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DISTRIBUTION OF LIKELIHOOD RATIO IN TESTING AGAINST TREND

By M. T. BosweLL axp H. D. Brunk'

Pennsylvania State University and University of Missours

Summary. The phrase ‘“testing against trend” in the title refers to a situation
in which observations are made with equal sample sizes on several populations
belonging to a common univariate exponential family. Order relations among the
parameters associated with the various populations are assumed known, and it
is desired to test the null hypothesis that the parameters are all equal. The likeli-
hood ratio test is described in Section 3. Slight extensions, developed in Section
1, of known theorems suffice to determine, in a certain sense, the asymptotic
distribution of an appropriate function of the likelihood ratio. This asymptotic
distribution is that of Bartholomew’s combination of Chi-squares.

1. Preliminary theorems. We give first an extension of known theorems on
limiting distributions of funections of random variables which converge in distri-
bution (Mann and Wald, 1943; Sverdrup, 1952; Chernoff, 1956; Prokhorov,
1956).”

TuarorEM 1.1. Let m, g be positive iniegers. For each m — tuple a = (o1, + -+,
am) of positive integers, let X = (X%, -+, X,'®) be a g-dimensional random
vector. Let X' converge in distribution as min (o, «++ , am) — © to a g-dimen-
sional random vector X. For each a let g'® be a real-valued function on R?, and let
the random variables ' (X) be identically distributed. Suppose there exists a closed
set S in R*

(1.1) such that the functions g'® are equicontinuous i S;

(1.2) . PXeS] =1.

Then ¢'” (X)) converges in distribution as min (ay, -+, am) — © t0 g(X)
where g = g for any fized o .

The method which appears to lend itself most readily to this extension is
Sverdrup’s (1952). His theorem is the case in which m = 1 and the functions
¢'® are all identical. (Hypothesis B(iii) on page 3 of (Sverdrup, 1952) can be
shown to be implied by the others.) To allow different ¢‘® requires only minor
modifications in the proof; and as D. L. Hanson pointed out to one of the authors,
an argument by contradiction reduces the case of m-way arrays to the case of
one-way arrays.
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2 Note added in proof: Theorem 1.1 is also a consequence of Theorem 2 in “Preserva-
tion of weak convergence under mappings” by Flemming Topsoe, Ann. Math. Statist. 38
(1967) 1661-1665.
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372 M. T. BOSWELL AND H. D. BRUNK

We shall require in Section 3 also an extension of Theorem 2.1 in (Brunk, 1960).
(The conclusion of Theorem 2.1 in (Brunk, 1960) is there incorrectly stated, for
discrete random variables. It should be stated as follows:

Plfu(Z, X) < gl = 2iet Dokesn Pifuly(a, X), X1 < g}/ TTia kitd™.)

Let random variables =, ¢ = 1, 2, ---, n, have as common range an interval
I C R (the reals) so that & = (Ey, --+, En) eI” = XiqICR". For m = 1,
2, -+ ,m,define Xn = {k = (lcl, cor k)il o Ic are nonnegative integers,
S ik = n, > k; = m}. For Ice:K:m, deﬁne @ = {a= (a1, *+*, an):
ai, -+ ,anarepositive integers; forz = 1, 2 <M, exactly k; of the components
of o are equal to 5}. Define Gm = Ukexn, @5 @ = Um=1 Gm , and

U = {o = (v, S, Um)iV; = (@i, wi),J = L2 -, m,
a= (a1, ,an) &Cm,w = (w1, oo we) e I

Set B = 0, B; = Bi(a) = >isay,j=1,2 -+, m. Forae@nand £l”,
define

u; = uj(a, £) = Z£=ﬁj_1+1 &/ aj, ji=12 ---,m,
U = u(a7 £) = (ul, 7um)» Yi = yi(a, E) = (O‘jrui),
j = 1)2’ e, MY = y(a,‘f) = v(ayu) = (yl, e aym)'

For £eI", consider the least concave majorant of the set of points (k, X ),
k=0,1,2, --- ,n, where 2 = > %4 & . Let its vertices have abscissas bo(£) = 0,
bi(£), -+, bm(£), and set a;(£) = bi(§) — bja(£),5 = 1,2, -+, m(£). Set
Q(E) = (al(E)) ] am(E))’ where m = m(E)) &nd’UJ(f) u(“(s), E) = (wl(E)7
oo, wa(£)), where wi(£) = uj(a(£), £). Define 2(£) = yla(§), £)] = v(a(d),
U(E))]’WZ = y[a(E), B, M = m(E),and W; = ’U)](E) = ui(a(E)) E)yi=12,

TarorEM 1.2. Let 5y, -+, E, be exchangeable random variables. For m = 1,
2, «++, m, let fu(v, £) be symmetric in the components of v e Um and in the com-
ponents of £ I". If

(1.3) the joint distribution function of Ea, - , Bn s continuous,

or if

(14) fmele(£), &, and for o & Gm , the functions fuly(e, £), &) are continuous
metomI",m=12,---,n

then

(15)  Plfu(Z, B) S f1 = et Lhaen Plfnly(a, 2), 2] S f}/ TLa bild®

where a 1s selected arbitrarily from Q" for each k & Kom .
Proor. The proof under hypothesis (1.3) is just the proof in (Brunk 1960)
To carry out the proof under hypothesis (1.4), for fixed » = 1, 2, , let =,
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Eey +++, E. be exchangeable and have a continuous joint distribution function
such that & converges in distribution to E as » — . The conclusion follows
from the first part of Theorem 1.2 and from the standard case of Theorem 1.1 on
setting g(£) first equal to fmly (e, £), £] for fixedm = 1,2, --- ;nandae @ (ke
Xm), and then g(£) equal to fuw (2(£), £).

Theorem 1.2 is oriented toward application in the present paper by describing
a(£) in terms of a least concave majorant. It remains valid, however, if the more
general “mean value” functions E of (Brunk, 1960) replace the arithmetic
averages used here in determining the least concave majorant.

The product []i=: 1/:!* occurring in equation (1.5) is also the probability
that a randomly chosen permutation of (1, 2, ---, n) will have k; cycles of
length 2,2 = 1,2, - -+ ,n (cf. Brunk, 1960, e.g. (2.9), p. 322; p. 313). A permuta-
tion of (1,2, - -+ ,n) may be deseribed in terms of cycles in a way easily illustrated
by example. If the permutation carries (1, 2, 3, 4, 5, 6, 7) into (5, 1, 4, 7, 6,
2,3),thenl —5,5—6,6—>2,2—1;3—>4,4— 7,7 — 3. This permutation
has two cycles, of lengths 4 and 3 respectively, which may be represented by (5,
6,2, 1), (4,7, 3). With this convention, the first cycle stops when 1 is reached.
The second stops when the next smaller number not previously encountered is
reached, ete. With each of the n! permutations equally likely, one verifies that
the probability p(a) that the number M of cycles will be m and that the length
A, of the first cycle will be oy , the length A, of the second cycle s , ete., is given
by

p(a)=P[M:m,A1:a17A2:a2"",Am:am]

= I (1 20 a),

where o = (1,05, -+ ,am). Fork e X, ,set Py = [[im 1/k:!%*. We then have
also form = 1,2, +-- , n, and for k ¢ X,

P, = ZaeA" p(a):

since each represents the probability that a randomly chosen permutation will
have k; cycles of length 7,7 = 1,2, -+, m.
The probability function of the number of cycles is given by
PIM = m] = [8:."|/n},

where |8,™| is the coefficient of 2™ in [[i1 (2 + 7 — 1); S,™ are Stirling’s Num-
bers of the First Kind (cf. Miles, 1959).

Lemma 1.1. Form = 1,2, - - -, and for each positive integer r, lim, . Plmin (4,
Ay, o, An) Sr|M=m]=0.

This lemma is proved in (Boswell, 1966 ). For m = 1,2, - - -, nandfor positive
integers r, set

D(m,r) = {a:ae Qp,min (ar, **+, amn) = 7}

Then Lemma 1.1 may be restated as follows: for fixed m and r,

limn-wo n! Zasb(m.r) p(a)/lsﬂml = 0.



374 M. T. BOSWELL AND H. D. BRUNK

2. Testing against trend in populations belonging to an exponential family.
For the case in which the populations are normal, Bartholomew (1959a, 1959b,
1961) found the distribution of the likelihood ratio. For the case in which they
belong to an arbitrary exponential family, a simplification of the distribution
problem was pointed out in (Brunk, 1960 ). Using this simplification and a result
of one of the authors (Lemma 1.1) we are now able to discuss the asymptotic
distribution.

Let F be a non-degenerate distribution function which admits a moment gen-
erating function

(2.1) exp [O(7)] = [ exp (x7) dF(z)

converging in a neighborhood of the origin. The functions exp {z7 — ©(r)} are
densities with respect to F of an exponential family F.(z) of distributions. Set
6(r) = O’(7), and let X be a random variable having distribution function
F.(z). Then

(2.2) E(X,) = 6(r), VarX,= 6(r).
The function © is convex. Let T denote its convex conjugate:
(2.3) T(6) = sup, [6r — O(+)].

The increasing function 7(8) = T7(6) is the inverse of 6(7 ), and with the change
of parameter 7 = 7(8), the exponential densities can be written

(2.4) f(z;0) = exp [T(6) + (z — 6)7(6)],
where 6 is the mean.
Now suppose that Fi, E,, -+, E. are independent, and that =; has density

f(&, 6;) with respect to F, given by (2.4). We consider the likelihood ratio test
of the null hypothesis

(2.5) Hy:00=0,=--- =289,

within the class of alternatives

(2.6) Hy:002 6,2 - 2 0,.

The logarithm of the joint density of &, -, E. at an observed point £ = (&,

-, £,) is given by
221 [T(0:) + (& — 6:)7(6:)],
whose maximum under H, is nT(Z), where £ = ZZ‘=1 £;/n, obtained by setting
0; = £, 4= 1,2, ---, n. It is shown in (Brunk, 1955) (cf. also Brunk, 1958)
that the maximum likelihood under H; is obtained by setting 6; = w;(¢) for
[t e (b,—1(£), b,(£)]. Thus the likelihood ratio is

(2.7) A = maXeew, || i1 f(&:; 0:)/maxoem, [ [ f(&i ; 0:),
A = exp (—{ 2270 a;(§)TTw;(£)] — nT(E)}).
As a random variable, a function of &,
—2log A = 2 2 3% a;(E)T(W;) — nT(E).
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We shall require the following theorem on the asymptotic distribution of a
quadratic form. It is in the spirit of Madow’s results (1940) but is not contained
in them. Let Z, E;, :-+, &, be random variables. For positive integers ai,
as, ***, an wWhose sum is n, define

Bi=zi{=lai) J=12---,m; Bo=0; n=:3m=2?=lai;
Uj= Ujla) = Zzi‘a;’—l El’/ai’ Jj=12,---,m, where
o = (0[1, D) am); ::4.' = Z:‘=l Ev/no

TarvorEM 2.1. Let 5y, Ea, --- be independent, identically distributed random
variables, each with mean u, variance o". Let m be a positive integer. Set

Q(al,...,am) — Z;t;l Oljsz _ n§2/0_2’

for positive integers s, -+ , am . Then the limiting distribution of Q“ ™ qas
a1, v, am— ® 18 withm — 1 degrees of freedom if m > 1;Q = 04f m = 1.

Proor. Set X; = (a;) (Uj —w)/o,5=1,2, -+ ,m X" = (Xy, -+, Xn)
(i.e., X" is the transpose of the column vector of which X ; is the jth component ).
Then @ = X“(I — A/n)X, where I is the m X m identity matrix, and A4 is the
m X m symmetric matrix with (asa ,')* in the 7th row and jth column. One verifies
that the matrix I — A /n is idempotent as well as symmetric. The norm of I —
A/n (as a linear operator on R™: ||I — A/n| = max . =||(I — 4/n)z|) is
then 1. It follows that the functions Q" *™ () = z"(I — A/n)z are equi-
continuous. Further, from the Central Limit Theorem, the random variables
X1, ¢+, X have a limiting distribution as min (a1, <+, an) — © which is
that of independent normal (0, 1) random variables Yy, :+-, Y, . Since I —
A/n is symmetric and idempotent, its rank is equal to its trace, which is m — 1.
It follows that the distribution of Q" *»(Y) = Y"(I — A/n)Y is x* with
m — 1 degrees of freedom. Applying Theorem 1.1 we have the desired conclusion.

THEOREM 2.2. With notation as in Theorem 2.1, let T be a real function on an
open interval containing u, having an integrable second derivative, T” , continuous at
u. Set

Z =z = 3 T(U;) — nT(E).

Then the limiting distribution of 2Z2'*™ /a*T”" (1) as @y, -+ , am — © 18 X
with m — 1 degrees of freedom if m > 1;Z = 0¢f m = 1.

Proor. Set e(x) = 2[5 (x — )[T"(t) — T"(w)ldt/(z — u)’ = 2{T(z) —
T() — (x — )T (w) — (2 — u)’T"(u)/2}/(z — 1)". We have e(z) — 0 as
2 — p. Then

Zerrem = 3R aT(Us) — T(w)] — nlT(E) — T(w)]
= T'(u){ 21 0;(U; — ) — n(E — u)}
+ T () 21 as(U; — ) — n(E — p)%}/2
+ {271 ai(Us — u)'e(U;) — n(E — u)e(E)}.
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The first term on the right is zero. Each term in the last set of braces converges
in probability to zero, as min (ay, -+, am) — o, since U; and E converge in
probability to u, while a;(U; — p)* and n(E — p)® converge in distribution to
x* with one degree of freedom. By Theorem 2.1, the random variable in the second
pair of braces, multiplied by 1/ %, has as limiting distribution the x* with m — 1
degrees of freedom (is 0 if m = 1). This completes the proof of the theorem.

In discussing the asymptotic distribution of —2 log A, we apply Theorem 1.2,
with

Fulv, £) = 2220 T (wy) — nT( 2of1 aqwi/n))),

Wherevi = (O{j,Wj),j =12 - ,mv= (01’ e ,vm)gf(:)m, (Thusfm(v, E)
is constant as a function of ¢ for fixed v € V., .) We observe that fu.(v, £) is sym-
metric in the components of v (and, of course, in the components of £). We have,
forae Qm,

Fuly(a, £), & = 2( 27 @;TTuj(a, £)] — nT( 271 asus(a, £)/n)},
and
Fruwle(£), & = 20 227 a;(6)TTw;(£)] — nTI2 7D ai(E)w;(E)/nl}.

The integral (2.1) giving exp {© ()} is assumed to converge in an open interval
J containing the origin; in J, ® has derivatives of all orders, and is convex. Re-
calling that § = @', weset K = 6(J); in K, T has derivatives of all orders, and
is convex. It follows that f.[y(e, £), £ is continuous in £ for @ ¢ @, . Also, while
a;(§) (7 = 1, 2, ---), is not continuous in £ nor is m(%), the sums

7P ai(8)Tlui(a(8), £)] and 2270 aj(§)ui(a(f), £) are continuous in &
Thus the hypotheses of Theorem 1.2 are satisfied. For @ € Gn , We set

—21log Ala) = 2 2 7 a;iT(us(a, £) — nT(E)).
We conclude that
P[—21log A S o] = 2 opet Dokeny P[—2log A(aw) < o] []ia 1/kitd™,

where for k& & X , o is chosen arbitrarily from @*. Since P[—2 logA(a) < o] is the
same for all @ ¢ @ and since for k & Km we have X aeer p(a) = Ty 1/ ksl
(cf. Section 1), we may write also

(28) P[—2 logh < 3] = D ry D owa, P[—2 log A(a) = slp(a).
TueoreM 2.3. Form =1,2, -+,
limn—m:o n' Zaeam P[_2 IOg A(a) é B]p(a)/lsnm’ = P[an—l § 5].

Proor. From (2.2) it follows that if E; has density f(&, ) and if EE; = pu,
Var Z; = o, then in applying Theorem 2.2 we have p = 6 and o’T" (u) =
a7 (0) = 1. We conclude that the limiting distribution of —2 log A(a) as
min (a1, *++, am) — © is x* withm — 1 degrees of freedom. Thus if ¢ > 0,
there is a positive integer 7, such that » = ro, @ ¢ @n — D(m, r) imply |P[—2
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log A(a) £ 6] — Plxma < 3]| < e We have

1! 2 acen P[—2 log A(e) = slp(a)/|8a"] — Plxna < 3

1! 2 acen {P[—2l0g A(a) < 8] — Plxms < al}p(a)/|8."|
< 2012 aenimrey P(@)/|847] + e

The conclusion of the theorem now follows from Lemma 1.1.
Formula (2.8) and Theorem 2.3 suggest the following approximation:
P[—2log A < 8] = D> ny Plxa £ 8]|8.7/nl. = Plx. < 4.

The right member is Bartholomew’s combination of chi-squares (1959a):
Bartholomew’s case is the case of sampling from normal distributions, when the
formula is exact for all n.

3. Example: sampling from exponential distributions. For k = 1,2, --- , n,
let = be an observation on the distribution having density f(¢ k) = (1/6:)
exp (—&/6:), £ > 0. For example, =; may be the length of life of an item of a
certain kind. It may be known that the mean life 6 is nonincreasingin k, k = 1,

2, - -+, n. It may then be desired to test the null hypothesis
Hy: 0= 6,= --- = 0,
within the class of alternatives
Hi:0p2 602 -+ 2 6n.

In the notations of Sections 1 and 2 we have T'(z) = z — 1 — Inz for z > 0,
and

A = JI5 wy™/8,
where m = m(§), w; = wji(£), a; = aj(£) or
(3.1) A= (0" JTF a;%) JI5 (si/s)™

where s; = §;(£) = aw;(£) = Dia;_ ki, s = Dl k.

To use A as a test statistic, one must know, at least approximately, N such
that P[A < N| Hg = «, where o is the desired level of significance. The ap-
proximation suggested in Section 2 for the left member is the corresponding
probability for Bartholomew’s combination of x* (Bartholomew, 1959a,) Pl >
—2log\] = Do Plxi_1 > —2 log)]|S,™|/n!l. Table 1 compares these proba-
bilities for various combinations of n and A, the exact probability for P[A < A |
H,] being computed as indicated below. Table 2 lists values of A corresponding
to various significance levels « for the exact distribution of A for the present
example; and Table 3 lists values of A for Bartholomew’s distribution.
A table corresponding to Table 3 but giving —2 log X instead of A for n = 3, 4,
<o+, 12,2 = .005, .01, .025, .05, .10 may be found in (Bartholomew, 1959b).

The exact distribution of A was found using (1.5). For fixed m (m = 1, 2,
.-+, n) and fixed k & K, , let a be chosen arbitrarily from @*. Let A(a) be given
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by (3.1) in which, however, m now does not depend on £, nor does «, the «;
bring the components of «;
and

$; = Zeiﬂj-1+l & = aui(a, £), s= Z:ﬁ;r i.

If A(a) is the random variable obtained by replacing ¢; by =:;,7 = 1,2, -+, r,
then applying (1.5) we have

(3.2) P[A S fHd = 2ne1 2kenn PIA(e) = f | Hol/ TTiz kild®,

where a is selected arbitrarily from @" for each & & K., . The distribution function
of A(a) in turn was approximated by the first few terms of its expansion in
Legendre polynomials {Py(z)} over [0, 1]: )

(3.3) F(z) = 2 i~ arPi(x)

where

(34) ar = (—3)E{Pr[A(a)] — PraA(a)]}

The computation of EPi[A(a)] required the moments E[A(a)]’, computed as
follows. The joint distribution of =,, ---, E, under H, is that of the first n
interarrival times of a Poisson process; and the joint distribution of Zy/s, -- -,
'E.',./s is that of U]_, U2 - U1, teey, Un—l - Un_z, 1 — Un—-l where U1, ey,

U._1 are order statistics of a random sample of n — 1 from the uniform distri-
bution over [0, 1].

Forj=1,2 ---,m, set Z; = Zj(a) = s;/s. Then 2 71 Z; = 1, and the
joint density of Z1, « -+ , Zm_y is

(8.5) frior,zmr (21, o0ty Zma1) = (n — 1)1 202,57 /(a; — 1)!

—1
1, 7.=1 Rj = 1. One

where zm = 1 — D> "t 2;,2; > 0,7 =1,2, -+ ,m —
finds then

(3.6) ElA(a)' = {(n — 1)In"™/[(t + 1)n — 1]}
Tl + Day — 10/ (e; — 1)las*).

For fixed «, define coefficients ¢;,» = ¢:,(z) for nonnegative integers r and ¢t = 0,
1L, r4+1by 25 g’ =1 —y — (3) Zia [Pen(y) — Pea(y)IPu(a).
Then (3.2), (3.3), and (3.4) yield

(37) F(z) = liMpw Domes Dokestn 2o quB[A ()l [T kild™,

E[A(a)]’ being given by (3.6).

The exact values of F(\) in Table 1 were obtained by averaging forr = 6, 7, 8,
and 9 in (3.7). (For r = 10 the round off error, even using a double-precision
routine, became too large).
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Table 2 was compiled by interpolation. We remark that a closed formula is
available for n = 2:

(3.8) FON) = 3)1— (1 =2, 0=A<1L

Indeed, this formula was used for n = 2 rather than the calculations described
above for Tables 1 and 2. For n = 2 the calculations described were found to
give values of F(\) agreeing with the formula (3.8) to within 0.001 except
near A = 1.

Table 1 indicates that the approximation by %’ is surprisingly good for n = 2,
the maximum discrepancy being about 0.027. On the other hand, the fit appears
not very much better for n = 10. In all cases it appears that F(\) < Pz’ >
—2 log \], except near A = 1, so that tests based on significance levels obtained
from %° tables rather than exact tables would be the opposite of conservative.
For example, for n = 10 the significance level corresponding to an observed
A = 0.03 would be 0.05 rather than 0.04 as indicated by %’ tables. Still the ap-
proximation is clearly accurate enough to be useful.

TABLE 1
FQA\) = P[A £\ and GQ) = Plga2 > —21n )]
N n = =35 n = 10

F(N) G(\) F(N) G\ F(N) G(\)

0.00 .000 .000 .000 .000 .000 .000
0.05 .013 .007 .046 .032 .083 .063
0.10 .026 .016 .082 .062 .143 .116
0.20 .053 .036 .153 .123 .243 .209
0.30 .082 .060 .218 .184 .328 .295
0.40 113 .088 .282 .247 .408 .375
0.50 .146 .120 .345 .312 .482 .452
0.60 .184 .156 .410 .379 .553 .528
0.70 .226 .199 .478 .451 .624 .603
0.80 .276 .252 .550 .529 .694 .680
0.90 .342 .323 .635 .621 771 762

TABLE 2
Values of N defined by o = F(\)

a n=2 3 4 5 6 7 8 9 10
.001 .004 .002 .001 .001 .000 .000 .000 .000 .000
.002 .008 .004 .002 .002 .001 .001 .000 .000 .000
.005 .020 .010 .004 .004 .002 .002 .001 .001 .001
.010 .040 .020 .011 .009 .006 .005 .004 .004 .003
.015 .058 .030 .018 .015 .011 .009 .006 .006 .006
.020 .076 .040 .025 .020 .016 .014 .010 .010 .009
.050 175 .103 .070 .057 .046 .039 .035 .030 .026
.100 .390 .214 .153 .123 .101 .089 .077 .070 .064

.200 .760 .426 .330 274 .235 .205 .185 .169 .155
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TABLE 3
Values of N defined by o = Plx,? > —21n A]
a n=2 3 4 5 6 7 8 9 10
.001 .008 .004 .002 .001 .001 .001 .001 .001 .000
.002 .016 .007 .004 .003 .002 .002 .001 .001 .001
.005 .036 .017 .01 .008 .006 .005 .004 .003 .003
.010 .067 .033 .021 .015 .012 .010 .008 .007 .006
.015 .095 .048 .032 .023 .018 .015 .013 .01 .010
.020 121 .064 .042 .031 .025 .020 .017 .015 .013
.050 .259 .148 .104 .080 .065 .055 .048 .042 .038
.100 .440 .275 .203 .162 .136 . 117 .103 .092 .084
.200 .702 .494 .390 .325 .281 .249 .225 .205 .189
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