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1. Introduction. In a fundamental paper on stationary finite state and action
Markovian decision processes, Blackwell [1] defines an optimal policy to be one
that maximizes the expected total discounted rewards for all sufficiently small
interest rates p > 0. He also establishes the existence of a stationary optimal
policy by a limit process that does not give a finite algorithm. The purpose of this
paper is to prove this result constructively by devisirg a finite policy improve-
ment method for finding stationary optimal policies. The algorithm is based on
the representation of the vector of expected discounted returns under a stationary
policy as a Laurent series in the interest rate for all small enough p > 0.

2. Preliminaries. Consider a system which is observed at each of a sequence of
points in time labeled 1, 2, - - - . At each of these points the system is found to be
in one of S states labeled 1, - - - , S. Each time the system is observed in state s,
an action a is chosen from a finite set A, of possible actions and a reward r(s, a)
is received. The conditional probability that the system is observed in state ¢ at
time N -+ 1 given that it is found in state s at time NV, that action a is taken at
that time, and given the observed states and actions taken at times 1, 2, -- -,
N — 1 is assumed to be a function p(¢ | s, a) depending only on ¢, s, and a.

Tet F = X5-1 A,. A policy is a sequence 7 = (fi, fo, - ) of elements fy of F.
Using the policy = means that if the system is observed in state s at time N, the
action chosen at that time is fx(s), the sth component of fx . We write f* for the
stationary policy (f, f, ---) and (g, f*) for the policy (g, f, f, -+-).

For any f ¢ F, let r(f) be the S component column vector whose sth component
is r(s, f(s)), and let P(f) be the S X S Markov matrix whose stth element is
p(t]s, f(8)). It = (fr, fa, ), let P¥(x) = P(fi) --- P(fy) for N > 0 and
P’(z) = 1.

Denote by p > 0 the rate of interest and let 8 = (1 + p) ™" be the associated
discount factor. If p = «, 8 = 0. We suppress the dependence of 8 on p in the
sequel for simplicity.

The vector of expected total discounted rewards starting from each state and
using the policy = is

Vp(ﬂ') = Z;Vo=0 BNPN(W)T(fN_I.l).

A policy 7 is called p-optimal if V,,(vr*) = V,(x) for all =, and optémal if it is
p-optimal for all sufficiently small p > 0.
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We will need the following result from Kemeny and Snell [4] and Blackwell [1].

LEmma 1. Let P be an S X S8 Markov mairiz.

(a) The sequence (N + 1)7 D Y, P* converges as N —  to a Markov mairiz
P* satisfying PP* = P*P = P*P* = P*,

(b) If 0 < p £ o, the matriz [I — B(P — P*)] s nonsingular and its inverse,
denoted Z, , uniquely satisfies

1 — gP] I— — gpP*
P* | P* P*

(¢) If0S p = o, thematrizr H, = Z,(I — P*) = (I — P*)Z, = Z, — P*
uniquely satisfies -

"I — 8P I —BP I — p*
B8 H =g, 8P| _ .
pP* P* 0

(d) If 0 < p £ =, the matriz [I — BP] 7s nonsingular and tts inverse, denoted

M,, satisfies
M, = 2 3=BP' = P"M,+ H, and P*M, = (1+ p)p 'P*.

The next result provides an expansion of H, in terms of the powers of —pH
for small |p| where H = H,. To describe this it is convenient to define the norm
of a (finite) matrix C = (c;) by ||C|| = max; D |cs.

Lemma 2. If 0 < p < ||H|™, then

(a) (I 4+ pH) s nonsingular and

(I + pH)™ = 2 700" (=1)"H";
(b) H, = (1 4+ p)H(I + pH)™ = (1 + p)(I + pH)"'H.
Proor. Part (a) follows from ||pH|| < 1 which justifies the Neumann series

expansion therein.
For part (b), we have from (¢) of Lemma 1 that

(14 9)Z,'H=(I—P)H +pH = (I — P*)(I + pH).

Postmultiplying by (I 4+ pH)™ and premultiplying by Z, gives, using the defini-
tion of H,,
(1+p)HI + pH)™ = Z,(I — P*) = H,,

establishing the first equality in (b). The second equality in (b) then follows
from (a), which completes the proof.

For each f ¢ F, let P*(f), H,(f), and M,(f) denote the matrices in Lemma, 1
associated with P(f). Then since V,(f°) = M,(f)r(f), we may combine part
(d) of Lemma 1 with Lemma 2 to give the Laurent series expansion of V,(f)
for p > 0 near zero. The first two terms of this expansion were obtained in [1].

Turorem 1. If feF and 0 < p < |[H(f)||™, then

(1) Vo(f®) = (1 + p) 2o0—10"9n(f)
where y1(f) = P*(N)r(f) and yo(f) = (=1)"H{)""r(f),n = 0,1, ---.
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3. Finding optimal policies. Our policy improvement algorithm for finding
optimal policies relies on Howard’s [3] policy improvement method for finding
p-optimal policies (o > 0) as refined and formulated by Blackwell [1] in the fol-
lowing result.

TaEOREM 2. If fe F and 0 < p < o, then either V,(g, f*) > V,(f) for some
geF or V,(g,f°) < V,(f°) for all g e F. In the former case V,(¢°) > V,(f7),
while in the latter event f~ is p-optimal.

If C is a matrix, we say C is lexicographically nonnegative, written C' > 0,
if the first nonvanishing element of each row of C is positive. Similarly, C is
called lexicographically positive, written C > 0, if C > 0 and C = 0.

Let Y(f) = (y=(f), %o(f), -++) and Yu(f) = (y=2(); vo(f), -+, ya(f)) for
n =z —1. It is clear from (1) that V,(f°) — V,(¢”) = 0 for all small enough
p > 0if and only if Y (f) — Y(¢) > O.

For f, g e F, let

¥alg, f) = P(g)y-(f) —yalf), n=-—1,
r(g) + P(@y(f) — y=(f) — yo(f), n =0,
= P(@)ya(f) = yaa(f) — ya(f), n

‘I’({/,f) = (Kb—l(g,f), ¢0(g) f)) )7\Iln(g)f) = (lp—l({/,f), lpo(g)f)’ ER] ¢n<g)f))
forn =2 —1,and ¥,(g,f) = Oforn < —1.
LemMa 3. If f, ge F and 0 < p < |[H(f)| ™, then

Volg, 17) = Vo(f°) = 2n—10"¥ulg, ).
Proo¥r. From Theorem 1,

Vp(g’ fw) - Vp(fw)
r(g) + [(1 + p)7'P(g) — NIV.(f*)
r(g) + [P(g) — (1 4+ o)1 2o s p"ya(f) = Dme1 0™¥aly, f).

REMARK. One consequence of this lemma is that ¥(f, f) = OforfeF.

TuarorEM 3. If f ¢ F, then either ¥ (g, f) > 0 for some g ¢ F or ¥(g, ) < 0 for
all g € F. In the former event V,(g°) — V,(f7) > 0 for all small enough p > 0 and
Y(g) — Y(f) > 0, while in the latter case f~ is optimal and Y (f) — Y (g) » O for
allgeF.

Proor. If ¥(g,f) > O for some g ¢ F, then from Lemma 3, V,(g,f~) —
V,(f°) > 0 for all sufficiently small p > 0. Hence by Theorem 2, V,(¢°) —
V,(f°) > 0 for all small enough p > 0. Thus by Theorem 1, Y(g) — Y(f) > 0.

If ¥ (g, f) > 0forevery g ¢ F, then since ¥(f, /) = 0 we have ¥(g, f) < 0for all
g ¢ F. Thus by Lemma 3, V,(¢,f°) — V,(f°) < 0forallg ¢ F and all small enough
p > 0. Hence by Theorem 2, f is p-optimal for all small enough p > 0. Therefore
f~ is optimal and, by Theorem 1, Y (f) — Y (g) » O for all ¢ ¢ F, which completes
the proof.

CoroLLARY 1. (Blackwell) There is a stationary optimal policy.

It
—
<
)
g
-



DISCRETE DYNAMIC PROGRAMMING 369

Proor. Let fo e F be arbitrary. Choose fi, fo, -+, fv in F inductively so
V(fi,fi) > 0fors = 1,2, --- , N. Since by Theorem 3, Y (f;) increases lexico-
graphically with 4, no element of F can recur. Thus by Theorem 3 and the
finiteness of F, there is an integer N = 0 for which ¥ (g, fv) < O forall g e F.
Moreover, fv~ is optimal, completing the proof.

The next theorem shows that we can replace ¥ (g, f) by ¥s(g, f) in Theorem 3,
and so also in the policy improvement algorithm given in the proof of Corollary 1.
That is, of course, an important computational simplification. The theorem also
implies that f*(f ¢ F) is optimal if and only if Ys(f) > Ys(g) for all g F. To
prove the theorem we will need a preliminary lemma which, as Joel Brenner has
pointed out to one of us, is known ([2], p. 203). We repeat the proof for complete-
ness. .

LevMa 4. Let M be an S X S matriz and L a linear subspace of R®. If M"z ¢ L
forn=20,---,8 —1,then M"z ¢ L forn = 0,1, --- .

Proo¥. The S component vectors Mz, - - - , M*z arelinearly dependent. Hence,
there is a positive integer 77 = S such that M ™1z is a linear combination of
Mz, --- , M7z. We now show by induction onn that M "z is a linear combination
of M, --- , M7z for all n = 0, which will complete the proof. This is so for
0 £ n £ T + 1 by construction. Suppose it is so for all positive integers less than
n(>T + 1). Thus

M"_lx = Zg':o )\le$
Premultiplying both sides of this equation by M gives
Mz = D i \M ™z,

Since Mz is a linear combination of M’z, --- , Mz, the proof is complete.
TreorEM 4. Suppose f, g € F. Then
(a) (g, f) > (3)(=)()()07f andonly if Ts(g,f) > (>)(=)(L)(<)O0.
(b) Y(f) = Y(g) if and only if Ys(f) = Ys(g).
Proor. For part (a) it suffices to show that ¥s(g, f) = 0 implies ¥(g, f) = 0.
To this end observe that since ¢, (f, f) = 0,

Because ¥s(g, f) = 0, it follows from (2) that

(3) [P(g) — P(Nya(f) = 0, n=1--,8.
In view of (2), it suffices to show that (3) holds forn = 1,2, ---. That this is so
follows by an application of Lemma 4 with M = —H(f), L the null space of

P(g) — P(f), and = n(f).
For part (b) it suffices to show that Ys(f) = Ys(g) implies Y(f) = Y(g).
This will be so if we can show
(4) [H(g) — H(Nly(f) = 0, n=01"--.
By hypothesis (4) holdsforn = 0, --- , 8 — 1. That (4) holdsforn = 0,1, -- -,
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then follows by applying Lemma 4 with M = —H(f), L the null space of
H(g) — H(f), and x = yo(f), which completes the proof.

In a companion paper [8] one of us establishes and interprets several additional
properties of the policy improvement algorithm given in the proof of Corollary 1.
We mention a few of these results briefly here. For this purpose let ¥,(g, f) de-
note the sth row of ¥, (g, f). Foreach fe F and n = —1, let G.(f) = {g:geF,
¥.(g, f) > 0, and g(s) = f(s) whenever ¥,,(g, f) = 0}, Fu = {f: f& F, Yu(f)
— Y.(g9) > 0allgeF},and Fo = {f:feF, Y(f) — Y(g9) » 0all geF}. For
figeFandn < —1,1et ¥,(g,f) = 0, Go(f) = ¢, Yu(f) = 0,and F, = F. It is
immediate from (b) of Theorem 4 that Fs = Fgy1 = -++ = Fo.

The following results, among others, are established in [8]. If f,ge F,n = —2,
and ¥,(g, f) = 0, then Yu_1(g) — Yau(f) = 0;if alsa g & Gua(f) — Ga(f), then
Viii(g) — Youu(f) > 0. If fe F,n = 0, and G,.(f) is empty, then f ¢ F,,; . These
results give a policy improvement algorithm for finding an element of F, for
n = —1 that terminates more rapidly than the one in the proof of Corollary 1 for
n <8 —1.Forn = —1andn = 0 the algorithms reduce respectively to those of
Blackwell [1] and Veinott [7].

The results given in this paper extend without difficulty to the continuous time
parameter case. A simple method of accomplishing this is given in [8] by exploit-
ing results of Howard [3] and Miller [5], [6].
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