## BIORTHOGONAL AND DUAL CONFIGURATIONS AND THE RECIPROCAL NORMAL DISTRIBUTION<sup>1</sup>

## By ROBERT H. BERK

## University of Michigan

- **0.** Summary. In this note we discuss the notions of biorthogonal and dual configurations and their relevance in certain statistical applications. The first application is to the distribution of a random matrix related to a multi-variate-normal sample matrix. As with the latter, the distribution is preserved by (certain) linear transformations. One consequence of this is the familiar result that if **Q** is a non-singular Wishart matrix, then for any non-zero vector  $\alpha$ ,  $1/\alpha'\mathbf{Q}^{-1}\alpha$  is a multiple of a chi-square variable. Application is also made to the Gauss-Markov theorem and to certain estimates of mixing proportions due to Robbins.
- 1. Biorthogonal and dual configurations. Let  $\mathfrak X$  be a vector space with an inner-product, denoted by  $\langle \cdot , \cdot \rangle$ . The configurations (= ordered subsets)  $(x_1, \cdots, x_p)$  and  $(x_1^*, \cdots, x_p^*)$  are said to be biorthogonal if  $\langle x_i, x_j^* \rangle = \delta_{ij}$ , the Kroneker delta. Clearly this relation is symmetric. Necessarily, the elements of  $\{x_1, \cdots, x_p\}$  (respectively,  $\{x_1^*, \cdots, x_p^*\}$ ) are linearly independent. For if (e.g.)  $x_1 \in \mathcal{V}\{x_2, \cdots, x_p\}$ , the subspace spanned by  $\{x_2, \cdots, x_p\}$ , then  $\langle x_i, x_1^* \rangle = 0$ ,  $i = 2, \cdots, p$ , implies that  $\langle x_1, x_1^* \rangle = 0$ . In general, there are many configurations biorthogonal with a given configuration  $(x_1, \cdots, x_p)$ . One such is distinguished: There is a unique  $(y_1, \cdots, y_p) \subset \mathcal{V}\{x_1, \cdots, x_p\}$  which is biorthogonal with  $(x_1, \cdots, x_p)$ . It is called the configuration dual to  $(x_1, \cdots, x_p)$  and is constructed as follows: Let  $x_i$ , be the projection of  $x_i$  into  $\mathcal{V}^1\{x_1, \cdots, x_{i-1}, x_{i+1}, \cdots, x_p\}$ . ( $\mathcal{U}^1$  is the orthogonal complement of  $\mathcal{U} \subset \mathcal{X}$  in  $\mathcal{X}$ .)  $\langle x_i, x_i \rangle = \langle x_i, x_i \rangle \neq 0$  by linear independence; of course  $\langle x_i, x_j \rangle = 0$  if  $i \neq j$ . Then  $y_i = x_i / \langle x_i, x_i \rangle$  gives the configuration dual to  $(x_1, \cdots, x_p)$ . It readily follows that any configuration  $(x_1^*, \cdots, x_p^*)$  biorthogonal with  $(x_1, \cdots, x_p)$  has the representation  $x_i^* = y_i + \delta_i$ , where  $\delta_i \in \mathcal{V}^1\{x_1, \cdots, x_p\}$ .

Since  $y_i \in \mathbb{U}\{x_1, \dots, x_p\}$ , we may write  $(y_1, \dots, y_p) = (x_1, \dots, x_p)A$ , where A is a non-singular  $p \times p$  matrix. Letting Q denote the non-singular configuration matrix of  $(x_1, \dots, x_p): q_{ij} = \langle x_i, x_j \rangle$ , the duality relations require that QA = I. Hence  $A = Q^{-1}, (y_1, \dots, y_p) = (x_1, \dots, x_p)Q^{-1}$  and the dual configuration has configuration matrix  $Q^{-1}$ . Thus the dual configuration relation is also symmetric. If  $x_1, \dots, x_p$  are elements of  $R^p$  and if  $X = ((x_1, \dots, x_p))$  is the  $p \times p$  matrix they generate by their representation as p-tuples, then  $Y' = ((y_1, \dots, y_p))' = X^{-1}$ . If  $x_1, \dots, x_p$  are elements of  $R^n$ , n > p, Y is a pseudo (= one-sided) inverse for X, as is the matrix generated by every other configuration biorthogonal with  $(x_1, \dots, x_p)$ .

Received 7 March 1968.

<sup>&</sup>lt;sup>1</sup> Supported in part by grant GP-6008 from the National Science Foundation.

2. Reciprocal normal distribution. Let  $\mathbf{z}$ ,  $\mathbf{z}^{(1)}$ ,  $\cdots$ ,  $\mathbf{z}^{(n)}$ ,  $(n \geq p)$  independent observations from  $N(0, \Sigma)$ , the p-dimensional normal distribution with zero mean and covariance matrix  $\Sigma$ . Throughout,  $\Sigma$  will be  $p \times p$  non-singular. Let  $\mathbf{X} = ((\mathbf{z}^{(1)}, \cdots, \mathbf{z}^{(n)}))$  and let  $\mathbf{x}_1, \cdots, \mathbf{x}_p$  denote the rows of  $\mathbf{X}$ , all random elements of  $R^n$ ;  $\mathbf{X} = ((\mathbf{x}_1, \cdots, \mathbf{x}_p))'$ .  $\mathbf{X}$  (more properly,  $(\mathbf{x}_1, \cdots, \mathbf{x}_p)$ ) is called the sample configuration. Let  $\mathbf{Q} = \mathbf{X}\mathbf{X}'$  be the  $p \times p$  sample configuration matrix (of  $(\mathbf{x}_1, \cdots, \mathbf{x}_p)$ ).  $\mathbf{Q} \sim W(n, \Sigma)$ , the p-dimensional central Wishart distribution based on  $\Sigma$  and having n degrees of freedom. Because  $\Sigma$  is non-singular, wp 1  $\mathbf{x}_1, \cdots, \mathbf{x}_p$  are linearly independent and  $\mathbf{Q}$  is non-singular. Let  $\mathbf{Y} = \mathbf{Q}^{-1}\mathbf{X}$ . Then  $(\mathbf{y}_1, \cdots, \mathbf{y}_p)$ , the rows of  $\mathbf{Y}$ , is the configuration dual to  $(\mathbf{x}_1, \cdots, \mathbf{x}_p)$ . Below we investigate the distribution of the random configuration  $\mathbf{Y}$  and show that like  $\mathbf{X}$ , it has closure properties under (certain) linear transformations. We also cite certain facts about spherically distributed configurations and about the multivariate normal distribution. A fuller discussion of these may be found in [1], [2] and [3].

We begin by noting that the distribution of  $\mathbf{Y}$  is spherical (invariant under orthogonal rotations). To see this, we recall that if G is an  $n \times n$  orthogonal matrix,  $\mathbf{x}_i$  and  $G\mathbf{x}_i$  have the same (spherical normal) distribution in  $R^n$ . In fact,  $\mathbf{X}$  and  $\mathbf{X}G$  have the same distribution. Since  $\mathbf{X}$  and  $\mathbf{X}G$  have the same configuration matrix,  $\mathbf{Q}$ , it follows that  $\mathbf{Y}G = \mathbf{Q}^{-1}\mathbf{X}G$  has the same distribution as  $\mathbf{Y}$ . If  $\mathbf{v} \in R^n$  is spherically distributed, then  $\langle \mathbf{v}, \mathbf{v} \rangle = \mathbf{v}'\mathbf{v}$  and  $\mathbf{v}/(\mathbf{v}'\mathbf{v})^{\frac{1}{2}}$  are independent; the latter being uniform over the unit sphere in  $R^n$ . Thus the distribution of a spherically distributed vector is characterized by the distribution of  $\mathbf{v}'\mathbf{v}$ . For  $\mathbf{x}_i$ ,  $\mathbf{x}_i'\mathbf{x}_i \sim \sigma_{ii}\chi_n^2$ , where  $((\sigma_{ij})) = \Sigma$ . Similarly, the distribution of a spherically distributed configuration such as  $\mathbf{X}$  is characterized by the distribution of its configuration matrix, in this case,  $W(n, \Sigma)$ . As  $\mathbf{Y}$  has configuration matrix  $\mathbf{Q}^{-1}$ , its distribution is characterized by the fact that  $(\mathbf{Y}\mathbf{Y}^1)^{-1} \sim W(n, \Sigma)$ .

A random matrix (or configuration) with this spherical distribution will be said to have the reciprocal normal distribution. This is motivated by the fact that for n=p=1,  $\mathbf{Y}=((y_{11}))=((1/\mathbf{x}_{11}))$  where  $\mathbf{X}=((\mathbf{x}_{11}))$ . Propositions 1 and 2 below suggest that the natural parameters of this distribution are m=n-(p-1) and  $\Sigma^{-1}$ . Accordingly, we write  $\mathbf{Y}\sim RN(m,\Sigma^{-1})$  to mean  $\mathbf{Y}$  is spherically distributed and  $(\mathbf{Y}\mathbf{Y}')^{-1}\sim W(m+p-1,\Sigma)$ . Equivalently,  $\mathbf{X}$ , the configuration dual to  $\mathbf{Y}$ , has the distribution of a sample of m+p-1 from  $N(0,\Sigma)$ . I.e.,  $\mathbf{X}$  is spherically distributed and  $\mathbf{X}\mathbf{X}'\sim W(m+p-1,\Sigma)$ .

We recall some facts about projections of normal vectors. If  $\mathbf{x}_1 \in R^n$  is projected into a fixed k-dimensional subspace  $\mathbb{U}$ , the resulting vector,  $\mathbf{x}_{1^*}$ , is spherically normally distributed in  $\mathbb{U}$  with k degrees of freedom. I.e.,  $\mathbf{x}_{1^*}$  is spherically distributed in  $\mathbb{U}$  and  $\mathbf{x}_{1^*}' \mathbf{x}_{1^*} \sim \sigma_{11} \chi_k^2$ . This result remains true if  $\mathbb{U}$  is a random k-dimensional subspace, as long as it is independent of  $\mathbf{x}_1$ . Similarly if we project  $(\mathbf{x}_1, \dots, \mathbf{x}_p)$  into  $\mathbb{U}$ , the resulting configuration,  $(\mathbf{x}_{1^*}, \dots, \mathbf{x}_{p^*})$  is multivariate normal in  $\mathbb{U}$  with k degrees of freedom: it is spherically distributed in  $\mathbb{U}$  and  $\mathbf{x}_*\mathbf{x}_*' \sim W(k, \Sigma)$ , where  $\mathbf{x}_* = ((\mathbf{x}_{1^*}, \dots, \mathbf{x}_{p^*}))'$ .

Consider now a partition of the multivariate-normal vector z into  $z_1$ , the first

s and  $\mathbf{z}_2$ , the remaining p-s coordinates. We obtain a corresponding partition of  $\Sigma$ :  $\Sigma_{ii}$  is the covariance matrix of  $\mathbf{z}_i$  and  $\Sigma_{12}$ , the matrix of covariances between the elements of  $\mathbf{z}_1$  and  $\mathbf{z}_2$ .  $\Sigma_{11\cdot 2}$  denotes the conditional covariance matrix of  $\mathbf{z}_1$  given  $\mathbf{z}_2$ .  $\Sigma_{11\cdot 2}$  is also the marginal covariance matrix of  $\mathbf{z}_{1\cdot 2}=\mathbf{z}_1-B\mathbf{z}_2$ , where  $B\mathbf{z}_2=E(\mathbf{z}_1\mid \mathbf{z}_2)$ . (Note that  $\mathbf{z}_2$  and  $\mathbf{z}_{1\cdot 2}$  are independent.) We obtain a corresponding partition of  $\mathbf{X}$  (respectively,  $\mathbf{Y}$ ):  $\mathbf{X}_1$  (respectively,  $\mathbf{Y}_1$ ) denotes the first s and  $\mathbf{X}_2$  (respectively  $\mathbf{Y}_2$ ), the remaining p-s rows of  $\mathbf{X}$  (respectively,  $\mathbf{Y}$ ). That is,  $\mathbf{X}_1=((\mathbf{x}_1,\cdots,\mathbf{x}_s))'$ . Ax  $\mathbf{X}$  is a sample of n from  $N(0,\Sigma)$ ,  $\mathbf{X}_1-B\mathbf{X}_2$  is a sample of n from  $N(0,\Sigma_{11\cdot 2})$  and is independent of  $\mathbf{X}_2$ . If we project the rows of  $\mathbf{X}_1-B\mathbf{X}_2$  into  $\mathbf{U}^1(\mathbf{X}_2)=\mathbf{U}^1\{\mathbf{x}_{s+1},\cdots,\mathbf{x}_p\}$ , we obtain a configuration that is multivariate normal in  $\mathbf{U}^1(\mathbf{X}_2)$  with covariance matrix  $\Sigma_{11\cdot 2}$  and having degrees of freedom = dim  $\mathbf{U}^1(\mathbf{X}_2)=n-(p-s)$ . But as the projection of  $\mathbf{X}_2$  into  $\mathbf{U}^1(\mathbf{X}_2)$  is zero, the projection of  $\mathbf{X}_1-B\mathbf{X}_2$  into  $\mathbf{U}^1(\mathbf{X}_2)$  is just  $\mathbf{X}_{1\cdot 2}$ , the projection of  $\mathbf{X}_1$  into  $\mathbf{U}^1(\mathbf{X}_2)$ . Hence  $\mathbf{Q}_{11\cdot 2}=\mathbf{X}_1\cdot 2\mathbf{X}_1'\cdot 2\sim W(n-(p-s),\Sigma_{11\cdot 2})$  and is independent of  $\mathbf{Q}_{22}=\mathbf{X}_2\mathbf{X}_2'\sim W(n,\Sigma_{22})$ .

We discuss now the closure properties of the distribution of  $\mathbf{Y}$ , considering first  $\mathbf{y}_1$  by way of introduction. Since  $\mathbf{Y}$  is dual to  $\mathbf{X}$ ,  $\mathbf{y}_1 = \mathbf{x}_1 \cdot / \mathbf{x}_1' \cdot \mathbf{x}_1$ , where  $\mathbf{x}_1$  is the projection of  $\mathbf{x}_1$  into  $\mathbb{U}^{\perp}(\mathbf{x}_2, \dots, \mathbf{x}_p)$ . Taking s=1 in the preceding shows that  $\mathbf{x}_1$  is spherically normally distributed in  $\mathbb{U}^{\perp}(\mathbf{x}_2, \dots, \mathbf{x}_p)$  with scale factor  $\sigma_{11\cdot 2}$  (the only element of  $\Sigma_{11\cdot 2}$ );  $\mathbf{x}_1' \cdot \mathbf{x}_1 \cdot / \sigma_{11\cdot 2} \sim \chi^2_{n-(p-1)}$ . We further note that in general,  $(\Sigma_{11\cdot 2})^{-1} = (\Sigma^{-1})_{11}$  (this is well known but we present a probabilistic derivation using dual configurations in Section 3). In particular, writing  $\Sigma^{-1} = (\sigma^{ij})$ ,  $\sigma^{11} = 1/\sigma_{11\cdot 2}$ . Thus  $\sigma^{11}/\mathbf{y}_1'\mathbf{y}_1 \sim \chi^2_{n-(p-1)}$ ; i.e.,  $\mathbf{y}_1 \sim RN(n-(p-1), \sigma^{11})$ . More generally, we have

- 1. Proposition. If  $Y \sim RN(m, \Sigma^{-1})$ , then
  - (i)  $Y_1 \sim RN(m, (\Sigma^{-1})_{11})$ .
  - (ii)  $\mathbf{Y}_{2\cdot 1} \sim RN(m+s, (\Sigma^{-1})_{22\cdot 1})$  and is independent of

$$Y_1Y_{\ 1}' \ = \ (Q^{-1})_{11} \ = \ (Q_{11\cdot 2})^{-1}.$$

PROOF. Let X be the configuration dual to Y. Note that the configuration dual to  $X_{1\cdot 2}$  is just  $Y_1$ . Dually, the configuration dual to  $X_2$  is  $Y_{2\cdot 1}$ . By the preceding discussion,

$$\mathbf{Y}_{1} = (\mathbf{Q}_{11\cdot 2})^{-1}\mathbf{X}_{1\cdot 2} \sim RN(n - (p - s) - (s - 1), (\Sigma_{11\cdot 2})^{-1})$$
$$= RN(m, (\Sigma^{-1})_{11}).$$

Moreover,  $Q_{11\cdot 2} = X_{1\cdot 2}X'_{1\cdot 2}$  is independent of  $X_2$  and therefore of

$$\mathbf{Y}_{2\cdot 1} = (\mathbf{Q}_{22})^{-1}\mathbf{X}_{2} \sim RN(n - (p - s - 1), (\Sigma_{22})^{-1})$$
  
=  $RN(m + s, (\Sigma^{-1})_{22\cdot 1}).$ 

2. Proposition. If  $\mathbf{Y} \sim RN(m, \Sigma^{-1})$  and C is  $p \times p$  non-singular,  $C\mathbf{Y} \sim RN(m, C\Sigma^{-1}C')$ .

PROOF. Let  $D = C^{-1}$ .  $D'\mathbf{X}$  is a sample of n from  $N(0, D'\Sigma D)$ . Hence  $C\mathbf{Y} = C\mathbf{Q}^{-1}\mathbf{X} = (D'\mathbf{X}\mathbf{X}'D)^{-1}D'\mathbf{X} \sim RN(m, (D'\Sigma D)^{-1}) = RN(m, C\Sigma^{-1}C')$ .

3. COROLLARY. Let A denote an  $s \times p$  matrix of rank  $s \leq p$ . Then if  $\mathbf{Y} \sim RN(m, \Sigma^{-1})$ ,

$$A \mathbf{Y} \sim RN(m, A \Sigma^{-1}A')$$
.

PROOF. Let C be a  $p \times p$  non-singular matrix having A as its first s rows. The corollary follows from Propositions 1 and 2.  $\square$ 

In particular, if  $\alpha$  is a non-zero  $p \times 1$  vector,  $\alpha' \mathbf{Y} \sim RN(m, \alpha' \Sigma^{-1} \alpha)$ . Hence  $\alpha' \Sigma^{-1} \alpha/\alpha' \mathbf{Y} \mathbf{Y}' \alpha = \alpha' \Sigma^{-1} \alpha/\alpha' \mathbf{Q}^{-1} \alpha \sim \chi^2_{n-(p-1)}$ , where  $\mathbf{Q} \sim W(n, \Sigma)$ . This is a well-known property of the Wishart distribution [5]. A more general consequence of the corollary [1] is that  $(A \mathbf{Q}^{-1} A')^{-1} \sim W(n-(p-s), (A \Sigma^{-1} A')^{-1})$ . Moreover, if B denotes the remaining p-s rows of C, then again by Propositions 1 and 2,

$$\begin{split} [(C\mathbf{Q}^{-1}C')_{22\cdot 1}]^{-1} &= (B\mathbf{Q}^{-1}B' - A\mathbf{Q}^{-1}B'(B\mathbf{Q}^{-1}B')^{-1}B\mathbf{Q}^{-1}A')^{-1} \\ &\sim W(n, [(C\Sigma^{-1}C')_{22\cdot 1}]^{-1}) \\ &= W(n, (B\Sigma^{-1}B' - A\Sigma^{-1}B'(B\Sigma^{-1}B')^{-1}B\Sigma^{-1}A')^{-1}) \end{split}$$

and is independent of  $(AQ^{-1}A')^{-1}$ . (To see this, note that  $(CY)_{2\cdot 1} \sim RN(m+s'C\Sigma^{-1}C')$  and  $(CQ^{-1}C')_{2\cdot 1} = (CY)_{2\cdot 1}(CY)'_{2\cdot 1}$ .)

**3.** Other statistical applications. Biorthogonal and dual configurations provide interesting interpretations of other statistical phenomena, a few of which we discuss here. We consider first a population analog of the dual sample configurations of Section 2, leading to a probabilistic proof of the well-known fact that  $(\Sigma^{-1})_{11} = (\Sigma_{11\cdot2})^{-1}$ .

If  $\mathbf{x} \in R^p$  has the  $N(0, \Sigma)$  distribution, then the set of linear combinations  $\mathfrak{X} = \{\alpha' \mathbf{x} : \alpha \in R^p\}$  is a vector space for which covariance is an inner product. The coordinates of  $\mathbf{x}$  are a linearly independent configuration in  $\mathfrak{X}$  with configuration matrix  $\Sigma$  and we may obtain their dual configuration:  $\mathbf{y} = \Sigma^{-1}\mathbf{x} \sim N(0, \Sigma^{-1})$ . (Note that the coordinates of  $\mathbf{y}$  are elements of  $\mathfrak{X}$ .) Let  $\mathbf{x}_1$  be the first s and  $\mathbf{x}_2$ , the remaining p - s coordinates of  $\mathbf{x}$  and partition  $\mathbf{y}$  similarly. Then  $\mathbf{x}_{1\cdot 2} = \mathbf{x}_1 - B\mathbf{x}_2 \sim N(0, \Sigma_{11\cdot 2})$  and is independent of  $\mathbf{x}_2$ . If we dualize the configuration given by the coordinates of  $\mathbf{x}_{1\cdot 2}$ , we obtain  $\mathbf{y}_1$ , which therefore has the  $N(0, (\Sigma_{11\cdot 2})^{-1})$  distribution. But since  $\mathbf{y}_1$  is a partition of  $\mathbf{y}$ ,  $\mathbf{y}_1 \sim N(0, (\Sigma^{-1})_{11})$ ; hence  $(\Sigma^{-1})_{11} = (\Sigma_{11\cdot 2})^{-1}$ .

The next example serves as a preliminary to the one that follows. Consider the usual set-up of the Gauss-Markov theorem:  $\mathbf{y} = \mu + \mathbf{\epsilon}$  is a random element of  $R^p$ , where  $\mu = \Sigma_1^m \beta_1 u_i$ , the  $u_i$  being m < p known linearly independent elements of  $R^p$ , the  $\beta_i$  are unknown and  $E\mathbf{\epsilon} = 0$ ,  $E\mathbf{\epsilon}\mathbf{\epsilon}' = \Sigma$ . We interpret the usual derivation of the minimum-variance-linear-unbiased-estimator in terms of biorthogonal configurations. If  $A\Sigma^{-1}\mathbf{y}$  is an unbiased estimator of  $\beta = (\beta_1, \dots, \beta_m)'$  for all choices of  $\beta$ , we must have  $A\Sigma^{-1}U' = I$ , where  $U = ((u_1, \dots, u_m))'$ . I.e., if

 $A = ((a_1, \dots, a_m))', (a_1, \dots, a_m)$  and  $(u_1, \dots, u_m)$  are biorthogonal relative to the  $\Sigma^{-1}$  inner-product on  $R^p$ . Hence we may write  $a_i = v_i + \delta_i$ , where  $V = ((v_1, \dots, v_m))'$  is dual to U and  $\delta_i \in \mathcal{V}^1\{u_1, \dots, u_m\}$ ; both relative to the  $\Sigma^{-1}$  inner-product. Thus  $A = V + \Delta$ , where  $\Delta = ((\delta_1, \dots, \delta_m))'$  is an arbitrary configuration in  $\mathcal{V}^1\{u_1, \dots, u_m\}$ . cov  $(A\Sigma^{-1}\mathbf{y}) = EA\Sigma^{-1}\epsilon\epsilon'\Sigma^{-1}A' = V\Sigma^{-1}V' + \Delta\Sigma^{-1}\Delta'$  since  $V\Sigma^{-1}\Delta' = 0$ . It is clear that minimum variance is obtained by choosing  $\Delta = 0$ , giving the estimator  $V\Sigma^{-1}\mathbf{y} = (U\Sigma^{-1}U')^{-1}U\Sigma^{-1}\mathbf{y}$ .

The last example has a superficial resemblance to the preceding. We consider an estimator for mixing proportions proposed by Robbins [4]. Let  $\mathbf{x}$ ,  $\mathbf{x}_1$ ,  $\mathbf{x}_2$ ,  $\cdots$  be independent observations with distribution F, where it is known that  $F = \sum_{1}^{p} \alpha_i F_i$ , the  $F_i$  being known distributions, the  $\alpha_i$ , unknown proportions. (Of course  $0 \le \alpha_i$ ,  $\sum \alpha_i = 1$ .) Robbins' ingenious method of estimating the  $\alpha_i$  is as follows: One first constructs functions  $\phi_1$ ,  $\cdots$ ,  $\phi_p$  so that  $\int \phi_i dF_j = \delta_{ij}$ . Then  $E_F \phi_i(\mathbf{x}) = \alpha_i$  and the estimator  $\phi_{in} = \sum_{k=1}^{n} \phi_i(\mathbf{x}_k)/n$  is an unbiased and consistent estimator of  $\alpha_i$ . (Robbins actually proposes  $\phi_{in}^+$  as an estimator.)

Robbins gives a specific construction for finding  $\phi_1, \dots, \phi_n$  on which we elaborate. For this, we need a more general notion of biorthogonal configurations: Let  $(x_1, \dots, x_p)$  be a configuration in a vector space  $\mathfrak X$  and let  $(y_1, \dots, y_p)$  be a configuration in  $\mathfrak{X}^*$ , its algebraic adjoint (= linear functionals on  $\mathfrak{X}$ ). Then the two configurations are biorthogonal if  $\langle x_i, y_j \rangle = \delta_{ij}$  where  $\langle x, y \rangle$  denotes the application of y to x (or x, considered as an element of  $x^{**}$ , to y). Let  $\mu =$  $F_1 + \cdots + F_p$ . We seek functions  $\phi_1, \cdots, \phi_p$  that are elements of  $\bigcap_i \{L_1(F_i)\} = \emptyset$  $\{L_1(\mu)\}\ (\{L\}\ \text{means the topological vector space }L,\ \text{considered as just a vector}$ space) so that  $(F_1, \dots, F_p)$  and  $(\phi_1, \dots, \phi_p)$  are biorthogonal configurations; the former in  $\mathfrak{F} = \{\sum \alpha_i F_i : 0 \leq \alpha_i, \sum \alpha_i = 1\}$ , the latter in  $\{L_1(\mu)\}$ , which is a representation of  $\mathfrak{F}^*$ . (If  $F \in \mathfrak{F}$  and  $\phi \in \{L_1(\mu)\}, \langle F, \phi \rangle = \int \phi \, dF$ .) Let  $\mathfrak{V}_1^{-1}\{\mathfrak{F}\} \subset$  $\{L_1(\mu)\}\$  be the anihilator of  $\mathfrak{F}$ . Then if  $\delta_i \in \mathcal{O}_1^{\perp}\{\mathfrak{F}\}, i=1,\cdots,p, (\phi_1+\delta_1,\cdots,\phi_n)$  $\phi_p + \delta_p$ ) is also biorthogonal with  $(F_1, \dots, F_p)$ . Hence the estimators we seek may be characterized by a specific choice of  $(\phi_1, \dots, \phi_p)$  together with an arbitrary configuration in  $\mathcal{O}_1^{\perp}\{\mathfrak{F}\}$ . Robbins proposed the following choice: Let  $f_i$  $dF_i/d\mu \ \varepsilon \{L_1(\mu)\}$  and let  $\phi_i^*$  be the unique linear combination of elements of  $\{f_1, \dots, f_p\}$  so that  $\langle {\phi_i}^*, F_j \rangle = \delta_{ij}$ . (The natural embedding  $F \to dF/d\mu$  of  $\mathfrak F$ in  $\{L_{\infty}(\mu)\} \subset \{L_1(\mu)\}$  provides a notion of duality between  $(F_1, \dots, F_p)$  and  $(\phi_1^*, \cdots, \phi_p^*).)$ 

One might inquire whether there exists an optimal choice of  $(\phi_1, \dots, \phi_p)$ . If optimality means small variance, the answer (not surprisingly) is: no choice of  $(\phi_1, \dots, \phi_p)$  gives a uniformly minimum-variance unbiased estimator. To see this, we show that the unbiased estimator having minimum variance at  $F^* = \sum \alpha_i^* F_i$  depends on the choice of  $F^*$ . Choose  $F^*$  so that  $\alpha_i^* > 0$ ,  $i = 1, \dots, p$ . (This assumption is not critical, it merely assures that  $F_i \ll F^*$ ,  $i = 1, \dots, p$ .) Since variance is to be minimized, we need consider only  $\phi_i \in \{L_2(\mu)\} = \{L_2(F^*)\}$ . The natural embedding  $F \to dF/dF^*$  puts everything in  $\{L_2(F^*)\}$  which we then treat as the inner-product space  $L_2(F^*)$ . Letting  $f_i^* = dF_i/dF^*$ , the problem is

to select a configuration in  $L_2(F^*)$  which is biorthogonal with  $(f_1^*, \dots, f_p^*)$  and optimal at  $F^*$ . There is such a configuration;  $(\psi_1, \dots, \psi_p)$ , the dual to  $(f_1^*, \dots, f_p^*)$ . For if  $\delta_i \in \mathcal{V}^{\perp}\{f_1^*, \dots, f_p^*\}$  (note that  $\{\mathcal{V}^{\perp}\{f_1^*, \dots, f_p^*\}\} = \mathcal{V}_2^{\perp}\{\mathcal{F}\}$ , the anihilator of  $\mathcal{F}$  in  $\{L_2(F^*)\}$ ),

$$\operatorname{var}_{F^*} \{ \psi_i(\mathbf{x}) + \delta_i(\mathbf{x}) \} = \operatorname{var}_{F^*} \psi_i(\mathbf{x}) + E_{F^*} \delta_i^2(\mathbf{x}),$$

since  $\psi_i$  and  $\delta_i$  are orthogonal in  $L_2(F^*)$ . Clearly the choice  $\delta_i \equiv 0$  gives minimum variance at  $F^*$ . Thus  $(\psi_1, \dots, \psi_p)$  is optimal at  $F^*$  and a uniformly minimum variance estimator does not exist.

**4.** Acknowledgment. The author wishes to thank Professors A. P. Dempster, I. Olkin, M. Perlman and R. A. Wijsman for their comments on an earlier version of this paper.

## REFERENCES

- [1] Dempster, A. P. (1969). Elements of Continuous Multivariate Analysis. Addison-Wesley, Reading.
- [2] JAMES, A. T. (1954). Normal multivariate analysis and the orthogonal group. Ann. Math. Statist. 25 40-75.
- [3] RAO, C. R. (1966). Linear Statistical Inference and Its Applications. Wiley, New York.
- [4] Robbins, H. (1964). The empirical Bayes approach to statistical decision problems. Ann. Math. Statist. 35 1-20.
- [5] WIJSMAN, R. A. (1959). Applications of a certain representation of the Wishart matrix. Ann. Math. Statist. 30 597-601.