BIORTHOGONAL AND DUAL CONFIGURATIONS AND THE RECIPROCAL NORMAL DISTRIBUTION¹ ## By ROBERT H. BERK ## University of Michigan - **0.** Summary. In this note we discuss the notions of biorthogonal and dual configurations and their relevance in certain statistical applications. The first application is to the distribution of a random matrix related to a multi-variate-normal sample matrix. As with the latter, the distribution is preserved by (certain) linear transformations. One consequence of this is the familiar result that if **Q** is a non-singular Wishart matrix, then for any non-zero vector α , $1/\alpha'\mathbf{Q}^{-1}\alpha$ is a multiple of a chi-square variable. Application is also made to the Gauss-Markov theorem and to certain estimates of mixing proportions due to Robbins. - 1. Biorthogonal and dual configurations. Let $\mathfrak X$ be a vector space with an inner-product, denoted by $\langle \cdot , \cdot \rangle$. The configurations (= ordered subsets) (x_1, \cdots, x_p) and (x_1^*, \cdots, x_p^*) are said to be biorthogonal if $\langle x_i, x_j^* \rangle = \delta_{ij}$, the Kroneker delta. Clearly this relation is symmetric. Necessarily, the elements of $\{x_1, \cdots, x_p\}$ (respectively, $\{x_1^*, \cdots, x_p^*\}$) are linearly independent. For if (e.g.) $x_1 \in \mathcal{V}\{x_2, \cdots, x_p\}$, the subspace spanned by $\{x_2, \cdots, x_p\}$, then $\langle x_i, x_1^* \rangle = 0$, $i = 2, \cdots, p$, implies that $\langle x_1, x_1^* \rangle = 0$. In general, there are many configurations biorthogonal with a given configuration (x_1, \cdots, x_p) . One such is distinguished: There is a unique $(y_1, \cdots, y_p) \subset \mathcal{V}\{x_1, \cdots, x_p\}$ which is biorthogonal with (x_1, \cdots, x_p) . It is called the configuration dual to (x_1, \cdots, x_p) and is constructed as follows: Let x_i , be the projection of x_i into $\mathcal{V}^1\{x_1, \cdots, x_{i-1}, x_{i+1}, \cdots, x_p\}$. (\mathcal{U}^1 is the orthogonal complement of $\mathcal{U} \subset \mathcal{X}$ in \mathcal{X} .) $\langle x_i, x_i \rangle = \langle x_i, x_i \rangle \neq 0$ by linear independence; of course $\langle x_i, x_j \rangle = 0$ if $i \neq j$. Then $y_i = x_i / \langle x_i, x_i \rangle$ gives the configuration dual to (x_1, \cdots, x_p) . It readily follows that any configuration (x_1^*, \cdots, x_p^*) biorthogonal with (x_1, \cdots, x_p) has the representation $x_i^* = y_i + \delta_i$, where $\delta_i \in \mathcal{V}^1\{x_1, \cdots, x_p\}$. Since $y_i \in \mathbb{U}\{x_1, \dots, x_p\}$, we may write $(y_1, \dots, y_p) = (x_1, \dots, x_p)A$, where A is a non-singular $p \times p$ matrix. Letting Q denote the non-singular configuration matrix of $(x_1, \dots, x_p): q_{ij} = \langle x_i, x_j \rangle$, the duality relations require that QA = I. Hence $A = Q^{-1}, (y_1, \dots, y_p) = (x_1, \dots, x_p)Q^{-1}$ and the dual configuration has configuration matrix Q^{-1} . Thus the dual configuration relation is also symmetric. If x_1, \dots, x_p are elements of R^p and if $X = ((x_1, \dots, x_p))$ is the $p \times p$ matrix they generate by their representation as p-tuples, then $Y' = ((y_1, \dots, y_p))' = X^{-1}$. If x_1, \dots, x_p are elements of R^n , n > p, Y is a pseudo (= one-sided) inverse for X, as is the matrix generated by every other configuration biorthogonal with (x_1, \dots, x_p) . Received 7 March 1968. ¹ Supported in part by grant GP-6008 from the National Science Foundation. 2. Reciprocal normal distribution. Let \mathbf{z} , $\mathbf{z}^{(1)}$, \cdots , $\mathbf{z}^{(n)}$, $(n \geq p)$ independent observations from $N(0, \Sigma)$, the p-dimensional normal distribution with zero mean and covariance matrix Σ . Throughout, Σ will be $p \times p$ non-singular. Let $\mathbf{X} = ((\mathbf{z}^{(1)}, \cdots, \mathbf{z}^{(n)}))$ and let $\mathbf{x}_1, \cdots, \mathbf{x}_p$ denote the rows of \mathbf{X} , all random elements of R^n ; $\mathbf{X} = ((\mathbf{x}_1, \cdots, \mathbf{x}_p))'$. \mathbf{X} (more properly, $(\mathbf{x}_1, \cdots, \mathbf{x}_p)$) is called the sample configuration. Let $\mathbf{Q} = \mathbf{X}\mathbf{X}'$ be the $p \times p$ sample configuration matrix (of $(\mathbf{x}_1, \cdots, \mathbf{x}_p)$). $\mathbf{Q} \sim W(n, \Sigma)$, the p-dimensional central Wishart distribution based on Σ and having n degrees of freedom. Because Σ is non-singular, wp 1 $\mathbf{x}_1, \cdots, \mathbf{x}_p$ are linearly independent and \mathbf{Q} is non-singular. Let $\mathbf{Y} = \mathbf{Q}^{-1}\mathbf{X}$. Then $(\mathbf{y}_1, \cdots, \mathbf{y}_p)$, the rows of \mathbf{Y} , is the configuration dual to $(\mathbf{x}_1, \cdots, \mathbf{x}_p)$. Below we investigate the distribution of the random configuration \mathbf{Y} and show that like \mathbf{X} , it has closure properties under (certain) linear transformations. We also cite certain facts about spherically distributed configurations and about the multivariate normal distribution. A fuller discussion of these may be found in [1], [2] and [3]. We begin by noting that the distribution of \mathbf{Y} is spherical (invariant under orthogonal rotations). To see this, we recall that if G is an $n \times n$ orthogonal matrix, \mathbf{x}_i and $G\mathbf{x}_i$ have the same (spherical normal) distribution in R^n . In fact, \mathbf{X} and $\mathbf{X}G$ have the same distribution. Since \mathbf{X} and $\mathbf{X}G$ have the same configuration matrix, \mathbf{Q} , it follows that $\mathbf{Y}G = \mathbf{Q}^{-1}\mathbf{X}G$ has the same distribution as \mathbf{Y} . If $\mathbf{v} \in R^n$ is spherically distributed, then $\langle \mathbf{v}, \mathbf{v} \rangle = \mathbf{v}'\mathbf{v}$ and $\mathbf{v}/(\mathbf{v}'\mathbf{v})^{\frac{1}{2}}$ are independent; the latter being uniform over the unit sphere in R^n . Thus the distribution of a spherically distributed vector is characterized by the distribution of $\mathbf{v}'\mathbf{v}$. For \mathbf{x}_i , $\mathbf{x}_i'\mathbf{x}_i \sim \sigma_{ii}\chi_n^2$, where $((\sigma_{ij})) = \Sigma$. Similarly, the distribution of a spherically distributed configuration such as \mathbf{X} is characterized by the distribution of its configuration matrix, in this case, $W(n, \Sigma)$. As \mathbf{Y} has configuration matrix \mathbf{Q}^{-1} , its distribution is characterized by the fact that $(\mathbf{Y}\mathbf{Y}^1)^{-1} \sim W(n, \Sigma)$. A random matrix (or configuration) with this spherical distribution will be said to have the reciprocal normal distribution. This is motivated by the fact that for n=p=1, $\mathbf{Y}=((y_{11}))=((1/\mathbf{x}_{11}))$ where $\mathbf{X}=((\mathbf{x}_{11}))$. Propositions 1 and 2 below suggest that the natural parameters of this distribution are m=n-(p-1) and Σ^{-1} . Accordingly, we write $\mathbf{Y}\sim RN(m,\Sigma^{-1})$ to mean \mathbf{Y} is spherically distributed and $(\mathbf{Y}\mathbf{Y}')^{-1}\sim W(m+p-1,\Sigma)$. Equivalently, \mathbf{X} , the configuration dual to \mathbf{Y} , has the distribution of a sample of m+p-1 from $N(0,\Sigma)$. I.e., \mathbf{X} is spherically distributed and $\mathbf{X}\mathbf{X}'\sim W(m+p-1,\Sigma)$. We recall some facts about projections of normal vectors. If $\mathbf{x}_1 \in R^n$ is projected into a fixed k-dimensional subspace \mathbb{U} , the resulting vector, \mathbf{x}_{1^*} , is spherically normally distributed in \mathbb{U} with k degrees of freedom. I.e., \mathbf{x}_{1^*} is spherically distributed in \mathbb{U} and $\mathbf{x}_{1^*}' \mathbf{x}_{1^*} \sim \sigma_{11} \chi_k^2$. This result remains true if \mathbb{U} is a random k-dimensional subspace, as long as it is independent of \mathbf{x}_1 . Similarly if we project $(\mathbf{x}_1, \dots, \mathbf{x}_p)$ into \mathbb{U} , the resulting configuration, $(\mathbf{x}_{1^*}, \dots, \mathbf{x}_{p^*})$ is multivariate normal in \mathbb{U} with k degrees of freedom: it is spherically distributed in \mathbb{U} and $\mathbf{x}_*\mathbf{x}_*' \sim W(k, \Sigma)$, where $\mathbf{x}_* = ((\mathbf{x}_{1^*}, \dots, \mathbf{x}_{p^*}))'$. Consider now a partition of the multivariate-normal vector z into z_1 , the first s and \mathbf{z}_2 , the remaining p-s coordinates. We obtain a corresponding partition of Σ : Σ_{ii} is the covariance matrix of \mathbf{z}_i and Σ_{12} , the matrix of covariances between the elements of \mathbf{z}_1 and \mathbf{z}_2 . $\Sigma_{11\cdot 2}$ denotes the conditional covariance matrix of \mathbf{z}_1 given \mathbf{z}_2 . $\Sigma_{11\cdot 2}$ is also the marginal covariance matrix of $\mathbf{z}_{1\cdot 2}=\mathbf{z}_1-B\mathbf{z}_2$, where $B\mathbf{z}_2=E(\mathbf{z}_1\mid \mathbf{z}_2)$. (Note that \mathbf{z}_2 and $\mathbf{z}_{1\cdot 2}$ are independent.) We obtain a corresponding partition of \mathbf{X} (respectively, \mathbf{Y}): \mathbf{X}_1 (respectively, \mathbf{Y}_1) denotes the first s and \mathbf{X}_2 (respectively \mathbf{Y}_2), the remaining p-s rows of \mathbf{X} (respectively, \mathbf{Y}). That is, $\mathbf{X}_1=((\mathbf{x}_1,\cdots,\mathbf{x}_s))'$. Ax \mathbf{X} is a sample of n from $N(0,\Sigma)$, $\mathbf{X}_1-B\mathbf{X}_2$ is a sample of n from $N(0,\Sigma_{11\cdot 2})$ and is independent of \mathbf{X}_2 . If we project the rows of $\mathbf{X}_1-B\mathbf{X}_2$ into $\mathbf{U}^1(\mathbf{X}_2)=\mathbf{U}^1\{\mathbf{x}_{s+1},\cdots,\mathbf{x}_p\}$, we obtain a configuration that is multivariate normal in $\mathbf{U}^1(\mathbf{X}_2)$ with covariance matrix $\Sigma_{11\cdot 2}$ and having degrees of freedom = dim $\mathbf{U}^1(\mathbf{X}_2)=n-(p-s)$. But as the projection of \mathbf{X}_2 into $\mathbf{U}^1(\mathbf{X}_2)$ is zero, the projection of $\mathbf{X}_1-B\mathbf{X}_2$ into $\mathbf{U}^1(\mathbf{X}_2)$ is just $\mathbf{X}_{1\cdot 2}$, the projection of \mathbf{X}_1 into $\mathbf{U}^1(\mathbf{X}_2)$. Hence $\mathbf{Q}_{11\cdot 2}=\mathbf{X}_1\cdot 2\mathbf{X}_1'\cdot 2\sim W(n-(p-s),\Sigma_{11\cdot 2})$ and is independent of $\mathbf{Q}_{22}=\mathbf{X}_2\mathbf{X}_2'\sim W(n,\Sigma_{22})$. We discuss now the closure properties of the distribution of \mathbf{Y} , considering first \mathbf{y}_1 by way of introduction. Since \mathbf{Y} is dual to \mathbf{X} , $\mathbf{y}_1 = \mathbf{x}_1 \cdot / \mathbf{x}_1' \cdot \mathbf{x}_1$, where \mathbf{x}_1 is the projection of \mathbf{x}_1 into $\mathbb{U}^{\perp}(\mathbf{x}_2, \dots, \mathbf{x}_p)$. Taking s=1 in the preceding shows that \mathbf{x}_1 is spherically normally distributed in $\mathbb{U}^{\perp}(\mathbf{x}_2, \dots, \mathbf{x}_p)$ with scale factor $\sigma_{11\cdot 2}$ (the only element of $\Sigma_{11\cdot 2}$); $\mathbf{x}_1' \cdot \mathbf{x}_1 \cdot / \sigma_{11\cdot 2} \sim \chi^2_{n-(p-1)}$. We further note that in general, $(\Sigma_{11\cdot 2})^{-1} = (\Sigma^{-1})_{11}$ (this is well known but we present a probabilistic derivation using dual configurations in Section 3). In particular, writing $\Sigma^{-1} = (\sigma^{ij})$, $\sigma^{11} = 1/\sigma_{11\cdot 2}$. Thus $\sigma^{11}/\mathbf{y}_1'\mathbf{y}_1 \sim \chi^2_{n-(p-1)}$; i.e., $\mathbf{y}_1 \sim RN(n-(p-1), \sigma^{11})$. More generally, we have - 1. Proposition. If $Y \sim RN(m, \Sigma^{-1})$, then - (i) $Y_1 \sim RN(m, (\Sigma^{-1})_{11})$. - (ii) $\mathbf{Y}_{2\cdot 1} \sim RN(m+s, (\Sigma^{-1})_{22\cdot 1})$ and is independent of $$Y_1Y_{\ 1}' \ = \ (Q^{-1})_{11} \ = \ (Q_{11\cdot 2})^{-1}.$$ PROOF. Let X be the configuration dual to Y. Note that the configuration dual to $X_{1\cdot 2}$ is just Y_1 . Dually, the configuration dual to X_2 is $Y_{2\cdot 1}$. By the preceding discussion, $$\mathbf{Y}_{1} = (\mathbf{Q}_{11\cdot 2})^{-1}\mathbf{X}_{1\cdot 2} \sim RN(n - (p - s) - (s - 1), (\Sigma_{11\cdot 2})^{-1})$$ $$= RN(m, (\Sigma^{-1})_{11}).$$ Moreover, $Q_{11\cdot 2} = X_{1\cdot 2}X'_{1\cdot 2}$ is independent of X_2 and therefore of $$\mathbf{Y}_{2\cdot 1} = (\mathbf{Q}_{22})^{-1}\mathbf{X}_{2} \sim RN(n - (p - s - 1), (\Sigma_{22})^{-1})$$ = $RN(m + s, (\Sigma^{-1})_{22\cdot 1}).$ 2. Proposition. If $\mathbf{Y} \sim RN(m, \Sigma^{-1})$ and C is $p \times p$ non-singular, $C\mathbf{Y} \sim RN(m, C\Sigma^{-1}C')$. PROOF. Let $D = C^{-1}$. $D'\mathbf{X}$ is a sample of n from $N(0, D'\Sigma D)$. Hence $C\mathbf{Y} = C\mathbf{Q}^{-1}\mathbf{X} = (D'\mathbf{X}\mathbf{X}'D)^{-1}D'\mathbf{X} \sim RN(m, (D'\Sigma D)^{-1}) = RN(m, C\Sigma^{-1}C')$. 3. COROLLARY. Let A denote an $s \times p$ matrix of rank $s \leq p$. Then if $\mathbf{Y} \sim RN(m, \Sigma^{-1})$, $$A \mathbf{Y} \sim RN(m, A \Sigma^{-1}A')$$. PROOF. Let C be a $p \times p$ non-singular matrix having A as its first s rows. The corollary follows from Propositions 1 and 2. \square In particular, if α is a non-zero $p \times 1$ vector, $\alpha' \mathbf{Y} \sim RN(m, \alpha' \Sigma^{-1} \alpha)$. Hence $\alpha' \Sigma^{-1} \alpha/\alpha' \mathbf{Y} \mathbf{Y}' \alpha = \alpha' \Sigma^{-1} \alpha/\alpha' \mathbf{Q}^{-1} \alpha \sim \chi^2_{n-(p-1)}$, where $\mathbf{Q} \sim W(n, \Sigma)$. This is a well-known property of the Wishart distribution [5]. A more general consequence of the corollary [1] is that $(A \mathbf{Q}^{-1} A')^{-1} \sim W(n-(p-s), (A \Sigma^{-1} A')^{-1})$. Moreover, if B denotes the remaining p-s rows of C, then again by Propositions 1 and 2, $$\begin{split} [(C\mathbf{Q}^{-1}C')_{22\cdot 1}]^{-1} &= (B\mathbf{Q}^{-1}B' - A\mathbf{Q}^{-1}B'(B\mathbf{Q}^{-1}B')^{-1}B\mathbf{Q}^{-1}A')^{-1} \\ &\sim W(n, [(C\Sigma^{-1}C')_{22\cdot 1}]^{-1}) \\ &= W(n, (B\Sigma^{-1}B' - A\Sigma^{-1}B'(B\Sigma^{-1}B')^{-1}B\Sigma^{-1}A')^{-1}) \end{split}$$ and is independent of $(AQ^{-1}A')^{-1}$. (To see this, note that $(CY)_{2\cdot 1} \sim RN(m+s'C\Sigma^{-1}C')$ and $(CQ^{-1}C')_{2\cdot 1} = (CY)_{2\cdot 1}(CY)'_{2\cdot 1}$.) **3.** Other statistical applications. Biorthogonal and dual configurations provide interesting interpretations of other statistical phenomena, a few of which we discuss here. We consider first a population analog of the dual sample configurations of Section 2, leading to a probabilistic proof of the well-known fact that $(\Sigma^{-1})_{11} = (\Sigma_{11\cdot2})^{-1}$. If $\mathbf{x} \in R^p$ has the $N(0, \Sigma)$ distribution, then the set of linear combinations $\mathfrak{X} = \{\alpha' \mathbf{x} : \alpha \in R^p\}$ is a vector space for which covariance is an inner product. The coordinates of \mathbf{x} are a linearly independent configuration in \mathfrak{X} with configuration matrix Σ and we may obtain their dual configuration: $\mathbf{y} = \Sigma^{-1}\mathbf{x} \sim N(0, \Sigma^{-1})$. (Note that the coordinates of \mathbf{y} are elements of \mathfrak{X} .) Let \mathbf{x}_1 be the first s and \mathbf{x}_2 , the remaining p - s coordinates of \mathbf{x} and partition \mathbf{y} similarly. Then $\mathbf{x}_{1\cdot 2} = \mathbf{x}_1 - B\mathbf{x}_2 \sim N(0, \Sigma_{11\cdot 2})$ and is independent of \mathbf{x}_2 . If we dualize the configuration given by the coordinates of $\mathbf{x}_{1\cdot 2}$, we obtain \mathbf{y}_1 , which therefore has the $N(0, (\Sigma_{11\cdot 2})^{-1})$ distribution. But since \mathbf{y}_1 is a partition of \mathbf{y} , $\mathbf{y}_1 \sim N(0, (\Sigma^{-1})_{11})$; hence $(\Sigma^{-1})_{11} = (\Sigma_{11\cdot 2})^{-1}$. The next example serves as a preliminary to the one that follows. Consider the usual set-up of the Gauss-Markov theorem: $\mathbf{y} = \mu + \mathbf{\epsilon}$ is a random element of R^p , where $\mu = \Sigma_1^m \beta_1 u_i$, the u_i being m < p known linearly independent elements of R^p , the β_i are unknown and $E\mathbf{\epsilon} = 0$, $E\mathbf{\epsilon}\mathbf{\epsilon}' = \Sigma$. We interpret the usual derivation of the minimum-variance-linear-unbiased-estimator in terms of biorthogonal configurations. If $A\Sigma^{-1}\mathbf{y}$ is an unbiased estimator of $\beta = (\beta_1, \dots, \beta_m)'$ for all choices of β , we must have $A\Sigma^{-1}U' = I$, where $U = ((u_1, \dots, u_m))'$. I.e., if $A = ((a_1, \dots, a_m))', (a_1, \dots, a_m)$ and (u_1, \dots, u_m) are biorthogonal relative to the Σ^{-1} inner-product on R^p . Hence we may write $a_i = v_i + \delta_i$, where $V = ((v_1, \dots, v_m))'$ is dual to U and $\delta_i \in \mathcal{V}^1\{u_1, \dots, u_m\}$; both relative to the Σ^{-1} inner-product. Thus $A = V + \Delta$, where $\Delta = ((\delta_1, \dots, \delta_m))'$ is an arbitrary configuration in $\mathcal{V}^1\{u_1, \dots, u_m\}$. cov $(A\Sigma^{-1}\mathbf{y}) = EA\Sigma^{-1}\epsilon\epsilon'\Sigma^{-1}A' = V\Sigma^{-1}V' + \Delta\Sigma^{-1}\Delta'$ since $V\Sigma^{-1}\Delta' = 0$. It is clear that minimum variance is obtained by choosing $\Delta = 0$, giving the estimator $V\Sigma^{-1}\mathbf{y} = (U\Sigma^{-1}U')^{-1}U\Sigma^{-1}\mathbf{y}$. The last example has a superficial resemblance to the preceding. We consider an estimator for mixing proportions proposed by Robbins [4]. Let \mathbf{x} , \mathbf{x}_1 , \mathbf{x}_2 , \cdots be independent observations with distribution F, where it is known that $F = \sum_{1}^{p} \alpha_i F_i$, the F_i being known distributions, the α_i , unknown proportions. (Of course $0 \le \alpha_i$, $\sum \alpha_i = 1$.) Robbins' ingenious method of estimating the α_i is as follows: One first constructs functions ϕ_1 , \cdots , ϕ_p so that $\int \phi_i dF_j = \delta_{ij}$. Then $E_F \phi_i(\mathbf{x}) = \alpha_i$ and the estimator $\phi_{in} = \sum_{k=1}^{n} \phi_i(\mathbf{x}_k)/n$ is an unbiased and consistent estimator of α_i . (Robbins actually proposes ϕ_{in}^+ as an estimator.) Robbins gives a specific construction for finding ϕ_1, \dots, ϕ_n on which we elaborate. For this, we need a more general notion of biorthogonal configurations: Let (x_1, \dots, x_p) be a configuration in a vector space $\mathfrak X$ and let (y_1, \dots, y_p) be a configuration in \mathfrak{X}^* , its algebraic adjoint (= linear functionals on \mathfrak{X}). Then the two configurations are biorthogonal if $\langle x_i, y_j \rangle = \delta_{ij}$ where $\langle x, y \rangle$ denotes the application of y to x (or x, considered as an element of x^{**} , to y). Let $\mu =$ $F_1 + \cdots + F_p$. We seek functions ϕ_1, \cdots, ϕ_p that are elements of $\bigcap_i \{L_1(F_i)\} = \emptyset$ $\{L_1(\mu)\}\ (\{L\}\ \text{means the topological vector space }L,\ \text{considered as just a vector}$ space) so that (F_1, \dots, F_p) and (ϕ_1, \dots, ϕ_p) are biorthogonal configurations; the former in $\mathfrak{F} = \{\sum \alpha_i F_i : 0 \leq \alpha_i, \sum \alpha_i = 1\}$, the latter in $\{L_1(\mu)\}$, which is a representation of \mathfrak{F}^* . (If $F \in \mathfrak{F}$ and $\phi \in \{L_1(\mu)\}, \langle F, \phi \rangle = \int \phi \, dF$.) Let $\mathfrak{V}_1^{-1}\{\mathfrak{F}\} \subset$ $\{L_1(\mu)\}\$ be the anihilator of \mathfrak{F} . Then if $\delta_i \in \mathcal{O}_1^{\perp}\{\mathfrak{F}\}, i=1,\cdots,p, (\phi_1+\delta_1,\cdots,\phi_n)$ $\phi_p + \delta_p$) is also biorthogonal with (F_1, \dots, F_p) . Hence the estimators we seek may be characterized by a specific choice of (ϕ_1, \dots, ϕ_p) together with an arbitrary configuration in $\mathcal{O}_1^{\perp}\{\mathfrak{F}\}$. Robbins proposed the following choice: Let f_i $dF_i/d\mu \ \varepsilon \{L_1(\mu)\}$ and let ϕ_i^* be the unique linear combination of elements of $\{f_1, \dots, f_p\}$ so that $\langle {\phi_i}^*, F_j \rangle = \delta_{ij}$. (The natural embedding $F \to dF/d\mu$ of $\mathfrak F$ in $\{L_{\infty}(\mu)\} \subset \{L_1(\mu)\}$ provides a notion of duality between (F_1, \dots, F_p) and $(\phi_1^*, \cdots, \phi_p^*).)$ One might inquire whether there exists an optimal choice of (ϕ_1, \dots, ϕ_p) . If optimality means small variance, the answer (not surprisingly) is: no choice of (ϕ_1, \dots, ϕ_p) gives a uniformly minimum-variance unbiased estimator. To see this, we show that the unbiased estimator having minimum variance at $F^* = \sum \alpha_i^* F_i$ depends on the choice of F^* . Choose F^* so that $\alpha_i^* > 0$, $i = 1, \dots, p$. (This assumption is not critical, it merely assures that $F_i \ll F^*$, $i = 1, \dots, p$.) Since variance is to be minimized, we need consider only $\phi_i \in \{L_2(\mu)\} = \{L_2(F^*)\}$. The natural embedding $F \to dF/dF^*$ puts everything in $\{L_2(F^*)\}$ which we then treat as the inner-product space $L_2(F^*)$. Letting $f_i^* = dF_i/dF^*$, the problem is to select a configuration in $L_2(F^*)$ which is biorthogonal with (f_1^*, \dots, f_p^*) and optimal at F^* . There is such a configuration; (ψ_1, \dots, ψ_p) , the dual to (f_1^*, \dots, f_p^*) . For if $\delta_i \in \mathcal{V}^{\perp}\{f_1^*, \dots, f_p^*\}$ (note that $\{\mathcal{V}^{\perp}\{f_1^*, \dots, f_p^*\}\} = \mathcal{V}_2^{\perp}\{\mathcal{F}\}$, the anihilator of \mathcal{F} in $\{L_2(F^*)\}$), $$\operatorname{var}_{F^*} \{ \psi_i(\mathbf{x}) + \delta_i(\mathbf{x}) \} = \operatorname{var}_{F^*} \psi_i(\mathbf{x}) + E_{F^*} \delta_i^2(\mathbf{x}),$$ since ψ_i and δ_i are orthogonal in $L_2(F^*)$. Clearly the choice $\delta_i \equiv 0$ gives minimum variance at F^* . Thus (ψ_1, \dots, ψ_p) is optimal at F^* and a uniformly minimum variance estimator does not exist. **4.** Acknowledgment. The author wishes to thank Professors A. P. Dempster, I. Olkin, M. Perlman and R. A. Wijsman for their comments on an earlier version of this paper. ## REFERENCES - [1] Dempster, A. P. (1969). Elements of Continuous Multivariate Analysis. Addison-Wesley, Reading. - [2] JAMES, A. T. (1954). Normal multivariate analysis and the orthogonal group. Ann. Math. Statist. 25 40-75. - [3] RAO, C. R. (1966). Linear Statistical Inference and Its Applications. Wiley, New York. - [4] Robbins, H. (1964). The empirical Bayes approach to statistical decision problems. Ann. Math. Statist. 35 1-20. - [5] WIJSMAN, R. A. (1959). Applications of a certain representation of the Wishart matrix. Ann. Math. Statist. 30 597-601.