THE VARIANCE OF ONE-SIDED STOPPING RULES

By David Siegmund¹

Stanford University

Let x_1, x_2, \cdots be independent random variables with means μ_1, μ_2, \cdots for which for some $0 < \mu < \infty$

$$(1) n^{-1} \sum_{k=1}^{n} \mu_k \to \mu (n \to \infty).$$

Let $s_n = \sum_{1}^{n} x_k$, and for each c > 0 define

(2)
$$t = t(c) = \text{first } n \ge 1 \text{ such that } s_n > c$$
$$= \infty \text{ if no such } n \text{ exists}$$

It is easily inferred from the results and methods of [5] that if

(3)
$$\sup_{n} n^{-1} \sum_{1}^{n} E(x_{k} - \mu_{k})^{-} < \infty,$$

and if for each $\epsilon > 0$

(4)
$$\lim_{n\to\infty} n^{-1} \sum_{1}^{n} \int_{\{x_k-\mu_k>\epsilon n\}} (x_k - \mu_k) = 0,$$

then $Et < \infty$ for each c > 0 and $Et \sim c\mu^{-1}(c \to \infty)$. Under more restrictive conditions on the distributions of the x's an asymptotic expression for the variance of t may be obtained. To be specific, if the x's are identically distributed, nonnegative, and if $\sigma^2 = Ex_1^2 - \mu^2 < \infty$, then it has been shown by Feller [2] in the lattice and Smith [6] in the non-lattice case that

(5)
$$\operatorname{Var} t \sim c \sigma^2 \mu^{-3} \qquad (c \to \infty).$$

Recently, using combinational results of Spitzer [7], Heyde [4] has shown that (5) holds without the restriction to non-negative variables. The methods of Feller, Smith, and Heyde involve finding sufficiently detailed expansions of Et^2 and Et, from which (5) may be deduced. Smith and Heyde use Blackwell's Renewal Theorem.

In this note we generalize (5) to a large class of non-identically distributed x's. Our method involves Wald's lemma for squared sums [1] and the technique of Gundy and Siegmund [3] (see also [5]).

THEOREM. Let x_1 , x_2 , \cdots be independent random variables with means μ_1 , μ_2 , \cdots such that for some $0 < \mu < \infty$

(6)
$$\sum_{1}^{n} \mu_{k} - n\mu = o(n^{\frac{1}{2}}).$$

Let $\sigma_n^2 = Ex_n^2 - \mu_n^2$, $b_n^2 = \sum_{1}^n \sigma_k^2$ $(n = 1, 2, \dots)$, and suppose that for some $0 < \sigma^2 < \infty$

$$(7) b_n^2 \sim n\sigma^2.$$

Received 15 July 1968.

¹ Research supported by NSF Grant GP-5705.

Let t be defined by (2). If for each $\epsilon > 0$

(8)
$$\lim_{n\to\infty} n^{-1} \sum_{1}^{n} \int_{\{x_k - \mu_k > \epsilon n^{\frac{1}{2}}\}} (x_k - \mu_k)^2 = 0,$$

then

(9)
$$Et = c\mu^{-1} + o(c^{\frac{1}{2}})$$

and (5) holds.

We shall utilize the following lemmas.

Lemma 1. If (1) and (7) hold, then for any stopping time τ with finite expectation

$$(10) Es_{\tau} = E(\sum_{1}^{\tau} \mu_{k})$$

and

(11)
$$Eb_{\tau}^{2} = E(s_{\tau} - \sum_{1}^{\tau} \mu_{k})^{2}.$$

PROOF. By Theorem 2 of [1], in order that (11) and

$$(12) E(s_{\tau} - \sum_{1}^{\tau} \mu_k) = 0$$

hold it suffices that $Eb_{\tau}^{2} < \infty$, which by (7) is implied by $E\tau < \infty$. Since (1) and $E\tau < \infty$ imply that $E|\sum_{1}^{7}\mu_{k}| < \infty$, (10) follows from (12).

LEMMA 2. If (6), (7), and (8) hold, then for any non-decreasing family $\{\tau(r), r > 0\}$ of stopping times for which

$$\infty > E_{\tau}(r) \uparrow \infty \quad \text{as} \quad r \to \infty,$$

we have

$$E(x_{\tau(r)}^+)^2 < \infty$$
 for all $r > 0$

and

$$E(x_{\tau(r)}^+)^2 = o(E\tau(r)) \qquad (r \to \infty).$$

PROOF. For any r > 0, $E(x_{\tau}^{+})^{2} \leq 2[E((x_{\tau} - \mu_{\tau})^{+})^{2} + E|\mu_{\tau}|^{2}]$. From (6) it follows that $\mu_{n} = o(n^{\frac{1}{2}})$, and hence $E|\mu_{\tau}|^{2} < \infty$ for all r > 0,

$$E|\mu_{\tau}|^2 = o(E\tau) \qquad (r \to \infty).$$

The remainder of the proof may be completed along the lines of the proof of Theorem 1 of Gundy and Siegmund [3].

LEMMA 3. If (1) and (7) hold, then

(13)
$$Et \sim c\mu^{-1} \qquad (c \to \infty).$$

PROOF. By the result mentioned in the first paragraph of this note, it suffices to verify (3) and (4). For any $k = 1, 2, \cdots$

$$E|x_k - \mu_k| \le E(1 + |x_k - \mu_k|)^2 \le 2E(1 + (x_k - \mu_k)^2) = 2(1 + \sigma_k^2),$$

which in conjunction with (7) proves (3); (4) follows from (7) and the observation that for any $\epsilon > 0$, $n = 1, 2, \dots, k = 1, \dots, n$,

$$\int_{\{x_k-\mu_k>\epsilon n\}} (x_k-\mu_k) \leq (\epsilon n)^{-1} \sigma_k^2.$$

Proof of the Theorem. For ease of exposition we shall henceforth assume that $\mu_n \equiv \mu$, $\sigma_n \equiv \sigma$. By Lemma 1, for all c > 0

(14)
$$\mu Et = Es_t = c + E(s_t - c).$$

(By Lemma 3 $Et < \infty$ for all c.) From Lemmas 2 and 3 it follows that

$$(15) [E(s_t - c)]^2 \le E(s_t - c)^2 \le Ex_t^2 = o(Et) = o(c),$$

which together with (14) establishes (9). From Lemma 1 we obtain

$$\mu^{-1}\sigma^{2}[c + E(s_{t} - c)]$$

(16)
$$= \mu^{-1}\sigma^{2}Es_{t} = \sigma^{2}Et = E(s_{t} - \mu t)^{2} = E(s_{t} - c + c - \mu t)^{2}$$

$$= E(s_{t} - c)^{2} + 2\mu E(s_{t} - c)(c\mu^{-1} - t) + \mu^{2}E(t - c\mu^{-1})^{2},$$

so

(17)
$$\mu^2 E(t - c\mu^{-1})^2 = \sigma^2 \mu^{-1} c + 2\mu E(s_t - c)(t - c\mu^{-1}) + \sigma^2 \mu^{-1} E(s_t - c) - E(s_t - c)^2.$$

By (15) and the Cauchy-Schwarz inequality

$$(18) |E(s_t - c)(t - c\mu^{-1})| \le [E(s_t - c)^2 E(t - c\mu^{-1})^2]^{\frac{1}{2}} = o(c^{\frac{1}{2}})[E(t - c\mu^{-1})^2]^{\frac{1}{2}}.$$

From (15), (17), and (18) we obtain

$$\mu^{2}E(t-c\mu^{-1})^{2} \leq \sigma^{2}\mu^{-1}c + o(c^{\frac{1}{2}})[E(t-c\mu^{-1})^{2}]^{\frac{1}{2}} + o(c),$$

and it follows that

(19)
$$E(t - c\mu^{-1})^2 = O(c).$$

Hence by (15), (17), (18), and (19) we obtain

(20)
$$E(t - c\mu^{-1})^2 = \sigma^2 \mu^{-3} c + o(c).$$

But by (15)

$$Var t = E(t - c\mu^{-1})^{2} - [E(t - c\mu^{-1})]^{2}$$

$$= E(t - c\mu^{-1})^{2} - [\mu^{-1}E(s_{t} - c)]^{2}$$

$$= E(t - c\mu^{-1})^{2} + o(c),$$

which together with (20) implies (5). (Note that in expanding $E(s_t - \mu t)^2$ in formula (16) we have tacitly assumed that $Et^2 < \infty$ and $Es_t^2 < \infty$. That $Es_t^2 < \infty$ follows from Lemma 2. To show that $Et^2 < \infty$, let $\tau = \min(t, n)$ $(n = 1, 2, \dots)$. Then by reasoning very similar to that employed above it may be inferred that

$$E\tau^2 \leq \text{const.} (E\tau + (E\tau^2)^{\frac{1}{2}}(E\tau)^{\frac{1}{2}}),$$

from which it follows that

$$Et^2 = \lim_{n\to\infty} E\tau^2 < \infty.$$

REMARK. It is easy to deduce Lemma 3 directly without reference to the results of [5]. The essential ingredients are already present in formulas (14) and (15) (minus the o(c) term in (15), which is a consequence of Lemma 3). Whereas this approach makes our proof self-contained, it was deemed of some value to point out that the present assumptions actually imply those of [5].

REFERENCES

- [1] Chow, Y. S., Robbins, H., and Teicher, H. (1965). Moments of randomly stopped sums. Ann. Math. Statist. 36 789-799.
- [2] Feller, W. (1949). Fluctuation theory of recurrent events. Trans. Amer. Math. Soc. 67 98-119.
- [3] Gundy, R. F., and Siegmund, D. (1967). On a stopping rule and the central limit theorem. Ann. Math. Statist. 38 1915–1917.
- [4] HEYDE, C. C. (1967). Asymptotic renewal results for a natural generalization of classical renewal theory. J. Roy. Statist. Soc. Ser. B. 29 141-150.
- [5] SIEGMUND, D. (1967). Some one-sided stopping rules. Ann. Mathl Statist. 38 1641-1646.
- [6] SMITH, W. L. (1954). Asymptotic renewal theorems. Proc. Roy. Soc. Edinburgh Sect. A. 64 9-48.
- [7] SPITZER, F. (1956). A combinational lemma and its application to probability theory. Trans. Amer. Math. Soc. 82 323-339.