DISCRETE DYNAMIC PROGRAMMING WITH A SMALL INTEREST RATE¹

BY BRUCE L. MILLER AND ARTHUR F. VEINOTT, JR.

The RAND Corporation and Stanford University

- **1.** Introduction. In a fundamental paper on stationary finite state and action Markovian decision processes, Blackwell [1] defines an optimal policy to be one that maximizes the expected total discounted rewards for all sufficiently small interest rates $\rho > 0$. He also establishes the existence of a stationary optimal policy by a limit process that does not give a finite algorithm. The purpose of this paper is to prove this result constructively by devising a finite policy improvement method for finding stationary optimal policies. The algorithm is based on the representation of the vector of expected discounted returns under a stationary policy as a Laurent series in the interest rate for all small enough $\rho > 0$.
- **2. Preliminaries.** Consider a system which is observed at each of a sequence of points in time labeled $1, 2, \dots$. At each of these points the system is found to be in one of S states labeled $1, \dots, S$. Each time the system is observed in state s, an action a is chosen from a finite set A_s of possible actions and a reward r(s, a) is received. The conditional probability that the system is observed in state t at time N+1 given that it is found in state s at time t, that action t is taken at that time, and given the observed states and actions taken at times t, t, t, and t, and t, t, and t, t, and t

Let $F = \mathbf{X}_{s=1}^S A_s$. A policy is a sequence $\pi = (f_1, f_2, \cdots)$ of elements f_N of F. Using the policy π means that if the system is observed in state s at time N, the action chosen at that time is $f_N(s)$, the sth component of f_N . We write f^{∞} for the stationary policy (f, f, \cdots) and (g, f^{∞}) for the policy (g, f, f, \cdots) .

For any $f \in F$, let r(f) be the S component column vector whose sth component is r(s, f(s)), and let P(f) be the $S \times S$ Markov matrix whose sth element is p(t | s, f(s)). If $\pi = (f_1, f_2, \cdots)$, let $P^N(\pi) = P(f_1) \cdots P(f_N)$ for N > 0 and $P^0(\pi) = I$.

Denote by $\rho > 0$ the rate of interest and let $\beta = (1 + \rho)^{-1}$ be the associated discount factor. If $\rho = \infty$, $\beta \equiv 0$. We suppress the dependence of β on ρ in the sequel for simplicity.

The vector of expected total discounted rewards starting from each state and using the policy π is

$$V_{\rho}(\pi) = \sum_{N=0}^{\infty} \beta^{N} P^{N}(\pi) r(f_{N+1}).$$

A policy π^* is called ρ -optimal if $V_{\rho}(\pi^*) \geq V_{\rho}(\pi)$ for all π , and optimal if it is ρ -optimal for all sufficiently small $\rho > 0$.

Received 6 June 1968.

¹ This research was supported by the United States Air Force under project RAND Contract No. F44620-67-C-0045, the National Science Foundation under Grant GK-1420, and the Office of Naval Research under Contract Nonr 225(77) (NR-347-010).

We will need the following result from Kemeny and Snell [4] and Blackwell [1].

- LEMMA 1. Let P be an $S \times S$ Markov matrix. (a) The sequence $(N+1)^{-1} \sum_{i=0}^{N} P^{i}$ converges as $N \to \infty$ to a Markov matrix P^{*} satisfying $PP^{*} = P^{*}P = P^{*}P^{*} = P^{*}$.
- (b) If $0 \le \rho \le \infty$, the matrix $[I \beta(P P^*)]$ is nonsingular and its inverse, denoted Z_{ρ} , uniquely satisfies

$$\begin{bmatrix} I - \beta P \\ P^* \end{bmatrix} Z_{\rho} = Z_{\rho} \begin{bmatrix} I - \beta P \\ P^* \end{bmatrix} = \begin{bmatrix} I - \beta P^* \\ P^* \end{bmatrix}.$$

(c) If $0 \le \rho \le \infty$, the matrix $H_{\rho} \equiv Z_{\rho}(I - P^*) = (I - P^*)Z_{\rho} = Z_{\rho} - P^*$ uniquely satisfies

$$\begin{bmatrix} I - \beta P \\ P^* \end{bmatrix} H_{\rho} = H_{\rho} \begin{bmatrix} I - \beta P \\ P^* \end{bmatrix} = \begin{bmatrix} I - P^* \\ 0 \end{bmatrix}.$$

(d) If $0 < \rho \leq \infty$, the matrix $[I - \beta P]$ is nonsingular and its inverse, denoted M, satisfies

$$M_{\rho} = \sum_{i=0}^{\infty} \beta^{i} P^{i} = P^{*} M_{\rho} + H_{\rho} \quad and \quad P^{*} M_{\rho} = (1 + \rho) \rho^{-1} P^{*}.$$

The next result provides an expansion of H_{ρ} in terms of the powers of $-\rho H$ for small $|\rho|$ where $H \equiv H_0$. To describe this it is convenient to define the norm of a (finite) matrix $C = (c_{ij})$ by $||C|| = \max_i \sum_j |c_{ij}|$.

Lemma 2. If $0 \leq \rho < ||H||^{-1}$, then

(a) $(I + \rho H)$ is nonsingular and

$$(I + \rho H)^{-1} = \sum_{n=0}^{\infty} \rho^{n} (-1)^{n} H^{n};$$

(b)
$$H_{\rho} = (1 + \rho)H(I + \rho H)^{-1} = (1 + \rho)(I + \rho H)^{-1}H.$$

Proof. Part (a) follows from $\|\rho H\| < 1$ which justifies the Neumann series expansion therein.

For part (b), we have from (c) of Lemma 1 that

$$(1 + \rho)Z_{\rho}^{-1}H = (I - P)H + \rho H = (I - P^*)(I + \rho H).$$

Postmultiplying by $(I + \rho H)^{-1}$ and premultiplying by Z_{ρ} gives, using the definition of H_{ρ} ,

$$(1+\rho)H(I+\rho H)^{-1}=Z_{\rho}(I-P^*)=H_{\rho},$$

establishing the first equality in (b). The second equality in (b) then follows from (a), which completes the proof.

For each $f \in F$, let $P^*(f)$, $H_{\rho}(f)$, and $M_{\rho}(f)$ denote the matrices in Lemma 1 associated with P(f). Then since $V_{\rho}(f^{\infty}) = M_{\rho}(f)r(f)$, we may combine part (d) of Lemma 1 with Lemma 2 to give the Laurent series expansion of $V_{\rho}(f^{\infty})$ for $\rho > 0$ near zero. The first two terms of this expansion were obtained in [1].

THEOREM 1. If $f \in F$ and $0 < \rho < ||H(f)||^{-1}$, then

(1)
$$V_{\rho}(f^{\infty}) = (1+\rho) \sum_{n=-1}^{\infty} \rho^{n} y_{n}(f)$$
where $y_{-1}(f) \equiv P^{*}(f) r(f)$ and $y_{n}(f) \equiv (-1)^{n} H(f)^{n+1} r(f)$, $n = 0, 1, \dots$

3. Finding optimal policies. Our policy improvement algorithm for finding optimal policies relies on Howard's [3] policy improvement method for finding ρ -optimal policies ($\rho > 0$) as refined and formulated by Blackwell [1] in the following result.

THEOREM 2. If $f \in F$ and $0 < \rho \leq \infty$, then either $V_{\rho}(g, f^{\infty}) > V_{\rho}(f^{\infty})$ for some $g \in F$ or $V_{\rho}(g, f^{\infty}) \leq V_{\rho}(f^{\infty})$ for all $g \in F$. In the former case $V_{\rho}(g^{\infty}) > V_{\rho}(f^{\infty})$, while in the latter event f^{∞} is ρ -optimal.

If C is a matrix, we say C is lexicographically nonnegative, written $C \geqslant 0$, if the first nonvanishing element of each row of C is positive. Similarly, C is called lexicographically positive, written C > 0, if $C \geqslant 0$ and $C \neq 0$.

Let $Y(f)=(y_{-1}(f), y_0(f), \cdots)$ and $Y_n(f)=(y_{-1}(f), y_0(f), \cdots, y_n(f))$ for $n \geq -1$. It is clear from (1) that $V_{\rho}(f^{\infty}) - V_{\rho}(g^{\infty}) \geq 0$ for all small enough $\rho > 0$ if and only if $Y(f) - Y(g) \geq 0$.

For f, $g \in F$, let

$$\begin{array}{lll} \psi_n(g,f) &=& P(g)y_{-1}(f) & -y_{-1}(f), & n=-1, \\ &=& r(g) \,+\, P(g)y_0(f) \,-\, y_{-1}(f) & -y_0(f), & n=0, \\ &=& P(g)y_n(f) \,-\, y_{n-1}(f) \,-\, y_n(f), & n=1,\, 2,\, \cdots, \end{array}$$

 $\Psi(g,f) = (\psi_{-1}(g,f), \psi_0(g,f), \cdots), \Psi_n(g,f) = (\psi_{-1}(g,f), \psi_0(g,f), \cdots, \psi_n(g,f))$ for $n \ge -1$, and $\Psi_n(g,f) = 0$ for n < -1.

LEMMA 3. If f, $g \in F$ and $0 < \rho < ||H(f)||^{-1}$, then

$$V_{\rho}(g, f^{\infty}) - V_{\rho}(f^{\infty}) = \sum_{n=-1}^{\infty} \rho^n \psi_n(g, f).$$

PROOF. From Theorem 1,

$$\begin{split} V_{\rho}(g, f^{\infty}) &- V_{\rho}(f^{\infty}) \\ &= r(g) + [(1 + \rho)^{-1} P(g) - I] V_{\rho}(f^{\infty}) \\ &= r(g) + [P(g) - (1 + \rho)I] \sum_{n=-1}^{\infty} \rho^{n} y_{n}(f) = \sum_{n=-1}^{\infty} \rho^{n} \psi_{n}(g, f). \end{split}$$

Remark. One consequence of this lemma is that $\Psi(f, f) = 0$ for $f \in F$.

THEOREM 3. If $f \in F$, then either $\Psi(g, f) > 0$ for some $g \in F$ or $\Psi(g, f) \leq 0$ for all $g \in F$. In the former event $V_{\rho}(g^{\infty}) - V_{\rho}(f^{\infty}) > 0$ for all small enough $\rho > 0$ and Y(g) - Y(f) > 0, while in the latter case f^{∞} is optimal and $Y(f) - Y(g) \geq 0$ for all $g \in F$.

PROOF. If $\Psi(g,f)>0$ for some $g \in F$, then from Lemma 3, $V_{\rho}(g,f^{\infty})-V_{\rho}(f^{\infty})>0$ for all sufficiently small $\rho>0$. Hence by Theorem 2, $V_{\rho}(g^{\infty})-V_{\rho}(f^{\infty})>0$ for all small enough $\rho>0$. Thus by Theorem 1, Y(g)-Y(f)>0. If $\Psi(g,f)>0$ for every $g \in F$, then since $\Psi(f,f)=0$ we have $\Psi(g,f)\leq0$ for all $g \in F$. Thus by Lemma 3, $V_{\rho}(g,f^{\infty})-V_{\rho}(f^{\infty})\leq0$ for all $g \in F$ and all small enough $\rho>0$. Hence by Theorem 2, f^{∞} is ρ -optimal for all small enough $\rho>0$. Therefore f^{∞} is optimal and, by Theorem 1, Y(f)-Y(g)>0 for all $g \in F$, which completes the proof.

COROLLARY 1. (Blackwell) There is a stationary optimal policy.

PROOF. Let $f_0 \, \varepsilon \, F$ be arbitrary. Choose f_1 , f_2 , \cdots , f_N in F inductively so $\Psi(f_i, f_{i-1}) > 0$ for $i = 1, 2, \cdots, N$. Since by Theorem 3, $Y(f_i)$ increases lexicographically with i, no element of F can recur. Thus by Theorem 3 and the finiteness of F, there is an integer $N \geq 0$ for which $\Psi(g, f_N) \leq 0$ for all $g \, \varepsilon \, F$. Moreover, f_N^{∞} is optimal, completing the proof.

The next theorem shows that we can replace $\Psi(g,f)$ by $\Psi_s(g,f)$ in Theorem 3, and so also in the policy improvement algorithm given in the proof of Corollary 1. That is, of course, an important computational simplification. The theorem also implies that $f^{\infty}(f \in F)$ is optimal if and only if $Y_s(f) \geqslant Y_s(g)$ for all $g \in F$. To prove the theorem we will need a preliminary lemma which, as Joel Brenner has pointed out to one of us, is known ([2], p. 203). We repeat the proof for completeness.

Lemma 4. Let M be an $S \times S$ matrix and L a linear subspace of R^s . If $M^n x \in L$ for $n = 0, \dots, S - 1$, then $M^n x \in L$ for $n = 0, 1, \dots$.

PROOF. The S component vectors M^0x , \cdots , M^Sx are linearly dependent. Hence, there is a positive integer $T \leq S$ such that $M^{T+1}x$ is a linear combination of M^0x , \cdots , M^Tx . We now show by induction on n that M^nx is a linear combination of M^0x , \cdots , M^Tx for all $n \geq 0$, which will complete the proof. This is so for $0 \leq n \leq T+1$ by construction. Suppose it is so for all positive integers less than n(>T+1). Thus

$$M^{n-1}x = \sum_{i=0}^{T} \lambda_i M^i x.$$

Premultiplying both sides of this equation by M gives

$$M^n x = \sum_{i=0}^{T} \lambda_i M^{i+1} x.$$

Since $M^{T+1}x$ is a linear combination of M^0x , \cdots , M^Tx , the proof is complete. Theorem 4. Suppose $f, g \in F$. Then

- (a) $\Psi(g,f) > (\geqslant) (=) (\leqslant) (\leqslant) (\leqslant) 0$ if and only if $\Psi_s(g,f) > (\geqslant) (=) (\leqslant) (\leqslant) 0$.
- (b) Y(f) = Y(g) if and only if $Y_s(f) = Y_s(g)$.

Proof. For part (a) it suffices to show that $\Psi_s(g, f) = 0$ implies $\Psi(g, f) = 0$. To this end observe that since $\psi_n(f, f) = 0$,

(2)
$$\psi_n(g, f) = \psi_n(g, f) - \psi_n(f, f) = [P(g) - P(f)]y_n(f), \quad n = 1, 2, \cdots$$

Because $\Psi_s(g, f) = 0$, it follows from (2) that

(3)
$$[P(g) - P(f)]y_n(f) = 0, n = 1, \dots, S.$$

In view of (2), it suffices to show that (3) holds for $n = 1, 2, \dots$. That this is so follows by an application of Lemma 4 with M = -H(f), L the null space of P(g) - P(f), and $x = y_1(f)$.

For part (b) it suffices to show that $Y_s(f) = Y_s(g)$ implies Y(f) = Y(g). This will be so if we can show

(4)
$$[H(g) - H(f)]y_n(f) = 0, n = 0, 1, \cdots.$$

By hypothesis (4) holds for $n = 0, \dots, S - 1$. That (4) holds for $n = 0, 1, \dots$,

then follows by applying Lemma 4 with M = -H(f), L the null space of H(g) - H(f), and $x = y_0(f)$, which completes the proof.

In a companion paper [8] one of us establishes and interprets several additional properties of the policy improvement algorithm given in the proof of Corollary 1. We mention a few of these results briefly here. For this purpose let $\Psi_{ns}(g, f)$ denote the sth row of $\Psi_n(g, f)$. For each $f \in F$ and $n \ge -1$, let $G_n(f) = \{g : g \in F, \Psi_n(g, f) > 0, \text{ and } g(s) = f(s) \text{ whenever } \Psi_{ns}(g, f) = 0\}, F_n = \{f : f \in F, Y_n(f) - Y_n(g) \ge 0 \text{ all } g \in F\}, \text{ and } F_{\infty} = \{f : f \in F, Y(f) - Y(g) \ge 0 \text{ all } g \in F\}.$ For $f, g \in F$ and n < -1, let $\Psi_n(g, f) = 0, G_n(f) = \phi, Y_n(f) = 0, \text{ and } F_n = F$. It is immediate from (b) of Theorem 4 that $F_s = F_{s+1} = \cdots = F_{\infty}$.

The following results, among others, are established in [8]. If $f, g \in F$, $n \ge -2$, and $\Psi_n(g, f) = 0$, then $Y_{n-1}(g) - Y_{n-1}(f) = 0$; if also $g \in G_{n+1}(f) - G_n(f)$, then $Y_{n+1}(g) - Y_{n+1}(f) > 0$. If $f \in F$, $n \ge 0$, and $G_n(f)$ is empty, then $f \in F_{n-1}$. These results give a policy improvement algorithm for finding an element of F_n for $n \ge -1$ that terminates more rapidly than the one in the proof of Corollary 1 for n < S - 1. For n = -1 and n = 0 the algorithms reduce respectively to those of Blackwell [1] and Veinott [7].

The results given in this paper extend without difficulty to the continuous time parameter case. A simple method of accomplishing this is given in [8] by exploiting results of Howard [3] and Miller [5], [6].

REFERENCES

- [1] Blackwell, D. (1962). Discrete dynamic programming. Ann. Math. Statist. 33 719-726.
- [2] Gantmacher, F. R. (1959). The Theory of Matrices 1 (English Translation). Chelsea, New York.
- [3] HOWARD, R. A. (1960). Dynamic Programming and Markov Processes. Wiley, New York.
- [4] KEMENY, J. G. and SNELL, J. L. (1960). Finite Markov Chains. Van Nostrand, Princeton.
- [5] MILLER, B. L. (1968). Finite state continuous time Markov decision processes with a finite planning horizon. SIAM J. Control 6 266-280.
- [6] MILLER, B. L. (1968). Finite state continuous time Markov decision processes with an infinite planning horizon. J. Math. Anal. Appl. 22 552-569.
- [7] VEINOTT, JR., A. F. (1966). On finding optimal policies in discrete dynamic programming with no discounting. Ann. Math. Statist. 37 1284-1294.
- [8] VEINOTT, JR., A. F. (1968). Discrete dynamic programming with sensitive discount optimality criteria. Technical Report No. 6, Department of Operations Research, Stanford Univ. California, 58 pp.