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DISTINGUISHABILITY OF PROBABILITY MEASURES!

By Lroyp FisuEr anp Joun W. VAN NEss

University of Washington

0. Summary. Independent identically distributed observations, X;, Xo, - -,
are taken sequentially. All that is known a priori about their common probability
measure, P, is that it is a member of a given (at most countable) family,
7 = {Pyn}%-1, of such measures. At some time, depending only on the observed
data and the tolerable probability of error, one wants to stop and decide which
P, nature has chosen.

Two sampling situations are considered, with and without error, as well as two
stopping time requirements, uniformly (over 7) bounded and P x-dependent.

Necessary and/or sufficient conditions for the distinguishability of the meas-
ures in 7 in terms of a variety of measure metrics are obtained. The Lévy-
Prokhorov metric proves to be particularly relevant.

1. Distinguishability without observational error. Let S be a complete sepa-
rable metric space with metric p(-, ) and let @ be its Borel field. Let = = {P,} 7=
be a countable family of Borel probability measures on the measurable space
(S, @). In Sections 3 and 4 S is required to be a locally compact metrizable
Abelian group and p is taken to be translation invariant. Denote by S* the
product space S x S x S x --- and by @ the product sigma field on S* gener-
ated by @. Denote by @" the subsigma field of @ generated by events of the form
A; x - x A, xS xS x ---whered;e@, 7= 1,2, --- ,n. For any measure
P on (8, @), let P be its product measure on (S*, @~).

A sequential test (N, d) consists of a stopping time N and a decision function
d. Here N is a measurable function on (8%, @) taking on positive integer values
and o« and is such that the set {w: w & S”, N(w) = n} ¢ @". The decision func-
tion d may be randomized so that in general d takes on values which areproba-
bility measures on the integers; that is, for w & 8%,

d(w) = (4% (w), d®(w), --+),

where d?(w) = 0 and s d*?(w) = 1. For each positive integer j we require
that d” (+) is a measurable function on (S*, @°). Further, d(w) depends only on
the first N(w) coordinates of w, i.e., if w and w; have the same first N(w) co-
ordinates then d(w) = d(w,). We interpret d” (w) as the probability given the
observation w = (s1,:*, Sy, -+) that we choose P; as the underlying
member of =. Define the distinguishability of the family = to be

D, = Supw.g infper Pr{ (N, d) 1is correct and N < oo}
= SUpw.a) infryer Bpy (4T v<r)
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where I (<« is the indicator function of the event {N < «} and Ebp, is the ex-
pectation with respect to the measure Py . If D, = 1 we say the family = is
distinguishable and write D for the collection of all distinguishable families.

A nonrandomized decision rule d is one whose range is contained in the de-
generate probability measures on {1, 2, 3, ---}. It is sufficient to consider only
such rules, as is shown by the following result which is proved in Section 5.

Prorosrition 1.1. We may get arbitrarily close to D, using only sequential tests
with non-randomized decision rules.

Earlier works [2] and [4] on sequential tests (N, d) assume that Px{N < o} =1
for each P ¢ . This assumption is not necessary as shown by the next statement
which follows easily from [2] (see Section 5).

ProrosiTion 1.2. If 7 is distinguishable, then for any ¢ > 0 we may choose a
sequential test (N, d.) such that for all P, e, E’pn(d;(")) =1—¢ and
P,{N. < o} = 1.

In looking for necessary and/or sufficient conditions for the various kinds of
distinguishability there are several measures of distance between probability
distributions which can be used. Those used here are given below.

DEeriNiTION. (2) The Lévy-Prokhorov [8] metric L(-, -) is defined as follows.
For any closed set A & S define the open set A° by

A = {s:p(s, A) < €}.

Then L(P;, P,) is the greatest lower bound of the ¢ > 0 such that Pi{4} <
P.{A°} + efor all closed A C 8.
(b) The total variation metric

V(Py, Py) = supaeq |Pr{d} — Po{A}].
(e¢) If S = R, (n-dimensional Euclidean space), then we define the distance
D(P1, P;) = supacr, [F1(x) — Fa(z)|

where F;(-) is the distribution function of the measure P;.

(d) Finally we denote the ordinary Lévy metric for Borel probability meas-
ures on R; by L. The distance L’(P, Q) between two probability measures P and
Q is defined as the infimum of all k& such that for all z

P{(—w,z — K} —k = Q{(—w,al} = P{(—o,z+ Kk} +F

The Lévy-Prokhorov metric L is more natural for our purposes than L’ (see
Section 4). The distinction is illustrated by the following example.

Exampre 1. Forn = 1,2, -+, let Py,qq put mass n ' at the points n* + 1,
n*+3,---,n’ +2n — 1 and Py, put massn ™ at the points n* + 2, R
n* 4 2n. Then L(Psay1 , P2a) = 1 whereas L' (Paaia , Pon) = 2%/n. Thusthefamily
7 = {P}} is uniformly separated in L but not in L’.

We wish to compare D and several other collections of families =. Let K be the
set of all the subsecripts k& of the measures P ¢ =.

DErFINITION. (a) 7 & Dy if for any € > 0 and any n ¢ K there exists an integer
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m(n, ¢) and a set A (n, m, ) € @" such that P,{4} = 1 — e and P4{4} = e for

allke K — {n}.
(b) & Dy if for any n ¢ K there exists an e(n) > 0, an integer m(n), and a
collection of sets 4;™, -+, A%, & @ such that

maX;=i,...,m(n) IPk{Aj(n)} - Pn{Aj(n)}l > e(n), ke K — {n}

(¢) mevVifforalln e K, infrex_(ny V(Py, Ps) > 0.

(d) we £ if for all n ¢ K, inf pex—ny L(Px, Pn) > 0.

(e) meF(S C R,) if for all n ¢ K, inf gex—(ny D(Pr, Pa) > 0.

The following diagram summarizes the relationships between these collections
for the case of observations without error.

Of course the relationships involving ¥ only make sense if S C B, .

D = D and D D D, are proved in Freedman [2]. The fact that U € D and

L Z T
S

5= 0 >4
N
U

F1a. 1

§ C D follows from Hoeffding and Wolfowitz [4], Sections 3 and 4, and the fact
that = & © iff for all » ¢ K, the pairs of families =, = {P,} and = — =, are dis-
tinguishable in the following sense.

DerinrrioN. We say a probability measure P is distinguishable from a family
rif Ve > 0thereisann(e) < » and an 4 € @™ such that P{4} = 1 — eand
Q{A} = eforallQem.

Kraft [6], p. 132, gives an example which shows that U ¢ D. The following
example shows that ® ¢ F and D ¢ e.

Exampre 2. Let K = {0, 1,2, ---} and Py be the uniform distribution on [0, 1].
For each n > 0, partition [0, 1] into » half open intervals of equal length and
select one point from each interval. Define P, to be the uniform distribution on
the n points selected. If the points are chosen so that no two are the same, then
Py, P, --- have disjoint supports and the family is distinguishable with prob-
ability one in one observation.

Finally in Section 5 we prove the following.

ProrosITION 1.3. 7 & £ tmplies that w & D.
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If we restrict ourselves to =’s which are classes of discrete probabilities then
all the classes mentioned are equivalent except £.

ProrosITION 1.4. If for all k ¢ K, P i, is a discrete probability measure on R, then
TreViffred.

ExampLE 3. Let P, put unit mass at 0 and P, put mass 4 on the points 0 and
n . Thenw = {P,,n =0,1,2,---} ¢ D is a collection of discrete probabilities
but 7 ¢ ® and 7 £ £.

It is interesting to look at the case D, = 1. We still may get a partial degree of
distinguishability. In fact, if given = we define 7 = = and =, forn = 1 inductively
by P & a1 iff P & 7, with P not distinguishable from the set =, — {P}, then in
Section 5 we will prove

TeEOREM 1.5. For any w: Either D = 0, or D, = 1~ for somen = 1,2, --- .
Furthermore Dy = n " iff m, is empty but w._y is not.

The collection 7, can be thought of as all the “limit points” of mp_1 .

ProposiTioN 1.6. If D, = n, n > 1 and (N, d) is such that ¥V k ¢ K,
P.{(N,d) iscorrect, N < o} > e > 0, then for at least onej ¢ K, P;{N = =} > 0.

2. Bounded distinguishability without observational error.

DerINITION. A sequential test (N, d) is said to be bounded (relative to =) if
there exists a constant b such that P,{N < b} = 1 for all P e w. A family = is
said to be finitely distinguishable, written = ¢ ®, if for any ¢ > 0, there exists a
b(e) and a test (N, d) with N bounded by b such that

infper Pi{ (N, d) 1iscorrect} = 1 — e

The following theorem gives a sufficient condition for finite distinguishability.
Whether or not this condition is necessary remains an open problem.

TurorEM 2.1. If there exists a disjoint sequence, { Bi}i=1 of subsets of S and an
€ > 0 such that Vne K

inf yeg—(n) SUP1 <m<wo |Pn{Bm} - Plc{Bm}l > €
then w 1s finttely distinguishable.
Proor. Let p; = Pi{B;}. After n observations define ¢; = n~"- (number of

observations in B;). Kiefer and Wolfowitz [5] prove that in R any sample dis-
tribution function ¥, , constructed from n samples from a distribution funetion #

satisfies
(2.1) P{sup. |[F.(z) — F(z)| = ¢} = ae "

for some numbers @ and b (independent of F') and for any ¢ > 0. If welet ¢ = ¢/2
then (2.1) says that there is an n(e, §) such that the decision rule, d, which
chooses that & such that

min <j<w [P5 — gl = [pe — il

is correct with probability greater than 1 — 6. Q.E.D.
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3. Distinguishability with observational error. In this section we assume that
we cannot observe the actual outcomes s, sz, - - - being sequentially generated
according to the unknown member of the countable family, 7. Instead we ex-
perience observational errors causing us to observe s; -+ e1, s2 + €2, + -+ where
the e,’s are outcomes of independent identically distributed random experiments
which are also independent of all the experiments generating sy, $2, « - - .

Let @ defined on (8, @) be the probability measure of the error. Then the
problem discussed here is equivalent to the afore-mentioned distinguishability of
mxQ = {PyxQ; ke K}.

It is clear that if Py & P; but P; *Q = P;* @ then we cannot distinguish
7 * Q even for 7 = {P;, Ps}. To avoid this make the

AssumpTION. @ is (i) absolutely continuous with respect to Haar measure,
and such that (ii) ® — @ * @ is a 1-1 map where @ is the family of all Borel prob-
ability measures.

ExampLE 4. Let S = Ry, then ® — @ x Q is 1-1 iff @’s characteristic function,
¢(t), is not zero for all { in any nonempty interval (a, b). If ® — @ * Q is 1-1, so is
® — @ *Q * (Q) where @ is the reflection of @ about zero. The characteristic
function of Q * Q~, ¥(t) = |e(¢)[* is zero in (a, b) U (—b, —a) if () is zero in
(a, b). Any positive even function, g, concave on (0, «), with ¢g(0) = 1is a
characteristic function. Thus we can find two characteristic functions, ¢; and ¢ ,
which differ only on (a, b) u (—b, —a). Thus ¢ cannot be zero on any interval.
If ¢ is not zero or any interval then ¢prq = ¢ppe and we can find ¢r on a
dense set by dividing by ¢q . This determines ¢p since ¢p is continuous.

THEOREM 3.1. 7 * Q e D iff 7 ¢ £.

Lemma 3.2. If L(P, *Q, P x Q) — 0 asn — <« then L(P,,P) »0asn— o.

Proor. The hypothesis implies that 7 * Q = {P, *Q;n = 1,2, ---} u {P * @}
is a tight family. By the shift-compactness theorem of Parthasarathy, Ranga Rao
and Varadhan [7], { P,} is tight. Choose a convergent subsequence {P,,} such that
L(P,,, P') — 0 for some P'. Then L(P,*Q, P'*Q) — 0 so that
L(P xQ, P %Q) = 0. But Q gives a 1-1 mapping and P = P". Q.E.D.

Proor or TuroreEM 3.1. By the lemma, if 7 £ then 7 *Q ¢ £ implying
T % Q ¢ D by Proposition 1.3.

We will prove the reverse by showing that L(P,, P) — 0 implies
V(P,*Q, P+Q)— 0.

Let Q{A} = [4f(x) dw, then

V(P.x@ PxQ) = [s|fsf(x — y)(Puldy) — P(dy))|da.

Since continuous functions with compact support are dense in Ly (S) (Hewitt and
Ross [3], p. 140) we may by Fubini’s theorem assume f is continuous and has com-
pact support, J. We may also pick a compact set, C, such that P,{C} = 1 — ¢
for all n ¢ K, and C is a continuity set for P. Then for every z ¢ 8

[ef(@ — y)Pu(dy) — [cf(z — y)P(dy).



386 LLOYD FISHER AND JOHN W. VAN NESS

Furthermore
[slfsf(z — y)(Pu(dy) — P(dy))| da
< [slfcf(x — y)(Pu(dy) — P(dy))| d
+ [slfef@ — y)(Paldy) — P(dy))| de
= fc+J |fcf(x — y)(Pa(dy) — P(dy))|dx + e

and the first integral approaches zero by dominated convergence. Thus if 72 £,
7% Q 20 and hence 7 * Q D by Section 1. Q.E.D.

Recall that in Section 1 we mentioned an example of Kraft which shows that
7 &0 does not imply that = & D. This example depends on rapidly oscillating
density functions approaching the uniform density on any fixed measurable set.
If we convolute with absolutely continuous error this damps out such oscillation
so that 7 % Q eV implies = * Q ¢ £. In Hoeffding and Wolfowitz [4], p. 713,
restrictions on a function they call J serves to eliminate the same type of oscul-
latory behavior.

4. Bounded distinguishability with observational error. The Lévy-Prokhorov
metric proves natural for the study of 7 * Q@ ¢ ® .
DerinITION. (a) For any measure, P, and any z ¢ 8 we define P* to be the

translation of P by z:
P*{A} = P{A — z}.

(b) We call a family = shift-compact if there exists a mapping g: = — S such
that

1, = {P°P:Pex} is tight.

(¢) is uniformly L-isolated, written = & £, , if there exists an e > 0 such that
forall Per

infp'e,,,p#» L(P,, P) > e

THEOREM 4.1. (a) 7 * Q ¢ B tmplies &€ L. .

(b) If x 1s shift-compact, m * Q ¢ R iff m & Lo .

The proof is below. If S = Ry, 7 £ £, is not the same as = being uniformly iso-
lated in the ordinary Lévy metric as is shown by Example 1.

ExampLE 5. Let 8 = R;, then = is shift compact if the first absolute moments
or the variances exist and are uniformly bounded.

CoROLLARY. Let m = {Py, k= 1,2, ---} where Py is N(my,1). (a) e D iff no
limat points of {m,} are in {m,}. (b) e ® iff there is an ¢ > 0 such that for all
ne K, infi, |my — m,| > e

ProoF. Let 7' = {Q:} where Q; puts unit mass at my . Let @ be N(0, 1), then
r = = xQ and (a) follows from Theorem 3.1 and the fact that L(Q., @) =
min [1, [m, — my|]. Similarly (b) follows from Theorem 4.1 since 7 is clearly
shift-compact.
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We break up the proof of Theorem 4.1 into several lemmas. Let 9, consist of
measures which put mass 1/7 onn points 2 , - - - , #» (some points may be identi-
cal, but we distinguish the different copies). The next lemma follows from the
results of Strassen [9] and Dudley [1].

Lemma 4.2. Let P and Py € 9N, be such that L(P, Py) < 6, P concentrales its mass
onxy, -, T, and Py concentrates its mass on y1, + -+ , Yn . Then there exist distinct
B, , tr and distinct i, -+ , i such that p(xi, , Y5,,) <6, m = 1,2, -+ |k
where (n — k)n™ < 6.

LemMA 4.3. If f is the density of Q, then
V(P *Q, Po*Q) < supusomsuerm | [f(y + 2) — f(y)ldy + 2L(P, Py).

Proor. (a) If P and Py € 9, , choose k as in Lemma 4.2, then
V(P %Q, Py Q)

= [s|fsf(z — y)(P(dy) — Po(dy))| dz
=7 [5 |27 f — @) — f(z — y:)| de
e fs lf(z — @ + y:) — f(2)| dw
+ 07 2k [s (f(@ — z)| + |f(z — 9)]) de
k/n supy:pwo ziero [ lf(@ — ) — f(2)| de 4 2(n — k)n™"

(b) If P™ is the sample measure of P after n observations then P & 91, and
P{L(P™, P) — 0} = 1. Thus choose a fixed sequence {P™} with P™ ¢ 91, and
L(P™, P) — 0 asn — . By the proof of Theorem 3.1 this implies V(P™ xQ,
P % Q) — 0. Similarly choose {P,™} such that Po™ & 91, and L(P,™, Py) — 0.
Then for any ¢ > 0 and n > no(e),

L(P™, P™) < L(P™, P) + L(P, Py) + L(P,"™, P)
< L(P,Py) + a

lIA

and

V(PxQ, P™ Q) + V(P™ %@, P/™ +Q)
+ V(Pe™ % Q, Po* Q)

V(P(n) *Q, Po(n) *Q) + «.

By part (a) we are done. Q.E.D.

LeMMA 4.4. If « 4s shift-compact, then for each ¢ > 0 we may find an N () such
that forn = N () and for any P & m, P{L(P"”, P) > ¢} < e.

Proor. Let =° be a shift of = that is tight. Choose a compact J such that
Per= P*(J) > 1 — ¢/2 where P” is the shift of P which is in #°. CoverJ with
a finite number of disjoint sets {4;:7 = 1, --- , m} of diameter <e/2. Define
Ap = 8 — UT A4, . Choose N (¢) independent of P so large that

P{|P™W (A} — P{A}| < e¢/2(m +1) for 1=1,2,--- ,m+1}>1—e

V(P % Q, Pyx Q)

IIA

IIA
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Let G = F + z be a closed set and _; denote D irnagmg - I FnA; 5% & then
F* D Ajso that forn > N(e),
P{G} = P*{Apu} + 20w P{F n A}
< ¢/2+ 2 P{Fn4))
< ¢/2 + 25 PP n 4))
¢/2 + [¢/2(m + 1)] (no. of j’s such that FnA4; # &)
+ 25 PP n Ay
e+ PP 0 (Uj4)) = e+ P(GY

IA

IIA

where these inequalities hold with probability =1 — e A symmetric argument
shows that

P™(F} < P{F} + e Q.E.D.

LeEMMA 4.5. If 7 & £, 15 shifi-compact, then = * Q & £, .

Proor. Suppose not, then we have L(P;, P;) > e forall j, k ¢ K but thereis a
sequence of pairs {P;, P/}, P;, Pi/en, j = 1, 2,---, such that L(P;*Q,
P/ %Q) —»0asn— o. Letz, = 2,(P,) be the shift to get P, in «°. Then since
p is translation invariant,

L(P,%Q, P, %Q) = L((P.*Q)™, (P, *xQ)™)
= L(P,*Q,P,/"%Q) -0 as n— .

Due to the shift-compactness, we may, without loss of generality, assume that
L(P,™" P) — 0. Thus,

L(P+Q,P.*"+Q) < L(P*Q, P, *Q) + L(P," @, P xQ) — 0
and by Lemma 3.2 L(P, P,/*™) — 0. Therefore
L(P,,P,)) £ L(P., P™) + L(P™, P.,)
= L(P,™, P) + L(P, P,’"*) = 0

which is a contradiction. Q.E.D.

Proor oF THEOREM 4.1. (a) If = 2 £, then 7 * @ is not V-uniformly isolated
by Lemma 4.3 and the L; continuity of f(y) — f(y + ). Since there are measures
arbitrarily close in V, we can, for any n, get the nth order product measures
arbitrarily close so we cannot distinguish in a finite time.

(b) Let = ¢ £, be shift-compact, then = % Q is shift-compact and uniformly
L-isolated by Lemma 4.5. Using Lemma 4.4 we may use the L-metric to give a rule
for bounded distinguishability. Q.E.D.

ReMark. Using the measures of Example 1 and letting e be uniform on [0, 1]
we see that = * Q ¢ ® does not imply that each measure of = is uniformly isolated
in the ordinary Levy metric. (Compare to Theorem 4.1 (a)).
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5. Proofs of results in Section 1.

LemMma 5.1. If = contains only a finite number of measures (all different), then
for any e > 0 we may select a finite number m(e) such that of we sample m times we
may correctly identify each measure with probability greater than 1 — e.

Proor. If P is the underlying measure and P™ the sample measure after n
independent observations then it is well known that L(P™, P) — 0 a.s. as
n— o,

Proor oF Prorostrion 1.1. Let (N’, d') be any test with d possibly
randomized. We will construct a new nonrandomized rule, d. Define 4 = {w:
N(w) < «} and choose any ¢ > 0. For any w ¢ A we sample w until N(w)
and define m(w, ¢) = {Py:d®(w) > ¢ ke K}. By Lemma 5.1 there exists a
finite number m(w, €¢) such that we can distinguish =(w, ¢) by sampling m (w, €)
more times. Let d be such a rule, then

Ep,(d™) 2 Ep,(d"145,)
where B, = {w: d'™ > ¢. But
Ep,(d™145,) Z (1 — €)Bp,(Iuz,) Z (1 — €)(Ep,(d™ — ¢))

since A € B, and Ep,(d'™) < P,{B.} + ¢ Q.E.D.
Proor or ProrositioN 1.2. If ©, = 1, then for any ¢ > 0 there is a test
(N, d) such that Ep,(d®) > 1 — %e for all k ¢ K. However, since

1-— %e < Epk(d(k)> = lim,..m EPk(d(k)I{N<n})
there exists an ny(k, €) such that
Epk(d(k)I(N<no}) > 1 —e

By Proposition 1.1 we may assume (N, d) is nonrandom. Therefore let A (k, ng, ) =
{w: N(w) = no, d® = 1} then

Pk{A(k, o, 6)} >1—c€
and for all k 5 j ¢ K,
P]{A(k, Mo, 5)} = EPj(d(k)I{Né‘ﬂo}) = EPj(d(k)) <e

The sets A (k, no, €) satisfy the requirements of Condition II of Freedman [2]
and our definition of ;. In Theorem I of [2] it is shown that Condition IT leads
to a stopping time which is finite with probability one. Q.E.D.

Lemma 5.2. If L(P, Q) > e > 0, then for any 8 > 0 there s an N(8), in-
dependent of P and Q, such that P{L(P™, Q) > ¢/2} = 1 — s foralln > N.

Proor. L(P, Q) > e implies that there exists a closed set A such that P{4} >
Q{A°} + . By Chebyshev’s inequality we may pick N(8) independent of P{A}
such that for alln > N,

P{|P{4} — P™{A}| < % > 1 — .
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Thus with probability greater than 1 — 6 we have
P™{A} > P{A} — % > QA% + 3¢ = Q{4"} + %  Q.E.D.

Proor or ProrosiTioN 1.3. For any k ¢ K let ¢, > 0O be such that
infjex_y L(P;, Pr) > er. Choose Ni(k) (see Example 6) such that for all
n> Niy,and k # je K,

PL(P™, Py) < ex/2} > 1 —
and
PJL(P™,P;) > e1/2} > 1 — ¢

(using Lemma 5.2). The sets A(k, ¢) = {w: L(P®Y, P1) < e4/2}, where P
is the sample measure, satisfy Condition I of [2]. Q.E.D.

ExampLE 6. Recalling (2.1), we see that in one dimension, if L were L
in the last proof we could choose N; independent of k. However with L this
cannot be done. Let P, put mass 1/m on the integers 1, --- , m. Let n < m
then minpossivie pm (L(P™, P,,) occurs when all n samples are distinct so that
L(P™, P) = (m — n)m™". Letting A be the m — n points not in the sample we
see that L(P™, P,) — 1 asm — o,

PrROOF OF ProPOSITION 1.4. Obviously if =& & then 7 ¢ V. Let {z;};=1 be
all the possible values attainable under . Fix any k ¢ K and let

(5.1) infrer—my V(Pr, Pj) = e(k)

where e(k) > 0 if 7 ¢ V. Next choose a finite N (k, e(k)) such that Pi{xs, -+, 2x} 2
1 — e(k)/4. If there exists an 3(5) such that |Pi{z — Pi{xd| = e(k)/8N then
D(P., P;) = e(k)/16N. So suppose for some j, |Pi{z} — Pi{xl| < e(k)/8N
for all 2. Then

|24 Pifad — 228 Pifad] < e(k)/8
and
2w Pifz} < 3e(k)/8.
For any B ¢ @G,
|P;j{B} — P{B}|
|X1sisnaien Prfwd — Pifwd] + 2w Pafa] + 25w Pifad
(e(k)/8) + (3 e(k)/8) + (e(k)/8) < (k)

which contradicts (5.1). Q.E.D.

Lemma 5.3. If Pren and = — {P.} are not distinguishable, then for every
e > 0 and countable collection of disjoint measurable sets {As}, Aie S" there
exists a P;em — {P4} such that [Pi{A:} — Pifd}]| <ei=1,2,---.

Proor. If not we may easily distinguish by looking at the fraction of sample
points (in blocks of ) that fall into the 4;’s. (Compare to the proof of Theorem
21.) QED.

IIA

IIA
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Proor oF TaEOREM 1.5. (if) For n = 1 the “if’’ assertion of the second state-
ment is true. Let =, be empty and =,_; nonempty. To show D, < n~" select any
nonrandom test (N, d) and use the following inductive procedure. Take Q.1
in w1 and let Q.1{(N, d) is correct} = g—1. Choose m,_; and A, & S™"*
such that

Equ (@™ P Iivgmupla,_y) = Quotfdna} Z a1 — €n1.
Use Lemma, 5.3 to select Qu—2 & o2 — {Qn_1} such that
[Qu-1f{Ana} — Que{dna}| < e(n —1).
For general 0 = k <n — 1lselect Qremr — mrn such that
Qifd:} — Qruf{ds}| < e(k + 1)
forr=k+1,k+2,---,n — 1 and a new set A, e S™
Equ(d®Iwzmpls,) = Qu{ds} Z qx — ex.

Now

Qfds} = Qf4} + 25 (Qd4} — Quafdy})
Z —|Qof4;} — Qif4 ‘}[ — o = Q{4 — Q{4 + Qifdj
2 g — (¢4 2imoe(?)).

Choose the €’s so that
&+ 2icte(t) < ¢/2°.
Since the A #’s are disjoint,
Qo (N, d) iscorrect} <1 — QofUi ™4} = 1 + X (¢/2°) — i
<1l+4+e— 2.

If g; = n ' foreachj = 1,2, --- , n — 1; then Qo{ (N, d) is correct] < n " so
that D, < n .

To obtam the inequality the other way is much easier. By definition 7; — m;_3
is a distinguishable family. Therefore, we can distinguish with probability
arbitrarily close to #~" by first randomly, with probability n~", selecting among

the n classes, Tn—1, Tn—2 — Tn_1, -+, To — M. We can distinguish within these
classes with probability arbitrarily close to one. Q.E.D.
Proor or ProrosiTioN 1.6. Suppose that Epk(d(k)) > 1 — € and

Pi{N < »} = 1 for k ¢ K. By the construction of the proof of Proposition 1.1
we may assume that (N, d) is nonrandom. Theorem 1.5 allows us to select a
7 such that P; ¢ m; . We may find a set A in 8" for some finite n, such that N < n
on A andP,-{A} >1-— 6/4 Let 1r, = {PkPk # P]ande{A} > 1 — 6/2}
Then P; and =’ are not distinguishable (since P; and = — {P;} are not distin-
guishable). Let 4; = {d® = 1} n 4. By Lemma 5.3 there exist an infinite
number of P, e n’ such that [Pi{4,} — Pj{A.}| < ¢/4 form =1,2,3, ---
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Since Y_nP;j{A,} < 1 all but a finite number of 4., have P;{4,} < ¢/4. Choose
an n such that Pj{4.} < ¢/4, P, e« and [P.{A,} — P{An}| < ¢/4form = 1,2,
3 .-+ . Then Ep,(d™iy<w;) < Pa{ld} + Pufds} < ¢/2 + Pi{d,} + /4 < e
which gives a contradiction. Q.E.D.
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improving the quality of the paper.
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