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THE VARIANCE OF ONE-SIDED STOPPING RULES

By Davip SIEGMUND!

Stanford Unwversity

Let #1, #2, --- be independent random variables with means pi, pe, ---
for which for some 0 < p < =

1) Y o (n— ).
Let s, = D1, and for each ¢ > 0 define
(2) t =t(c) = first n = 1 such that s, > ¢

= oo if no such n exists.

It is easily inferred from the results and methods of [5] that if

(3) supan ' D7 E(m — ) < o,
and if for each e > 0
(4) limn—wo n——l Z;L f{xk—pk>en) (xk - I-"k) = 07

then Bt < o for each ¢ > 0 and Et ~ cu (¢ — ). Under more restrictive
conditions on the distributions of the 2’s an asymptotic expression for the variance
of ¢t may be obtained. To be specific, if the z’s are identically distributed, non-
negative, and if o = Ez,® — u* < oo, then it has been shown by Feller [2] in
the lattice and Smith [6] in the non-lattice case that

5) Var t ~ co'u™® (c— o).

Recently, using combinational results of Spitzer [7], Heyde [4] has shown that
(5) holds without the restriction to non-negative variables. The methods of
Feller, Smith, and Heyde involve finding sufficiently detailed expansions of
E# and Et, from which (5) may be deduced. Smith and Heyde use Blackwell’s
Renewal Theorem.

In this note we generalize (5) to a large class of non-identically distributed
2’s. Our method involves Wald’s lemma for squared sums [1] and the technique
of Gundy and Siegmund [3] (see also [5]).

TuEOREM. Let z;, %2, -+ be independent random variables with means i,
uz, - such that for someO < p< ®
(6) St ue — np = o(nd).

Let o) = Ex) — py b = Z{’ o (n = 1,2, --+), and suppose that for some
0<o’ <
(7) b, ~ ne’.
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Let t be defined by (2). If for each e > 0

8) limyo n” ZIE f(zk—uk>m*) (e — )2 =0,
then
©) Bt = o + o(c)

and (5) holds.

We shall utilize the following lemmas.

Lemma 1. If (1) and (7) hold, then for any stopping time T with finite expecta-
tion

(10) Es, = EQ_1m)

and

(11) Eb” = E(s, — Doim)
Proor. By Theorem 2 of [1], in order that (11) and

(12) E(s: — 22im) =0

hold it suffices that Eb,” < o, which by (7) is implied by Er < . Since (1)
and Br < o imply that E|D 7w < o, (10) follows from (12).

Lemma 2. If (6), (7), and (8) hold, then for any non-decreasing family
{r(r), r > 0} of stopping times for which

o > Hr(r) T « as r— o,

we have
E(@xin) < » forall »>0
and
E (@) = o(lir(r)) (r— ).

Proor. For any r > 0, E(z.")" < 2[E((z, — u.)")" + Elw[’]. From (6) it
follows that u, = o(n'), and hence E|u,|° < « for allr > 0,

Blu" = o(Br)  (r— ).

The remainder of the proof may be completed along the lines of the proof of
Theorem 1 of Gundy and Siegmund [3].
Lemma 3. If (1) and (7) hold, then

(13) Et ~ ey’ (c— o).

Proor. By the result mentioned in the first paragraph of this note, it suffices
to verify (3) and (4). Forany &k = 1,2, - -

Bloy — ml £ EQL+ e — ml)’ S 2B + (@ — wm)") = 2(1 + o),

which in conjunction with (7) proves (3); (4) follows from (7) and the observa-
tion that forany e > 0,n = 1,2, ---, k=1, -+, n,

f(xk—pk>en) (xk - ,ka) = (en)——lo'kz-
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Proor or THE THEOREM. For ease of exposition we shall henceforth assume
that p, = u, 0, = 0. By Lemma 1, for alle > 0

(14) wlt = Es; = ¢ + E(s: — ¢).
(By Lemma 3 Et < o for all ¢.) From Lemmas 2 and 3 it follows that
15) [E(s; — ¢) < E(s: — ¢)* < Ez = o(Bt) = o(c),

which together with (14) establishes (9). From Lemma 1 we obtain

wo’lc + E(s: — c)]
(16) = u'oc’Bs, = Bt = E(s; — ut)’ = E(se — ¢ + ¢ — ut)’
E(si —¢) 4+ 2uB (s — c)(ow' — t) + W'E(t — au”),

SO
A7) WE@ —cu) = o'uTe + 2uE(si — ¢)(t — cu ")
+ W E(si —¢) — E(se — ¢)™.
By (15) and the Cauchy-Schwarz inequality
(18) |E(si—c)(t — o )| S [B(si — e)E(t — ow” )T = o(E(E — ™).
From (15), (17), and (18) we obtain
WE@— ') < a'ue + o(@IEE — cu™ )T + o(e),
and it follows that

(19) E@t—cu) = 0().
Hence by (15), (17), (18), and (19) we obtain

(20) E{t — cu™) = o™ + o(c).
But by (15)

Vart = E(t —cu ")’ — [E(@t — ey )
=E@t— ') — W'E(s — o)
=Et— ) + o),

which together with (20) implies (5). (Note that in expanding E (s, — ut)’
in formula (16) we have tacitly assumed that Eff < « and Es® < . That
Es® < o follows from Lemma 2. To show that Eff < o, let 7 = min (¢, n)
(n = 1,2, ---). Then by reasoning very similar to that employed above it may
be inferred that

Er* < const. (Br + (E)(Er)b),

from which it follows that
Ef* = limye Br* < ».)
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Remark. It is easy to deduce Lemma 3 directly without reference to the
results of [5]. The essential ingredients are already present in formulas (14)
and (15) (minus the o(c) term in (15), which is a consequence of Lemma 3).
Whereas this approach makes our proof self-contained, it was deemed of some
value to point out that the present assumptions actually imply those of [5].
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