’s inequality,

(3.28) P{Xi(k,¢) < (k — 1SV <R
Nk — 1) £V = BPVX(k, ¢) < 2ke]]

(3.27)
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Using (3.19) we see that,
(3.29) PIXy(k, ¢) = 2[kel'] < 27%%"(e) (1 + o(1)).
Hence,
(3.30) P[X“(c) < 2[Vc]]
< [p(e) /2P kTP (k — 1) S V S K,
The last sum is finite for every r by C, and the theorem follows.

4. An upper bound for the Bayes risk of i{(c). We again use the representation
(1.10). We will require the following condition
D) :If (N> 1),

(4.1) Wy = sup, ®'R,"
then
(4.2) E{WV ™™ < .
Note that C2(\) and D, are equivalent to requiring,
(4.3) E{V ™ sup, nM|R.|} < .
We have,
TaeorewMm 4.1. If D(N) holds, then,
(4.4) B(Xi(c) — 2[Vel)" = O(max (&%, c)).
Proor. Since Vi = c(i(c) + 1) it suffices to show that,
(45) E(ci(c) — [VelH)* = O(max (%, ¢)).
Now, defining Yy = 0, and By = 0
(4.6) Yig = c(i(c) — 1)
and hence,
(4.7) () + 2¢ + Vil(e) + Riw-1 = ci(c).
Note that
(4.8) Rig1 < Wa(i(e) — D™
Define,

B, = {i(c) < [Ve' + 1}.
Then,
(4.9) E(ci(c)) < [5, [V} dP + ¢ + [5, ci(c) dP.
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Applying (4.7) and (4.8) to the second part of (4.9) we get
(4.10) Jaocl(e) AP < [, {[Vel' + 3¢ + VW) dP.

The theorem follows.
In the Bayesian estimation situation if in the representation (1.11) we have

for every ¢, € > 0,

(4.11) Efsup, [0 R,V """} < o
then one can show,
(4.12) E(Xiw(c) — 2[Ve)™ = o(c™)

for every ¢ > 0.

5. Examples.
I. Estimation of normal mean. We wish to estimate p with quadratic loss on the

basis of 21, +-- , 2, , - - - where the 2; are independent 9 (u, 1) and u has a prior
N(uo , o) distribution. In this case it is easy to compute,
(5.1) V.= (n+e5)7"

and a direct computation yields that the Bayes rule is a fixed sample size rule
taking N (c) observations where N(c¢) is one of the natural numbers closest to
(o™ — o). Similarly #(c) takes 2{—(1 + ¢ 2) + ((1 — ¢ ) + 4¢™)} ob-
servations and |[N(¢) — i(c)] = O(c).

II. Estimation in the binomial case. We wish to estimate p with quadratic loss
on the basisof 2;, - - - , 2, , where the z; are independent and take on the value 1
with probability p and 0 with probability 1 — p, 0 < p < 1. We put a beta (a, ¢)
prior distribution on p, that is we suppose p has density,

(5.2) fap(p) = (T(a)T(c)/T(a+¢))™ P (1 —p)" ac>0, 0<p <L
In this case we have,
(53) Yn(zl y " 7zn) = (Sn+a)(n~sn+c)/[n+ (a+c)]2(n+a+c+ 1)

where

(5.4) Sp= Dtz
Then,

Yo=pgn " —[n(n+ (a+¢))’(n+ (a+c) + 1] {B(a+c) + 10
(5.5) + (a+c)B(a+c) + 2)n + (a4 ¢)(a+ ¢+ 1)}pg

+[(n+ (a+¢)’(n+ (a+c) + DI
An — 2p + (¢ — @)}(S» — np) — (Sa — np)7}.

We now check that C2(2) and D(\) are satisfied for every A < 3.
The following result has been established in [5]. (Similar results have appeared
in [7] and elsewhere).
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TaeorEM. Let Z; be independent and ideniically distributed with mean 0. Let
T,= 2. 20Z;. Then,if a > 8/2,8 = 2,

(5.6) E(sup, 0% |T.") < Ky(B)E |2/,

where Ky(B) s a numerical constant.
Applying this theorem to the R, defined by (5.5) our initial statements about
C>(\) and D()\) are verified. We now show that C5(b) holds for b < min (a, c).
From (5.3) we see that

(5.7) EnY,) ~ n®E[(S, + a)(n — 8, + ¢)] .
Simplifying we get

En™(8, + a)"(n — 8u + ¢)7']
(58) = [3{X i (B)(n/(k + a))’(n/(n — k + ¢))’P’(1 — P)"™}

(P(a + ¢)/T(a)T(c))P* (1 — P)*™ dP,

En™(8, + a)"(n — Sn + ¢)7']

(59) = 2B ®/(k + a))’(n/(n — k + ¢))"(T(a + ¢)/T(a)T(c))
(T(a + k)(n — k + ¢)/T(n + a + ¢))
~ Ks 2o (n/(k + a))’(n/(n — k + b))’k (n — k)"

where K; is a constant. The right hand side of (5.13) converges to
K [4(1 — )" do. Hence, sup, B[ (S, + @)™ (n — 8a 4+ ¢)7] <
if and only if b < min (a, ¢), which establishes our assertion about C3(b).

Similar arguments may be used to deal with estimation of the Poisson param-
eter with gamma prior, and the gamma scale parameter with gamma prior and
other cases of a similar nature.
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