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BIORTHOGONAL AND DUAL CONFIGURATIONS AND THE
RECIPROCAL NORMAL DISTRIBUTION!

By RosertT H. BERK
Unaversity of Michigan

0. Summary. In this note we discuss the notions of biorthogonal and dual con-
figurations and their relevance in certain statistical applications. The first ap-
plication is to the distribution of a random matrix related to a multi-variate-
normal sample matrix. As with the latter, the distribution is preserved by
(certain) linear transformations. One consequence of this is the familiar result
that if Q is a non-singular Wishart matrix, then for any non-zero vector a,
1/&/Q '« is a multiple of a chi-square variable. Application is also made to the
Gauss-Markov theorem and to certain estimates of mixing proportions due to
Robbins.

1. Biorthogonal and dual configurations. Let X be a vector space with an
1nner-product denoted by (- ' -). The configurations (= ordered subsets)
(1, -, ap) and (%, ---, z,") are said to be biorthogonal if (x, z; *y = 85,
the Kroneker delta. Clearly this relation is symmetric. Necessarily, the elements
of {1, -+, &} (respectively, {z:*, -+, x,"}) are linearly independent. For if
(e.g.) @ € V{xm, -+, x}, the subspace spanned by {2, ---, %}, then
(i, 1"y = 0,7 = 2, ---, p, implies that (1, z: *y = 0. In general, there are
many configurations biorthogonal with a given configuration (z1, -+, ).
One such is distinguished: There is a unique (%1, ***, ¥p) € V{2, -+, Tp}
which is biorthogonal with (z1, - -+, ). It is called the configuration dual to
(21, -+, @p) and is constructed as follows: Let z:, be the projection of z: into
OMay, =+, i1, Tiq1, *** » Tp}. (U" is the orthogonal complement of U C X in
x.) (xz , @) = (x:., x:.) % 0 by linear independence; of course (z:, z;.) = 0 if
¢ #% j. Then y; = x:./{x;. , xi.) gives the conﬁguratlon dual to (21, -+, zp). It
readily follows that any conﬁg'uratlon (", -, x") blorthogonal with (z,
.-+, z,) has the representation z;* = y; + 8;, where 8; e V™ {x1, - - -, z,}.

Since yié‘fO{SIh, ) xp}f we may write (yl’ ) yp) = (xl, Tt xﬁ)Ay
where A is a non-singular p X p matrix. Letting Q denote the non-singular con-
figuration matrix of (21, --- 2 %) 1qi; = (xi, z;), the duality relations require
that QA = I. Hence A = Q% (y1, - - ) Yp) = (21, -+ ,2,)Q " and the dual
configuration has conﬁguratlon matrix Q. Thus the dual configuration relation
is also symmetric. If z;, - - - , , are elements of R” and if X = ((z1, -+, x,,))
isthep X p matnx they generate by their representation as p-tuples, then Y =
(g, -+, ¥p) =X " TIa, -, x, are elements of R", n > p, Y is a pseudo
(= one-sided) inverse for X, as is the matrix generated by every other configura-
tion biorthogonal with (z1, -+ -, p).
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2. Reciprocal normal distribution. Let z, z¥, --- , z®, (n = p) independent
observations from N (0, Z), the p-dimensional normal distribution with zero
mean and covariance matrix Z. Throughout, = will be p X p non-singular. Let
X = ((z%, ---,z™)) and let x;, - - -, X, denote the rows of X, all random ele-
ments of R*; X = ((X1, -, Xp))'. X (more properly, (X1, -+, X,)) is called
the sample configuration. Let Q = XX’ be the p X p sample configuration matrix
(of (X1, -+ ,%Xp)). Q ~ W(n, Z), the p-dimensional central Wishart distribution
based on = and having n degrees of freedom. Because Z is non-singular, wp 1
X1, -+ , Xp are linearly independent and Q is non-singular. Let Y = Q'X. Then
(¥1, -+ ,¥a), the rows of Y, is the configuration dual to (%1, - - - , X,). Below we
investigate the distribution of the random configuration Y and show that like
X, it has closure properties under (certain) linear transformations. We also cite
certain facts about spherically distributed configurations and about the multi-
variate normal distribution. A fuller discussion of these may be found in [1],
[2] and [3].

We begin by noting that the distribution of Y is spherical (invariant under
orthogonal rotations). To see this, we recall that if G is an n X n orthogonal
matrix, x; and Gx; have the same (spherical normal) distribution in R". In fact,
X and X@ have the same distribution. Since X and XG have the same configura-
tion matrix, Q, it follows that YG = Q 'X@ has the same distribution as Y. If
v ¢ R" is spherically distributed, then (v, v) = v'v and v/(v'v)? are independent;
the latter being uniform over the unit sphere in R". Thus the distribution of a
spherically distributed vector is characterized by the distribution of v'v. For
X, XiX; ~ 0iuxa, where ((oi;)) = Z. Similarly, the distribution of a spherically
distributed configuration such as X is characterized by the distribution of its
configuration matrix, in this case, W(n, Z). As Y has configuration matrix QY
its distribution is characterized by the fact that (YY) ™ ~ W(n, Z).

A random matrix (or configuration) with this spherical distribution will be
said to have the reciprocal normal distribution. This is motivated by the fact
that forn = p = 1, Y = ((yu)) = ((1/%u)) where X = ((xu)). Propositions
1 and 2 below suggest that the natural parameters of this distribution are
m=n — (p — 1) and T, Accordingly, we write Y ~ RN (m, =) to mean
Y is spherically distributed and (YY) ~ W(m + p — 1, ). Equivalently,
X, the configuration dual to Y, has the distribution of a sample of m + p — 1
from N (0, 2). Le., X is spherically distributed and XX' ~W(m+p— 1, 2).

We recall some facts about projections of normal vectors. If x; € R" is projected
into a fixed k-dimensional subspace U, the resulting vector, X;«, is spherically
normally distributed in © with k degrees of freedom. L.e., X+ is spherically dis-
tributed in O and Xi«zi« ~ ouxi. This result remains true if U is a random k-
dimensional subspace, as long as it is independent of x; . Similarly if we project
(x:, -+, Xp) into U, the resulting configuration, (X1, - - -, Xp+) is multivariate
normal in U with & degrees of freedom: it is spherically distributed in U and
XX, ~ W(k, Z), where Xe = ((Z1s, --+ , Xpv)) .

Consider now a partition of the multivariate-normal vector z into z; , the first
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s and 2z, the remaining p — s coordinates. We obtain a corresponding partition
of Z: Z;;is the covariance matrix of z; and Zy. , the matrix of covariances between
the elements of z; and z; . Zj;.» denotes the conditional covariance matrix of z;
given z, . Zy3.2 is also the marginal covariance matrix of z;.. = z; — Bz, , where
Bz, = E(z, | z,). (Note that z; and z;., are independent.) We obtain a correspond-
ing partition of X (respectively, Y): X; (respectively, Y;) denotes the first s and
X, (respectively Y,), the remaining p — s rows of X (respectively, Y). That is,
Xi = ((x1, -+, %)) . Ax X is a sample of # from N (0, =), X; — BX is a sample
of n from N (0, Zy1.5) and is independent of X, . If we project the rows of X; — BX,
into V*(Xz) = V*{Xs41, - , Xp}, We obtain a configuration that is multivariate
normal in 0*(X,) with covariance matrix Z;;.2 and having degrees of freedom =
dim U*(X;) = n — (p — s). But as the projection of Xyinto V*(Xs) is zero, the
projection of X; — BX; into 0*(X;) is just X;.2 , the projection of X; into 0*(Xs).
Hence Qu.o = X1.X1.2 ~ W(n — (p — s), Zu.2) and is independent of Qg =
XXy ~ W(n, Z»).

We discuss now the closure properties of the distribution of Y, considering
first y; by way of introduction. Since Y is dual to X, y; = xl./x{.xl. , where x;. is
the projection of x; into V*(xz, - -, X,). Taking s = 1 in the preceding shows
that x;. is spherically normally distributed in 0" (xs, - - - , X,) with scale factor
o11.2 (the only element of Zy;.0); X1.X1. Jo1s ~ X'nap—1y - We further note that in
general, (Zy.0) " = (Z")u (this is well known but we present a probabilistic
derivation using dual configurations in Section 3). In particular, writing =~ =
((e), ¢ = 1/ons. Thus ¢"'/7i'yi ~ Xs—o-1y; i-6., 1 ~ RN(n — (p — 1),
@) . More generally, we have

1. ProrosttioN. If Y ~ RN (m, =7, then

(i) Yy ~ RN(m, (2_1)11) .
(ii) Yoyq ~ RN(m + s, (2 V) a.1) and is independent of

Y, Y5 = (QYu = (Qua)™

Proor. Let X be the configuration dual to Y. Note that the configuration
dual to X;.; is just Y; . Dually, the configuration dual to X; is Y;.; . By the pre-
ceding discussion,

Y = (Qus) Ko ~RN(n — (p —s) — (s — 1), (Zu2)")
= RN(m, (Z ).
Moreover, Qu.o = X;.5X1.; is independent of X, and therefore of
Y1 = (Qu) X ~RN(n — (p — s — 1), (Zz)7)
= RN(m + s, (Za1). 0

2. ProrosiTioN. If Y ~ RN(m, =7") and C is p X p non-singular, CY ~
RN (m, Cz7C").
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Proor. Let D = C'. D’X is a sample of n from N (0, D'=ZD). Hence CY =
CQ'X = (D'’XX'D)™'D'X ~ RN(m, (D'ED)™") = RN(m, C=7'C").[]

3. CororLLARY. Let A denote an s X p maitriz of rank s < p. Then if Y ~ RN (m,
),
AY ~ RN(m, Az7'A").

Proor. Let C be a p X p non-singular matrix having A as its first s rows. The
corollary follows from Propositions 1 and 2. []

In particular, if & is a non-zero p X 1 vector, @'Y ~ RN (m, a'> '«). Hence
' 20/dYY @ = 270/ Qe ~ Xn—(p-1) , Where Q ~ W(n, =). This is a
well-known property of the Wishart distribution [5]. A more general consequence
of the corollary [1] is that (AQ7'AY " ~ W(n — (p — s), (4=27'4")™"). More-
over, if B denotes the remaining p — s rows of C, then again by Propositions
1 and 2,

(CQ7'C)wal™ = (BQT'B' — 4Q7'B'(BQ™'B)™'BQ'4")™
~ W(n, [(CZ7'C")a] ™)
= W(n, (BZ'B' — Az7'B'(Bz7'B")7'B="'4")™)

and is independent of (4Q™*4")™". (To see this, note that (CY)2qa ~ RN (m + s’
C=7'C") and (CQ7'C" g1 = (CY)21(CY)31.)

3. Other statistical applications. Biorthogonal and dual configurations provide
interesting interpretations of other statistical phenomena, a few of which we
discuss here. We consider first a population analog of the dual sample configura-
tions of Section 2, leading to a probabilistic proof of the well-known fact that
( 2_1) n= (211-2)_1-

If x ¢ R® has the N(0, ) distribution, then the set of linear combinations
€ = {a'z: a £ R”} is a vector space for which covariance is an inner product. The
coordinates of X are a linearly independent configuration in & with configuration
matrix 2 and we may obtain their dual configuration: y = Z7'x ~ N(0, =7).
(Note that the coordinates of y are elements of X.) Let x; be the first s and x, ,
the remaining p — s coordinates of x and partition y similarly. Then x;., = x; —
Bx, ~ N (0, Zy1.2) and is independent of x, . If we dualize the configuration given
by the coordinates of x;., , we obtain y; , which therefore has the N (0, (Z1.2) ™)
distribultion. But since y; is a partition of y, y1 ~ N (0, (£7)u); hence () =
(Zn2)”.

The next example serves as a preliminary to the one that follows. Consider the
usual set-up of the Gauss-Markov theorem:y = u + e is a random element of
R?, where u = Z;"Biu; , the u; being m < p known linearly independent elements
of R?, the 8; are unknown and Ee = 0, Eee’ = =. We interpret the usual deriva-
tion of the minimum-variance-linear-unbiased-estimator in terms of biorthogonal
configurations. If AE_ly is an unbiased estimator of 8 = (81, - -+, Bw) for all
choices of B, we must have AZ™'U’ = I, where U = ((w1, --+ , um))’. Le., if



BIORTHOGONAL AND DUAL CONFIGURATIONS 397

A= ((a1, - ,am), (@1, ,am) and (ur, -+, un) are biorthogonal relative
to the =™ inner-product on R”. Hence we may write a; = v; 4+ 8;, where V =
((v, -+, vm)) is dual to U and 8; e O*{us, - - -, um}; both relative to the =7
inner-product. Thus A = V + A, where A = ((81, *-+, 6»))’ is an arbitrary

configuration in V*{u;, -+, Um}. cov (AZ7'y) = EAZ "ee'=74A" = V=V +
AZ7'A" since V=7'A" = 0. It is clear that minimum variance is obtained by
choosing A = 0, giving the estimator V="y = (UZ7'U')'U=Yy.

The last example has a superficial resemblance to the preceding. We consider
an estimator for mixing proportions proposed by Robbins [4]. Let x, x; ,X;, - - - be
independent observations with distribution F, where it is known that F=Y ,%a;F;,
the F; being known distributions, the «;, unknown proportions. (Of course
0 < a;, 2a; = 1.) Robbins’ ingenious method of estimating the «; is as follows:
One first constructs functions ¢, , - - - , ¢, so that [ ¢; dF; = &;; . Then Er¢;(x) =
a; and the estimator ¢im= Y i ¢:(X:) /7 is an unbiased and consistent estimator
of a; . (Robbins actually proposes (l);!.'n as an estimator.)

Robbins gives a specific construction for finding ¢1 , - - - , ¢, on which we elabo-
rate. For this, we need a more general notion of biorthogonal configurations: Let
(21, +++, zp) be a configuration in a vector space X and let (y1, -+, ¥,) be a
configuration in %, its algebraic adjoint (= linear functionals on ). Then the
two configurations are biorthogonal if (x;, y;) = 8;; where (z, y) denotes the
application of y to  (or z, considered as an element of X** to y). Let u =
Fi+ -+ 4+ F,.Weseek functions 1 , - - - , ¢, that are elements of ;{Li(F:)} =
{Li(n)} ({L} means the topological vector space L, considered as just a vector
space) so that (Fy, ---, Fp) and (¢1, - -+, ¢p) are biorthogonal configurations;
the formerin § = {D a:F:: 0 £ a;, 2 a; = 1}, the latter in {L;(x)}, which is a
representation of 5*. (If F e and ¢ & {Li(n)}, (F, ¢) = [ ¢ dF.) Let 0,*{F} <
{L1(1)} be the anihilator of §. Then if §; e 0™ {F}, ¢ =1, -+, p, (¢1 + &1, -+ -,
¢» + 0,) is also biorthogonal with (Fy, ---, F,). Hence the estimators we seek
may be characterized by a specific choice of (¢1, - - - , ¢,) together with an arbi-
trary configuration in U;*{5}. Robbins proposed the following choice: Let f; =
dF;/du ¢ {L;(u)} and let ¢;* be the unique linear combination of elements of
{fu, -+, f»} so that (¢;*, F;) = &;;. (The natural embedding ¥ — dF/du of &
in {Le(p)} € {Li(n)} provides a notion of duality between (F1, ---, F,) and
(¢1*; B ¢P*) )

One might inquire whether there exists an optimal choice of (¢1, -+, ¢,). If
optimality means small variance, the answer (not surprisingly) is: no choice of
(1, * -, ¢p) gives a uniformly minimum-variance unbiased estimator. To see
this, we show that the unbiased estimator having minimum variance at F* =
> a;*F; depends on the choice of F*. Choose F* so that «* > 0,7 =1, -+, p.
(This assumption is not critical, it merely assures that F; < F*,¢ =1, ---, p.)
Since variance is to be minimized, we need consider only ¢; & {Ls(u)} = {Ls(F™)}.
The natural embedding F — dF/dF”* puts everything in { Ly(F*)} which we then
treat as the inner-product space Ly(F*). Letting f* = dF;/dF*, the problem is
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to select a configuration in Ly(F*) which is biorthogonal with (£,*, - -+, f,*) and
optimal at F*. There is such a configuration; (1, - - - , ¥,), the dual to (¥, - -,
fP*)' For if 3i£eol{f1*7 ) fp*} (note that {eol.{fl*7 ] fp*}} = eO2J‘{f¥}7 the
anihilator of & in {Ly(F™)}),

varg* {%(X) + Bt(X)} = Valp* II/,L(X) + Ept 5,‘2(X),

since ¥; and §; are orthogonal in Ly(F*). Clearly the choice §; = 0 gives minimum
variance at F*. Thus (Y1, - -+ , ¥,) is optimal at F* and a uniformly minimum
variance estimator does not exist.
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