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For a given sequence of independent random variables {X,} a monotonic in-
creasing positive sequence {¢,} is said to be in the upper class U if

P[S, > n'p, infinitely often] = 0,

where S, = i1 Xz .

Otherwise {¢,} is in the lower class £ and the above probability is zero. In
1946, Feller [3] characterized these sequences as follows:

TueoreM (Feller). Let { X.} be a sequence of independent identically distributed
random variables with

EX, =0, EX’=1 and [ys¢dF = 0((glgy)™).
Then a monotonic increasing sequence {¢.} s in the upper class if and only if
> e T < o,

The main result here is a characterization of the upper class in terms of a
prescribed convergence rate for the partial sums of the random variables. This
result represents an improvement of work previously done in this area. In [1]
Baum and Katz show the following:

TrrorEM [Baum and Katz]. Let {X,} be a sequence of independent identically
distributed random variables with

(1) EX, = 0,

(2) EXy" = 1,

(3) EXy*(Ig | X1|)*™ < o for some 8 > 0.” Then a monotonic increasing sequence
{on} s @n the upper class for { X} if and only if

Z:=l €0n2n~1P [Sn > n%¢n] < oo,

In [2] the author shows that the same conclusion may be drawn if hypothesis
(3) is weakened to EX:’lg |Xy| Iglg [Xi| < . Here we obtain a similar con-
clusion under a moment condition slightly stronger than Feller’s O-condition.

TarorEM. Let {X,} be a sequence of independent identically distributed random
variables with EXy = 0, EXy® = 1, and EX’lglg|Xa| < . Then a positive
monotonic increasing sequence s in the upper class for { X,} if and only if

S s (glgn)n'PlS, > nle,] <
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2 Throughout this paper lg X denotes the function lg X = log. X for X > 1 and 0 other-

wise.
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or equivalently
Sns (glgn)n 'PlS,| > nlen] < .

The proof of the theorem is deferred until the following lemma is established.
LemmA®. Let {¢a} be a positive monotonic increasing sequence and K = 0. Then

Do e < o
& 2 ns (glgn) (nen) ™ exp [(—0.”/2) (1 + K/ (Iglgn))] < .
Proor oF Lemma. If ¢, = (2 + ) Iglg n for all n both of the series converge.
Zem e = 2+ ' X (glgn)/nlgn) < e
where the inequality is from the fact ze
2 (glgn) (me.) " exp [(—¢a/2) (1 + K/ (glgn)]
= @+ 97X (glgn)ne ™
= 24 07X (glgn)/nlgn)t” < o,

Thus, if the sequence {¢,} is truncated above at [(2 + ¢)lglgn]* the con-
vergence of neither series is affected. Let

o' = 2+ e)lglgn i el > 2+ e)lglgn

= o0 otherwise.

is monotone decreasing in z.

If 0, < (2 — ¢)lglgn infinitely often, both series diverge. To see this the
truncated series ¢,  may be used.

1 =1 —pp'2[2 —om'2/2 m /7 —1
Domean e = g o'

= c(gm)/(gm) " — o
and

2 ns (glgn) (nea’) ™ exp [(—¢n”/2) (1 + K/ (glgn))]
2 exp [(—en”/2) (1 + ¢/4)] (2 + ) 27 (glgn)'n™
2 c(gm)/(gm)™ — o
Now consider the new sequence
et = (2—elglgn if o < (2—¢)lglgn
= o2 if (2—e¢lglgn e = 24 ¢)lglgn
@2+e)lglgn  if e > 2+ €)lglgn.
Each of the series being considered will then converge for {¢,} if and only if it

3 Minor modifications in the proof extend the lemma to all real K, but this is not needed
for our purpose.
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converges for {¢,"}. It is now shown that the series converge and diverge to-
gether with {¢,"},

2. (glgn) (e )™ exp [(—¢."?/2) (1 + K/ (glgn))]

@ - ' T (glgnyn e

Z ¢n”n_16—¢"”2/2

@ + )™ X (glgn)n exp [—0a"Y/2 — K(1 + ¢/2)]

@ + )" 3 (glgn) (ne ) exp [(—ea"*/2) (1 + K/(Iglgn))]

and the lemma is proven.
Proor or TurEOREM. The hypothesis of Theorem 1 in convergence rates for the

law of the iterated logarithm [2] are satisfied and i
2 (glgn)n™ sup. [P[Sxm~ < a] — @(x/on)| <
with & the standard normal distribution function and
o = [ta1<nts 2 dF — ([ 1joj<nty x dF)°

where F is the distribution function for X, . If {¢,} is bounded

e et = o and Y. (ig lg n)n ' P[S, > nlp,] = oo
by the central limit theorem. Thus assume ¢, T «. Now by the above
(+) 2 (glgn)n™ [PLS./nt > ¢u] — (1 = ®(gn/an))| < .

With ¢, T « and ¢, T 1 the tail approximation for the normal distribution
may be applied. That is

A IA - TA

IIA

3 -1 —¢,2/20,2

1 — ®(pn/on) ~0,(2m) "0 €
Now with EXy*Iglg |Xa| < « one obtains
lglgn'(l — o.') = lglgn’ [iosm 2 dF < [(asmy 2°lglg 2 dF — 0.

Thatis 1 — ¢,” = 0((glgn)™). Thus Feller’s 0-condition is satisfied and for
any e > 00," = 1 — ¢/(Iglgn) for all n greater than some N. .
Then

C‘Pn_le_%‘z,z 1 - (I:'(‘Pn/ o'n) = Cﬁan—le_‘%zm%z
con " exp [(—ea/2) (1 — ¢/ (glgn))]

con ' exp [(—ea/2) (1 + 2¢/ (glgn))].

A%

%

Consider the series
> (glgn)n e, e
and 2 (glgn)n e, " exp [(—¢.'/2) (1 + 2¢/ (Iglgn))].
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According to the lemma these converge if and only if {¢,} is in the upper class.
Thus Y (Iglgn)n™ (1 — ®(pn/on)) < « if and only if {¢,} ¢ U. By (x) how-
ever, the convergence or divergence of the above forces the same for
> (glgn)n "P[S, > ¢.n}], and the result is established.

To emphasize the analogy with the Borel zero-one law the theorem may be re-
stated as: For sequences of random variables {X,} and reals {¢,} satisfying the
above hypothesis then P[S, > o} infinitely often] = 0 or 1 according as

> (glgn)n 'P[S, > ean'] < © or = .
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