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ADMISSIBILITY OF THE USUAL CONFIDENCE SETS FOR THE MEAN
OF A UNIVARIATE OR BIVARIATE NORMAL POPULATION

By V. M. Josur!

Unaversity of North Carolina, Chapel Hill

1. Introduction. Let X be an m-dimensional vector distributed normally with
mean vector 6 and covariance matrix equal to the m X m identity matrix. A
non-randomized confidence procedure C is a procedure, which assigns to each
possible point z, a Lebesgue measurable subset C(z, -) of the parameter space
within which 6 is estimated to lie. Let vC (z, - ) denote the Lebesgue measure of
the set C(z, - ). The usual procedure Cy is a procedure in which the confidence
sets Co(x, -) are spheres of fixed volume, centered at the observed sample
mean. C; has the property that amongst the class of confidence procedures with
lower confidence level (1 — a), Cp minimizes the maximum expected measure of
the confidence sets viz.

(1) supe BovC (z, - ).

Stein (1962) raised the question whether the usual procedure is unique in
having this property and conjectured that it is probably unique for m = 1,
probably not so for m = 3, the case m = 2 being doubtful. For the case m = 3,
the conjecture has already been shown to be true in a previous paper (Joshi
(1967)). In this paper we now investigate the remaining cases m = 1 and m = 2.

A connected question is that of the admissibility of the usual procedure.
Using the definition of admissibility of confidence sets formulated by Godambe
(1961) and subsequently slightly revised by the author (1966) it is here shown
that if apart from measurability there is no restriction on the form of the con-
fidence sets, then no unique minimax or even admissible procedure can exist,
as given any procedure another one uniformly superior to it can always be
constructed. All the procedures so constructed however form a class called
equivalence class such that for any two procedures in the class, for almost all
z, the confidence sets differ from each other at most by null subsets of the
parameter space. Admissibility or uniqueness of the minimax property can thus
only pertain to the equivalence class which contains the usual procedure. Al-
ternatively a unique minimax or admissible procedure can exist in the restricted
class of confidence procedures for which the confidence sets are all convex sets
or all open sets.

In the following remarks, therefore, the uniqueness or admissibility of the
usual confidence procedure means the uniqueness or admissibility of the equiv-
alence class which contains the usual procedure or alternatively its uniqueness
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ADMISSIBILITY OF CONFIDENCE SETS 1043

or admissibility in the restricted class of confidence procedures with the restric-
tion on the form of the confidence sets that they are all open sets or alternatively
are all convex sets. Subject to this qualification, it is shown in this paper that for
m = 1 and for m = 2, the usual confidence procedure is uniquely minimax and
admissible. The uniqueness and the admissibility are actually proved for a
wider class of randomized confidence procedures, with a corresponding generaliza-
tion of the definition of an equivalence class. Also the admissibility of the usual
procedure is proved on the basis of a certain loss function and this admissibility is
of a stronger type than that implied by Godambe’s definition (1961) as revised
by the author.

The result proved in the previous paper (1967) means that for m = 3, the
usual confidence procedure is inadmissible. The results are thus exactly parallel
to Stein’s (1956) results regarding point estimation of the population mean.

2. Notation. In this paper we prove the results for m = 1 and for m = 2.
For the sake of clarity we shall give the notation for the case m = 2 only. The
modifications required for the case m = 1 will be obvious. Let then X = (X, X5)
be a random vector distributed normally, with unknown mean 6 = (61, 6:)
and the 2 X 2 identity matrix as the covariance matrix. In the general case
confidence sets will be based on n observations of X. However by the principle
of sufficiency the result if true forn = 1 is true for all n. Hence as this will avoid
considerable unnecessary detail in our computations, we shall state and prove
our result for the case n = 1 only.

Therefore, let © = (21, x2) denote the observed value.of X. z is a point in
the sample space R, and 6 a point in the parameter space Q. B and Q are two
dimensional Euclidian spaces. On R, @ and the product space B x Q is defined
the Lebesgue measure, all sets considered being Lebesgue measurable. The
Lebesgue measure of a set D of Q is denoted by vD.

Next following Wallace (1959) we define a confidence procedure C as a
Lebesgue measurable subset of the product space B x @; C'(z, -) and C(-, 0)
denote the cross sections of C for given z and 6 respectively, C (z, - ) being the
confidence sets. We define equivalent procedures as

Derinttion 2.1. Confidence procedures C; and C: are equivalent if the set
differences (Cy — C;-C2) and (Cy — C;-C:) are null subsets of B x Q.

By Fubini’s theorem it follows from Definition 2.1 that if Cy and C; are equiva-
lent, then for almost all z, the confidence sets Ci(z, - ) and C:(z, -) differ at
most by null subsets of 2, and conversely for almost all 6, the sections Ci (-, 6)
and Cy(-, 0) differ by null subsets of E.

The definition of admissibility of confidence sets, formulated by Godambe
(1961) and subsequently slightly modified by the author is as follows:

DerintTioN 2.2. A confidence procedure Cp is admissible, if there exists no
alternative procedure C; such that

(i) Po[Ci(-, 8)] = Po[Co(-, 0)] forall 6eQ,
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and
i) vCi(z, ) = vCo(z, ) for almost all z ¢ R,

and the strict inequality holds either in (i) for some 6 £ Q, or in (ii) on a subset of
R with positive measure.

As the discussion in Section 3 shows, an admissible procedure can exist only
up to the equivalence in Definition 2.1. Subject to this qualification, in the
following we prove the admissibility of the usual procedure according to a
stronger definition (Definition 7.1 in Section 7) which includes the admissibility
according to Definition 2.2.

3. Necessity of the restriction regarding equivalent class. It is obvious that
without this restriction no admissible procedure can at all exist. For given any
any procedure C we obtain a uniformly superior procedure C; as follows:

Take any isolated point § = 6 in Q. For all « for which C'(z, - ) 2 6y, we take
Ci(z, -) = C(z, - ) and for all z for which C'(z, - ) 2 6y we put Ci(z, - ) = C(z, -)
+ the point 6, . Then clearly for all z, vCi(z, -) = vC(z, ) and for all § = 6,,
Ci(-,60) = C(-, 0) while for 6 = 6y, C1(-, 8) = R. Excluding the trivial case
of C(-,0) = R for all 6 £ Q, 6, can always be so selected that the inclusion prob-
ability of C' at 6, is < 1. Then C; has the same inclusion probability as C for all
6 # 6y and higher inclusion probability at § = 6, and is therefore uniformly
superior to C. Thus there is no upper bound to the inclusion probabilities and
hence no admissible procedure can exist. The uniformly superior procedures
constructed by the method indicated above are however equivalent according to
Definition 2.1 and hence an admissible procedure may exist upto the equivalence
class.

Alternatively we may place a restriction on the geometrical form of the con-
fidence sets, the restriction being such as to exclude the possibility of adding
null subsets of @ to the confidence sets. A suitable restriction of this type is that
the confidence sets C'(z, - ) should be open sets, or alternatively, convex sets.
In practice, confidence sets which are not convex are seldom, if ever, used. In such
a restricted class of confidence procedures then, optimum procedures may exist
and it follows from the main result of this paper that in this restricted class,
in the cases m = 1 and m = 2 the usual procedure C, is unique in having the
minimax property.

4. Randomized confidence procedures. A randomized procedure is a procedure
in which the confidence set for each point z, instead of being a fixed set, is selected
by a random process. Thus, for instance to each point z, we may assign k con-
fidence sets C;(x, -), 72 = 1, 2, ---, k; one of the sets being selected when z is
the observed value, by an independent random process, with probability of
selection p;(x) for the set C:(x, - ); p:(x) are measurable functions on R such
that D _s=1p:(x) = 1;k itself may be a measurable integral function of z. Clearly
such a procedure determines a function ¢ (z, 6) on B x @, which satisfies

(a) ¢ is a measurable function on the product space B x ;
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(b) forall (z,0)eR x Q,
) 0=<¢(6)21;
(e¢) for each z,

(3) ¢(z,8) = probability that the point 8 is included in the confidence set when
z is the observed value;

(d) the expected measure of the confidence sets which we denote by v¢ (z, - )
is given by
“) vp(z, -) = [qé(z,0)do

where df is short for db; dé.; and
(e) the expected inclusion probability at the point 6, which we denote by

Pglp (-, 6)] is given by

®) Pifg (-, 0)] = [z (=, 0)p (=, 0) dz,
where dz is short for dz, dz, and p(z, 6) is the probability density of X on R
for given 6.

Therefore we take as our decision space the space defined by
6) D = {¢(z, 0), ¢ jointly measurable in z and 6, 0 < ¢(z, ) < 1}.

Every ¢ ¢ © may not represent a randomized confidence procedure. But it is
easily seen that every ¢ £ D, which is a simple or elementary function, deter-
mines a randomized confidence procedure and every other ¢ £ D, being the limit
of a non-decreasing sequence of simple functions, represents the limit of a
corresponding sequence of randomized confidence procedures.

It is easily seen from (3) that any non-randomized procedure defined by a
set C is obtained by putting

o(x,0) =1 if 0eC(z, )
=0 if 02C(, -),

i.e., by taking ¢ to be the indicator function of the set C.

For this extended class of confidence procedures ¢, we now generalize the
Definition 2.1 of equivalent procedures.

DerintTION 4.1. Two procedures ¢ and ¢, are equivalent if

7) o1 (z, 0) = ¢g(x, 9) for almost all (x,0) e R x Q.

This definition is clearly consistent with Definition 2.1; i.e. an equivalence
class under the latter definition is a subclass of an equivalence class under the
Definition 4.1.

Similarly in place of Definition 2.2 for the extended class of procedures we
define admissibility, by

DrriniTioNn 4.2. A confidence procedure ¢ is admissible if there exists no
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alternative procedure ¢; such that
8) (1) Polpr(+, 0)] = Polgpo(+, 0)] forall 6eQ,
and (ii) v (x, +) = vgo(x, +) for almost all ze R

and the strict inequality holds either in (i) for some 6 € © or in (ii) for a subset of
R with positive measure.

b. Preliminary results. We revert to the two dimensional case. Let the usual
procedure ¢, consist of confidence circles of fixed radius 2 and centered at x.
Hence by (3)

) do(x,0) =1 if |x—0] =R
=0 otherwise.

Here, asusual |z — 6" = (21 — 61)° + (z2 — 8,)% Let v, be the fixed area of the
confidence circles and (1 — «) the fixed confidence level of ¢o. Then by (4)
and (5)

(10) vho (T, +) = vp = h’
and Po[po(-,0)] =1 —a=1—exp (—H/2).

Next, following the method of Blyth (1951), we define a loss function Ly (z, 6)
for any procedure ¢ by

(11) L¢((l7, 0) = bv¢(x, ') - ¢(x7 0)

where v¢(z, -) = [a¢(z, 0) df asin (4) and b = (2r) " exp (—A*/2). Hence
the expected loss at 8, of the procedure ¢, is

(12) EoLe(x,0) = [=Ls(x, 0)-p(x,0)dx = b-Ewe (z, -) — Polé (-, 0)]

where Py[¢ (-, 0)] = [z ¢(, 0)p(z, 0) dz asin (5). Here p (z, 0) is the probability
density of X on R, i.e.

(13) p(x,0) = (2r) " exp [}z — Of].

We shall now state our result in the form of the following theorem:
THEOREM 5.1. ¢o being the usual procedure defined by (9), if ¢1 ts any other
procedure such that

(14) EsLy, (x,0) < EoLy,(z, 0) for all 6¢Q,
then ¢1 is equivalent to ¢q, i.e.
¢1(x, 0) = Po(z, 9) for almost all  (z,0) e (B x Q).

Nore 1. We note that the uniqueness up to the equivalent class of the mini-
max property of ¢, follows immediately from the theorem. For if ¢ is a procedure
with lower confidence level (1 — «), such that

supe By (z, - ) < vo = Epweo(, - ),
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then Ewey (x, +) < Ewdo(z, - ) and
Pyly(-,0)] = 1 — a = Po[¢o(-,0)] forall 6eQ.

Hence by (12), ¢1 satisfies (14) and hence must be equivalent to ¢o. The ad-
missibility up to the equivalence of ¢, according to Definition 4.2, similarly
follows from the theorem. For if ¢; is an alternative procedure satisfying (i)
and (ii) of Definition 4.2, we have

voi1(z, - ) < véo(z, -) for almost all zeR
and Polpa (-, 0)] = Polpo(-,0)] forall 6eQ

so that ¢; again satisfies (14) and hence must be equivalent to ¢, .

We revert to the main theorem, Theorem 5.1. Before proceeding to its proof
it is necessary to obtain certain preliminary results. We first determine the Bayes
procedure with respect to a prior density on Q given by

(15) £(0) = @2rr") " exp (—3l0]77)

where |0]> = 6> + 6 and r be any arbitrary positive number. We state the
result in the form of the following:

LemmA 5.1. The Bayes procedure ¢, with respect to the distribution on Q, given
by (15), is a non-randomized procedure in which the confidence circles are centered
at the point

(16) 6 = a5, where g=1+r1"
and with fixed radius c, where
7) ¢ =K+ g (2logg).

Proor. Let E. denote expectation with respect to the prior density defined
in (15). For brevity we put the loss function

(18) Ly (z,0) = L. (x,0) and wve,(z, -) = v.(x).
Then we have by (11) and (15),
(19) E.L(z,0) = 2r")" [aexp (—[|0]/27) do [=[bo- (x) — ¢-(z,0)]p(z, 0) dz

where df is short for db, , d¢; and dx for dz; , dx, .

The integrand in the right hand side of (19) is seen to be integrable on B x Q.
For ¢, being the Bayes procedure its expected risk must be less than that of
¢o and hence is bounded from above. In the right hand side of (19), since the
term ¢, (z, 0) lies between 0 and 1, the integral arising from it also lies between
0 and 1. Hence the integral arising from the term involving ». () must also be
finite. Thus the integrand in the right hand side of (19) is the difference of two
integrable functions and is therefore itself integrable. Hence, by Fubini’s theorem
we may interchange the order of integration. We thus get from (19),

(20) E.L.(x,9)
= (27”'2)_1 fR dz fﬂ [bv‘r (x) — ¢ (w’ 0)]17 (x7 0) exp (_'0'2/272) do.
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Now from (13) after a little reduction we get
(1) (277")'p(x, 0) exp (—[0["/27")

= (2rgr") " exp (—l|af*/2g7")g(2n )™ exp [—1gl0 — zg'["]
where g has the value given by (16). Substituting (21) in (20), we have

E.L.(z, 0)
= Qurgr")" [rexp (—|al’/2gr") dzg(2r)™" [a[bv.(z) — ¢.(z, 0)]
(22) -exp [—3gl0 — xg "] b

= @rgr")" [rexp (—[2["/2¢7") da
{be- () — g(2r)7 fadr(z, 0) exp [—glo — 27" do}.
By (18) and (4)
(23) v, (@) = [ad.(z,0)ds.
Substituting (23) in (22), we get
(24) E.L.(x,0) = (2rgr")™ [rexp (f|x|2/2grz)dx
Ja{b — g@r)™ exp [~ 3910 — g}, (=, 0) db.

We obtain the Bayes procedure by choosing ¢, (z, ), 0 = ¢.(z, 0) < 1, so as
to minimize the right hand side and hence the inner integral on the right hand
side of (24). Clearly the solution is given by taking

(25) ¢.(x,0) =0 if b>g@2r)" exp[—3g0 — x5 |
=1 if b=g@r) " exp[—%gl0 — xg'[].

Substituting in (25) the value of b by (11), and taking logarithms, it is seen
that (25) is equivalent to

(26) é-(x, 0)

1 if p—zgY =

0 otherwise,

where ¢ is as in (17).

Remembering the meaning of ¢,(x, ) as given in (3), it is seen that (26)
implies that the Bayes procedure ¢. is as stated in the Lemma 5.1.

We next determine the risk of the Bayes procedure and prove

Lemma 5.2. The improvement in risk of the Bayes procedure ¢. over the risk of
the procedure ¢o in (9) is for every T bounded by (bvo + )7 .

Proor. Since in the Bayes procedure ¢,, the confidence circles are of fixed
area, we have in the right hand side of (22)

(27) bo, (&) = brc® = bogg " + g ' (2wb log g) by (17) and (10).
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Also substituting for ¢.(z) by (26), we get in the right hand side of (22),
g@r)”" [aexp [—3gl0 — 297" ["¢- (=, 6) db
28) = g@0)" Jlwuseexp [—3gl0 — 267 1d0 = g [iexp (—dg)rar
=1 —exp (—39) =1 — g exp (—=34") by (17)

=1— ag " from (9) and (10).
It is easily seen that

(29) 1 —a= Pifge(+,0)] = 1 — exp (—3%).
Using (27) and (28), we have from (22),
(30) E.L,(z,0) = buog " + 2mbg "logg — (1 — ag ).
Also from (10) and (12) we get, writing Lo, (x, 8) in place of Ly, (z, 6),
(31) EpLo(z,0) = bvg — (1 — ) for every 0¢Q,
and hence
(32) E.Ly(z, 0) = bvo(1 — a).

Combining (30) and (32), we get
E.Ly(x,0) — E.L.(z,6)
(33)  =bw@l —g ")+ al —g") — 2abg  (ogg) < (bvo+ a)(L — ¢g7")
< (bvo + a)r?

substituting the value of g by (16). Thus Lemma 5.2 is proved.
We next define two functions on R, by

(34) Uo(x) = boo(z) — [ado(x, 0)p(x, 0) do
and Ur(@) = bu(z) — [adr(z, 0)p(x, 0) db
where ¢1(z, 8) is the alternative confidence procedure in Theorem 5.1 and
(35) n(@) = v(@) = [ads(a, 0) do.
By (35),

Ui) = [olb — p (&, 0)ldn(z, 0) db.
Since by (6),0 =< ¢1(x) < 1, Uy (x) is minimized by taking ¢, (z) to be such that
d(z,0) =0 if &> p(x,9)
=1 if b=p(0)
which noting the value of b in (11) and of p(z, 6) in (13) is equivalent to
(36) $1(2,0) =0 if |z —06>h
=1 if |[t—06] Zh
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But by (9) ¢, is the procedure which satisfies (36).
Hence we have

37) Ui(z) = Up(x) forall zeR.

Now there are two possibilities, viz. that in (37) (I) the sign of equality holds
for almost all ze R or (II) the sign of inequality holds on some subset S of
R with positive measure.

Suppose alternative (II) is true. We now prove the following:

LemMma 5.3. If alternative (I1) under (37) applies for the procedures ¢o and ¢
as described in the statement of Theorem 5.1, then the functions Ui(x) and Uy(z)
defined by (34) satisfy the condition that the integral of {Ui(x) — Uo(x)} with
respect to x on R s finite and positive, i.e. putting

(38) M = [z[Ui(z) — Us(x)] dz, 0< M < o,
Proor. For any positive number a we define a subset T, of B by
(39) xeT, if, and only if, |z| < a where |z]° = 2 + 2,

Alternative (II) implies that there exists a positive number & (k > 0) such that
for some a

(40) [ 2, [Us(x) — Up(x)] dz = k.
Let T’ be the complement of the set T,. We then have from (11), writing
Lyi(z, 6) for Ly, (x, 6) and v, (x) for vés (z, - ),
(41) E.Li(z, 6)
= @rr")" Jaexp (—[0/°/27") db [z [bvr () — 1 (=, 0)]p (z, ) de.

The integrand in the right hand side of (41) is the difference of two expressions
each of which is integrable on B x @, and hence is itself integrable. Therefore by
Fubini’s theorem we can interchange the order of integration with respect to
2 and 0 and thus have from (41), using (21),

E.L(x,0)
= fRdx fg b () — ¢i(z, 0)]- @rr")™" exp (—10//27)p(x, 0) db
= (2mgr’)”" fR exp (—|z|*/2¢7%) dx
Jalbos(z) — iz, 0)lg(2n)™" exp [—3gl0 — 29 '|"] do
42) = @rgr")" [rexp (—[a*/2¢7") de
Abor () — [ag@r) iz, 0) exp [—3gl0 — xg '] dO}
= @rgr")™" [r,exp (—|af*/297") da
{bn) — g@r)7 [aexp [—3910 — ag[In(z, 60)d6)
+ @rgr*)7 [t exp (—|al’/2¢7") da
Abor (@) — g@r)" [oexp [—3gl0 — x5 [ (z, 60) db}.
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We now write down the similar expression for E.Lo(z, ) and combine the
two expressions. Putting
G, () = exp (—|zl*/297")
(43) Ao @) — g@r) ™ [aexp (—3gl0 — 29[ )r(x, 0) do]
— [oos — g@m)" faexp (—3gl6 — 25 [)go(a, 6) Ao}
we have
(44) E.L.(z,0) — E.Lo(x, 0)
= @rgr®) ™ [2,Go(x) dz + (2mgr")” [ 2 Gry () da.
Nowast— »,9 =1+ 72— 1, and hence the probability density on €,
(45) g exp (<30 — ag'f) > @0 exp (=38 — o) = PG, 0).

Hence, since ¢1(z, 8) and ¢o(z, 0) are bounded in absolute magnitude by 1,
we have by the Helley-Bray theorem, in the right hand side of (43), as T — o,

46) g@r)" faexp (—3gl0 — 2g7)1(, 0) = [a 1 (z, 0)p (x, 0) dB,

and  g@r)™ [aexp (=396 — x5 1)’ (z, 0) = [a do(, 0)p (x, 0) db.
Using (46) in (43), and comparing with (34) it is seen that

@7) lim,wG.(x) = Ui(@) — Us(z) = integrand in the left hand side of (40).

We shall next show that in the first integral in the right hand side of (44),
the limit can be taken under the integral sign. The function G, (z) is bounded in
absolute magnitude uniformly in 7 by the function

(48) Gx) =bn(x) + 1+ bv+ 1.

By the definition of the set T in (39)
@9)  [r, (o + 2)dx = (bvo + 2) [ja1 cadtrdzz = (bvo + 2)-mwad’.

Denote the probability density p (z, 8) when 6 = 0, by po (x), i.e.
(50) po(@) = @m) " exp (—}al’).

As po(x) decreases as 2| increases, we have,

[z, bvi(z) dz < 2r-exp (a%/2) [z, b01(@)po(x) do

(51) = 2r-exp (67/2) [rbr (@) (@) do
2r-exp (a°/2)-bEoqv1 ().

1

Now (14) combined (12) and (10) gives
(52) bEm(x) < bve — (1 — @) + Pyl¢i(+, 0)] < bvo + «, forall 6eQ,
1. (48), (49),

IA

since the inclusion probability always satisfies Po[¢:1(-, 0)]
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(51) and (52) combined give
(53) [r.G(x)der < oo.

Hence by the dominated convergence theorem and using (47), we have
(64)  liMpsw [2,G(2) do = [7,[Ui(@) — Us(x)ldz = k by (40).

(54) implies that given any arbitrarily small positive number ¢ > 0, we can
find 7, such that for all + = =

(55) [2.G(@)dz = k& — e

Next consider the second term in the right hand side of (44 ). By the property
of the Bayes procedure, the value of G,(xz) becomes reduced if the term in the
first square bracket in the right hand side of (43) is replaced by the posterior
risk )

bo.(x) — g27) " [aexp (=390 — 29[ (=, 0) do.

Again by the Bayes property the resulting integrand is non-positive for all z,
and hence the integration can be extended from the set 7,° to the space R. We

thus have
@rgr®) ™ [ 122G (x) da
2 (2rgr")™ [ 25 exp (—[af’/2g7") du
{bo, @) — g Jaexp (3910 — 297" [)¢- (=, 6) do]
— [bvo — 3¢ [aexp (—3g 10 — xg7'[")¢o (z, 0) db]}
@2rgr*)™ [rexp (—[ef’/297") de
{[bvr(z) — g faexp (—3g 10 — 2g ") ¢:(z, 0) db]
— [boo(x) — 39 faexp (—3g10 — xg ") (x, 6) db]}
= E.L(z,0) — E.Ly(z,0) by (22)
2 —(w+a)® by (33).
Combining (55) and (56) with (44), we get
(57) E.Li(x,0) — E,L(z, 9)
> (k—e)@mgr®) ™ — (wo + ) forall 7=m.
But by (14), we have
(58) E.L:(z,0) — E,Ly(z,0) < 0.

1%

(56)

Hence (57) implies that
(59) k< 2rg(ve+ ) + ¢ forall 7= 7.

Since € can be made arbitrarily small and ¢ < 2 for 7 = 1, it follows from (59)
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that
(60) k= 4:7r(b?)o + a).

As the integrand in the left hand side of (40) is non-negative, the integral is
non-decreasing as a increases. It follows from (60) that asa — o, so that T, — R,
the integral converges to a finite limit / = k > 0. This completes the proof of
Lemma 5.3.

6. Main result. We shall now show that our main theorem, Theorem 5.1,
follows from (38).

[Explanatory note: As the following argument is rather long, we shall give its
brief outline. We consider the improvement in the expected risk of the procedure
¢1 over that of ¢o, viz. B Iy (z, 0) — E,Lo(z, 6). Expressing each expectation as
in the right hand side of (42), we combine the two expressions. Itis then shown
that the worsening of the expected risk of ¢; over that of ¢ on the set T’ , can be
made arbitrarily close to M by taking @ sufficiently large. This worsening has to
be offset by the improvement in risk on the complementary set 7T.°. But it is
shown that the latter, for any fixed @, can be made arbitrarily small by making =
sufficiently large. Hence // must be = 0. The theorem follows from this.]

It is necessary first to introduce some new notation. We define for each ¢ R,
subsets 4., H, and K, of Q by

(61) ed,, if and only if, 6 — z| = h;
6eH,, ifandonlyif, A<|[|0—2z = (h+ d);
and e K,, if and only if, 0 — 2| > (B + d).
Here d > 0 is a constant whose value will be suitably fixed later. Then
(62) A+ H, + K. =Q forall zeR.

Now in (34), using (4),
Ui(z) = [alb — p(x, 0)]¢1(x, 0) db
and Us(z) = [olb — p(z,0)]¢(z,0) db
Hence,
63) Ui(z) — Us(z) = [alb — p(x, 6)]e1(x, ) — ¢o(z, 6)] db.

Substituting (63) in the right hand side of (38), using (62) and substituting for
b0 (113, 0) by (9 )) we get’

(64) M = M+ M, + M,

where

(65) My = [rdz [4,[p(x,8) — b1 — ¢:(z, 0)] do,
(66) My = [rdz [a,[b— p(=, 0)l¢s(z, 0) db,

(67) Ms = [rdx [x,[b — p(z, 0)lé1(z, 0) db.
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Noting the value of b in (11) and of p(z, 6) in (13), we have in (64),
(68) Myz0, M;20 and M;=0.
Next we put for each z ¢ R,
va(@) = a1 = ¢a(a, 0)) b,
(69) vz (@) = [u,1(, 6)do,
v (@) = [k, ¢1(z, 0) db.

Next, we prove
Lemma 6.1. The relations (65), (66) and (67) respectively imply that the func-
tions v (x), va(z) and v (x) defined in (69) are such that

(70) vaAZ(x) dr < o,
(71) fR 052(3;) dr <
provided the constant d is sufficiently small and

(72) Jrvx(@)de < .

Proor. By (61), A. is a circle of radius 4, and by (6),0 < ¢1(z,0) < 1. Hence
in (69) va(z) < wh’.

Let by = h, be such that the concentric circles in @, centered at the point
¢’ = z, and with radii 4 and %, enclose on area v4 (z). Hence

(73) va(@) = [4, [l — ¢1(z,0)]d6 = 7 (A" — I").
Then as p (z, 0) is a decreasing function of [z — 8|, we have in (65),

[a.p (@, 011 — ¢1(z,0)] d0

2 [usi-asnp(,0)do

@)™ [h, 2rr-exp (—*/2)dr by (13)
exp (—*/2)lexp (0" — W')/2) — 1]
exp (—h"/2)3 (W — h*) 4+ (B — h")’]
exp (—h"/2)[2r) va(x) + (87") va(@)] by (73).

(74)

v

Il

Also by (69),
(75) [, bl — ¢1(z, 0)] db

Il

bva(x)

@) exp (—F/2pa(@) by (11).
Combining (74) and (75) with (65), we get

(76) 87") " exp (—h*/2) [rva’(x) dz < M.

This proves (70).
Next let &, = &, be such that concentric circles centered at the point 6’ and

I
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with radii # and A, enclose an area equal to vg(2), i.e.
(77) 02 (@) = [u, 1z, 0) do = (b’ — I).
Then again by the property of p (z, 6) of decreasing with |z — 6|, we have
Ja.p (@, 0)b: (=, 6) db

(78) = [rste-osm p (@, 0) do

= exp (—A"/2){1 — exp [} (k' — K*)]}

< exp (—F/2)(3(" — B') — 30" — B')" + (1/48)(h° — BP)’},
sincee”* = 1 — /1! ++ /2! — ¢*/3! for all ¢. Hence using (77), we get from (78),
(79) [u.p(=, 0)1(x, 6) dd < exp (—h7/2)

{@r) va(@) — Br") g’ (@) + (487°) v’ (@)}

Also
(80) [a, b1 (2, 0) do = bog(x) by (69)
exp (—h*/2) (2r) ve(z) by (11).
Combining (79) and (80), we have
81) [a b — p(z, 0)lé:(z, 0)db
Z exp (—h"/2){(8n") va' (z) — (48x")vs" ()}

Il

1

Now since by (61), H, is the area between two concentric circles of radii 4
and /& + d, and since by (6) 0 < ¢, < 1, we have in (69)

(82) va(z) £ 7@hd + d&).
We take d to be sufficiently small, so that
(83) (2hd + d) < 3.

We then have, from (81),
®4)  [ulb - p@ Ok, 0)db = (165" exp (—/2)a’ (@),
so that by (66),

M. =z (167°) " exp (—h*/2) [rvd’ () de.

Thus (71) is proved.
Lastly, since for z ¢ K,

|z — 6] > (h+d) by (61),
Je. (@ 0)¢1(z,0)d0 < (2r) " exp [—3(h + d)] [x, 1(x, 0) db
= @2r)exp[—%(h+ d)e(x) Dby (69).
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Hence by (69) and (11),
Jr. b — p@, 0)l¢r(z,0) db = (2r){exp (—h"/2) — exp [—}(h + d)]}ox (@),

from which and (67), (72) follows. This completes the proof of Lemma 6.1.
Now let ¢ > 0 by any given arbitrarily small number. The relations (65)
to (67), (70) and (71), imply that T, and T, being the sets defined by (39),
we can find ao, such that for all @ = ay, all the following relations hold, viz,
() Jr.de[a o 0) — DIl — ¢1(z,6)]d8 = M1 — ¢,

(11) fTadfoz[b_p(xye)]qsl(x, 0)d0 ngz—é,

®5) (i) [r.de[x, [b— (2, 0)ler(z, 0) do 2 M;— ¢
@iv) fo, va’(z) dz . =€
(V) fq': UHZ (x) dx = 62.

We select any particular @ = ao, which we now keep fixed. We next prove the
following

LeMMA 6.2. The relation (85) (iv) implies that for any fixed a > 0 and ¢ > 0,
as T — o, each of the following relations hold, viz.

() @mgr)™ [z exp (= |ef*/2g7" a (x) dw = O (e/7),
86) (i) (2mgr')” [rzexp (=[al*/2r") el 7Tva(2) do = O(e/7),
(i) (2mgr’)” [riexp (=|2l*/2gr")el 4 (@) dw = O (e/7).

Proor. All the three relations are proved by a common method. First let

(87) @rgr®) ™" [ exp (—[al’/2¢7") de = T,

and @rgr®) ™" [ exp (—|z]*/2g7" 04 (x) dx = Ky say.
Then putting v4 () = w + A1, where Ay = A (2),

(88) @rgr®) " [ 20 exp (—|z*/2¢7")Ar dz = 0.
Hence

@rgr’) ™ [rz exp (= |2l*/2g7" s’ (2) da

@rgr®) ™ [ 12 exp (—|2*/207" ) + 2ua-Ar + A dx
@rgr®) [ exp (—[al*/2g7" )’ + A'Jdz by (88)
,(27rg72)_1 [z exp (— l2|*/2¢7") - us® da

kvl by (87).

(89)

v

Also by (85) (iv),
(90) left hand side of (89) =< & (2mgr’) ™

By (89) and (90), and since g > 1, by (16),
u® £ ECQrgrl) T < € 2rr’ky)
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Hence,

(91) kifu® < kié (2mr®) 7

Also from (87)

92) k= (mgr?) ™ [ exp (—1/2g7%)2nr dr = exp (—a’/2¢") < 1.

Substituting for k1 by (92) in the right hand side of (91) and taking square roots,
we obtain

(93) ko < e (21r)—%
thus proving (i) of the lemma.
Next put,
(94) Qmgr") ™ [ 12 exp (—|el*/2g7")|a] 7 dx = ks,
and @rgr®)™ [ 1S exp (—|2[*/2¢7" )2 7704 (2) da = Kooua .

Again putting, v4 (x) = u» + Az, where Ay = A (),
@rgr®) ™ [ 28 exp (— |2 /2g7" )|z 7 Az dz = 0.
Hence as before,
95) @rgr®)™ [ rt exp (—ol*/207)al 704 (@) do 2 s
In the integrand in (95), the factor exp (—|z|*/2¢7")|%| 7 is maximized when

lz| 7' = ¢, and hence

I\

g exp (—%

<1 for =27

exp (—[2*/2g7*)[al 7

for sufficiently large 7o . Hence by (85) (iv),
96) left hand side of (95) =< €(2rgr’)™' < €(2nr")™"

and therefore
97) k'us® < ko (2m7") ™! forall 7= 7.
Also from (94),
(98) ky = (2mgr’)™ [ exp (—1*/2¢7")-r7 " 2mr dr
-1

=g [e-1exp (—p’/2g)p" dp, by putting p = rr .

In (98), for r > 1, g < 2, so that the integrand is uniformly bounded by
exp (—p’/4)-p° which is integrable. Hence by the dominated convergence
theorem, as 7 — o,

ke — k' = [5exp (—p'/2)0" dp = }(@m)L

Hence for sufficiently large 7o, we have forall7 = 7o, k» < 4 say, and hence
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from (97),
99) ks < er *-2(2m)} forall 7 = 7o,
thus proving (ii) of Lemma 6.2.
Lastly put,
(100) @rgr®) ™ [ 12 exp (— |2 /297" || 72 da = ks,
and @rgr®) ™ [ 12 exp (—|af*/2g7") 2" 7704 (x) dx = K- us .

Proceeding as before we get,
(101) 2rgr®) ™ [ 12 exp (—|z[*/2¢7") 2]’ v P04 (2) dx 2 Fosus’.
Now, exp (—|z[%/2g7%)-|z|* 72 is maximized for |z 7 = (2¢)". Hence
exp (—[z["/2¢7")- |2’ 77" = 2gexp (—1)
<1 forall 7 = 7o sufficiently large.
Hence by (85) (iv),
left hand side of (101) =< €@mgr?) ™" < €@rr")™ by (16).
Hence,
(102) kius® < ks (2nr’)™ forall 7 = 7.

Alsoast— o, ks — ks = f?f exp (—#/2)¢ dt = 2. Hence taking o sufficiently
large, ks < 4 say, for all 7 = 7o, so that from (102)

(103) ksus < er -2(2r )—%.

This completes the proof of Lemma 6.2
We can now proceed to the proof of our main theorem.
Proor or TaEOREM 5.1. From (44 ), we have

(104) E,L¢(z,0) — E.L:1(z, 9)
= — (2mgr’)”" fTa G, (z) dx — (2mwgr®)™ frﬁ G, (z) dx

where G, (z) is given by (43).
Now in — @, (z), in substituting for v; (x) and v, by (4), we have

Bu(@) — g(@r)™ [oexp (—3g [0 — 297 o (z, 0) do]
— [orr — g(@r)”" [oexp (—3g10 — zg'[)é1(z, 0) db]
(105) = falb — g@m) " exp (=39 180 — 27 [))llbo (=, §) — ¢1(x, 6)]d8
= integral on the set A. - integral on the set H, 4 integral on
the set K, , by (62).
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Further, since by (9) and (61),
ooz, 0) =1 for 6eA.
=0 for 6e (Hy + K,),
the extreme right hand side of (105)
= fa.lb—g@r) exp (—3g10 — zg )] [L — ¢1(ax, 0)] db

+ Je.lg@r) " exp (—3g10 — xg ") — bleu(z, 0) db

+ [x lg@r) " exp (3910 — 257" — Blen(z, 6) db
(106) = [bwaw) — g@r) " [a,exp (—3g10 — 2g7[*)-[1 — ¢1(x, 0)] d]

+ [g@2r)7 [a,exp (—3g10 — zg7" )1 (z, 0) A — bvw,]

+ lg@r)7 [x exp (3910 — 29 [))¢r(, 0)dd — bux,] by (69).

Then substituting by (43), (105) and (106) in the second integral in (104 ), we
get

E.Ly(z,0) — E.Ly(z, 6)
= — @rgr")" [ 2, Gr(2) da
+ @rgr")™ [ 15 exp (—[el/2¢7") do
Aboa(z) — g@r)7 faexp (=39 10 — 2 L — $i(a, 0)] d}
107)  + @rgr’)” [asexp (—|ol’/2¢7") du
{g@r)™" [mexp (3910 — 297 )1 (z, 0) dd — bom(x)}
+ @rgr")™ [ 12 exp (—[2|/2¢7") de
{g@r)™ [x.exp (3910 — 297 [1(x, 6) d) — box(x)}
= @mgr’) {—L+ L+ L+ 1L} say,

where I, I,, I; and I, , respectively, denote the first to the fourth integrals on
the right hand side.

We now prove the theorem by showing that as 7 — o, I, = M — 4¢,while
I., I; and I, become small.

First consider I; . From (54) and (63), and partitioning the integral on Q in
(63) into integrals on 4, , H,, and K, by (62), and putting ¢o(x,6) = 1 on 4,
and ¢o(z, ) = 0 on (H, + K.) we get,

limwli = [r,dz [o[b — p(=, 0)]1(x, ) — do(, 0)] do
= [r,dz [4, [p(x, 0) — bI[l — ¢1(x, 6)] do
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(108) + [z, de [u, b — p(x, 0)l61(z, 0) db

+ [r.dz [x, b — p(=, 0)lén(x, ) df

= M — 3e by (85) and (64).
Hence we_can take 7, sufficiently large so that
(109) L ZM —4e forall 7=m.
Next consider the integral I, in (107). Writing

fxz ¢1(x) dx for vg(x) by (69)

(110) Ii = [ 1 exp (—|a*/2¢7") da
Sx. lg2r) " exp (310 ~ xg7[*) — blgs (=, 8) do.

In the right hand side of (110), the integrand is bounded in absolute magnitude
on the product set R x K, , uniformly for all 7 = 1, by (b + = ")é1(x, 9), since
g=1+7"=<2 and

Jrdz [z, 0+ 7 D1 (x,8)d0 = (b + 7 ") [wwx(x) do < o
by (69) and (72).

Hence by the dominated convergence theorem, we can take the limit as 7 — o«
under the integral sign. Since as 7 — «, g — 1 by (16), we get noting the value
of (b) in (11),

(111) integrand in the right hand side of (110)
— {[@m) " exp (=310 — al*) — (@m) 7 exp (—3h")]¢1 (=, 0)} <0,
as by (61), |6 — 2| >h for 6eK,.
From (111) it follows that
112) lim., Is = 0.
Hence we can take 7 sufficiently large, so that
(113) I;=e¢ foral »=m.

Next consider the integral I, in (107 ). The calculation of its limit is somewhat
more involved. For all 6 ¢ A, , since by (61),

6 — 2| < &,
(114) 6 — 2g7'| S b+ || — |al g™
=h+lz[(gr")" by (16)
=h+f

where we write
(115) f=f@) = |z for brevity.
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Let hs = h3(x) = h + f be such that the concentric circles in @, centered at
¢’ = z¢~" and with radii &5, and (b + f) enclose an area equal to v, (x), i.e.
(116) (b 4+ )" = hs'] = va(e).
Since exp (—% [0 — 2g7'|*) is a decreasing function of |[§ — zg~'|, subject to
Ja. [l — ¢u(x, 0)]dz = va(z) by (69)

and subject to (114), [4, exp [—3¢ |0 — xg [l — ¢1(x, 6)] d8 is minimized by
taking A, to be the area contained between the concentric circles with center
" = 2g" and radii s and (A + f) and putting ¢, (x, 8) = 0 in this area. Hence

Ja,exp (=39 18 — 247 )L — ¢1(z, 6)] do
2 [hysio—ao11<his €xp (—3g10 — zg[*) db
= Z;H exp (—gr’/2)2ar dr
(117) = 2mg '{exp (—ghs’/2) — exp [—3g(h + )]}
= 2mg " exp [—3g(h + F)]- {exp gl (& + /)’ — K]l — 1)
= 2mg " exp [—3g(h + /)] {exp [g(2r) o4 ()] — 1} by (116)
= 2rg " exp [—3g(h + £)"]-g (2r) v4 ().

Substituting by (117) and repeatedly using the inequality e * = 1 — 2, for all 2,
we get, in the integrand for I» in (107),

boa(z) — g(2r)7" [a, exp (3910 — 2g )L — ¢1(, 0)] d8
< va@){b — g(2r) 7 exp [—3g (A" + 24 + )]}
< va(@){ @r) 7 exp (—£%/2) — g(2m) " exp (—gh'/2)[1 — ghf — gf*/2]}
(118) = va(@){(@m) " exp (—A/2)[1 — gexp (—k'/27")]
+ g(2r) " exp (—gh"/2)- (ghf + 9f*/2)}
S va(@){b( — g + gh'/2r")
+ g(@m) " exp (—gh*/2) (ghf + af*/2)}
< 4 (@){bgh® @)™ + g (@m) 7 exp (—gh/2) Ghf + 9°/2)}.

We recall that by (115) gf = |z| 7> To obtain an upper bound for I, we
substitute the extreme right hand side of (118) in the integrand of I, in (107),
and use the upper bound for the integrals on 7'.° obtained in Lemma 6.2 in (93),
(99) and (103). We thus get,

(119) I.(2mrgr")™

< e(@m) 7 {bgh’ (@) + g(2m) 7 exp (—gh"/2) @R + (7))
so that
(120) I = 2r)}gelbgh’ @r)™ + g(@r)™" exp (—gh"/2)- (2h + (97)7)}.
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Ast— =,

the right hand side of (120) — { (27 ")} exp (—h%/2)eh}.
Hence by taking 7, sufficiently large, we have
(121) I, £ eh forall 7= 7.

It remains only to obtain an upper bound for the term I3 in (107). For all
§ e H,, since by (61),

|6 — z| > &,
(122) 6 —2g7'l 2 h — (2] — |alg™)
=h—|z|(¢g@")" =h—Ff. by (115).

We now have to distinguish between the cases f = |z|(g7") ™" < h and f > h.
Let W, be the set on which f < 5, i.e.

(123) zeW,, if and only if, |z| < hgr’.

Let W.° be the complementary set of W, . We split up I3 into parts I;’ and I5”
arising respectively from integrations over the sets 7,°- W, and T.°-W,". Con-

sider first I'.
Let hy = h — f be such that the concentric circles in @, centered at 8’ = g™

and with radii (b — f) and k4 enclose an area equal to vy (x), i.e.
(124) alh’ — (b — 1)"] = va ().

Then since by (69), fo ¢1(x,0) dd = vg(x) and exp (—2g |0 — zg %) is a de-
creasing function of |§ — xg |, by an argument similar to that below (116), it
follows from (122) that

[z, exp (—3g 16 — g7 )en (x, 0) do
< [opsio—so-rizn, exp (—3g 10 — zg'[*) db
= [h,exp (—2gr’)-2ar dr
2mg " {exp [~3g(h — 1)'] — exp (—ghi/2)}
= 2rg ™ exp [~3g(h — N1 — exp [~ 3glh’ — (b — £)I}
= 2rg " exp [—3g(h — )I{1 — exp [—g(@r) "va ()]}
< 2rg exp [—3g(h — ) lg@2r) ve(x) by (124).

By substituting by (125) and using the value of b in (11), we get in the
integrand of I3 in (107),

It

(125)
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g@r)" [a,exp (=390 — 2g7'[*) d6 — bux (z)

v () (2r) " {g exp [~3g(B* — 2hf + f*)] — exp (—F*/2)}
va(x) (2r){g exp (—gh"/2) exp (ghf) — exp (—A"/2)}
< vr () (2r) g exp (—gh®/2)[1 + ghf/1! + g'Wf* /21 + - -]

IIA

IIA

(126) — exp (—h%)2)}
< vg(@)@r) (1 4+ 7 ) exp (—gh"/2) — exp (—h/2)}
+ va(2)g @r) Hohf/1) + ¢HF/20 4+ -1} by (16)

< vg(@)@r) "7+ o (@)g @) {ghf/1 + ¢RF/20 + - - )
< oa(@)g@m) 7 + ghf/1 + FHF/2 + -0}
We now substitute the extreme right hand side of (126) in the integrand of
I;in (107), and thus get
(127) I @rgr®) ™ < g@r) 7t @rgr®) 7 [1tow, exp (—[2f’/2g7" oa () da
AT+ hgf/1 + GRS /20 + 2 g /).

The series in the right hand side of (127) being of non-negative terms, can
be integrated term by term. Also the upper bounds obtained in Lemma 6.2
in (93), (99) and (103), remain valid on substituting vg (z) for v4 (z) because
of (85) (v). Using these upper bounds for the integrals of the first three terms
in the series in the right hand side of (127), we get, recalling that gf = |z| 7>

by (115),
I/ @rgr®)™ < g@r)e@m) e et + 2kt + BT
(128)  + g@r) ' Crgr?) "t [ofw exp (—l|x|*/297" oa (@){ D v gRS/rY} da
=h+ b say.
In (128),
(129) t-2mgrt = gle(@r) H2h 4+ 7 + KA.

Ast— ©,g— 1by (16) and hence the right hand side of (129) — (27r—1)*eh.
Hence by taking 7o sufficiently large we have

(130) h-2mgr® S e forall T2 7.
Next in the expression for ¢ in (128),

(131) ve(@) < 7(2hd + d®)  asin (82),

and by (115), forr = 3,

(132) gf = lal'v" 7 < ol
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assuming that 7 = 7o > 1. Therefore in (128), using (131) and (132),
t2-27rg'r2

< @ @hd + &)ox @rgr) " [aiw, exp (—[ol'/2g7)
-exp (hla|/7) dx

< @ (2hd + olz)-7r(21rg1-2)_]L fR exp (—|:1:|2(2g*r2)_1 + h]x]r_l)dx

(133) = g (@2hd + &) (2rgr) " [Texp (—r"(2gr") T + hrr ) 2mr dr
= gr *(hd + &)r [Fexp (—p"(29) ™ + hp)p dp putting r = pr,
< K say,

where

K =20@hd+ &) [fexp (=’ + ho)pdp < .

We use here the fact that, since by assumptionin (132),7> 1,9 =1+ <2,
(133) implies that by taking 7o sufficiently large, we have

(134) he2mgr’ < e forall 7=

Combining (130) and (134) with (128), we get

(135) I/ <el+h) forall 7=m.
Lastly,

(136) I)" @mgr®)™ = @rgr®)™ [wiasexp (—[af’/2¢7")
{g@m) ™ [m, exp (—3gl0 — 2g'|)’n (x, 6) db
— bvg(x)} da.

Using (131), it is seen that in (136) the term in curly brackets is bounded in
absolute magnitude by = (2hd + &b + g@r )™). Hence, since by (123),
for e W, |&| > hgr’, we have from (136),

I" @rgr™)™
(187) < w(hd + &) + g(2r)™) Qrgr?) ™ [ exp (—1°/2¢7") 2wr dr
x@2hd + O + g@m) g [irexp (—p'/2¢)pdp, by putting

p=1T

r@hd + &) + g@r)™") exp (—Hgr’/2).
Since, 7°-exp (—Hg*/2) — 0 as 7 — o, (137) implies that by taking o

sufficiently large, we have

14

(138) I; < e forall == 7.
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Combining (135) and (138), we have

(139) IL=I+1I" <e@2+h).

Adding up (109), (113), (121) and (139), we have from (107),

(140) E.Io(z, ) — E.Ii(z, ) = 2ugr®) [—M + (7 + 2h)].

But (14) implies that the left hand side of (140) = 0. Hence from (140) we have

(141) M = (7 +h).
Since € can be taken arbitrarily small, it follows that
(142) M =0.

(142) combined with Lemma 5.3, shows that alternative IT under the inequality
(37) cannot be true and hence in (37), we have

(143) Ui(z) = Uy(x) for almost all z ¢ R.

But by (63) and (62), and substituting ¢o(x, ) = 1, for 6 ¢ A, and ¢ (z, ) = 0
for9e (H, + K.), we have

Ui(z) — Us(z)
(144) = [ilp@ 0) = bl = &1(a, 010 + [u. b ~ P&, Oléa(a, 0)
+ [x.lb — p(3, )l (2, 0) db.

Noting the values of b and p(z, 6) in (11) and (13), the integrand of each
term in the right hand side of (144) is seen to be non-negative. Hence (143)
implies that for almost all x ¢ B, we have

di(z,0) =1 for almost all 6e A,
and iz, 0) =0 for almost all6 ¢ (H, + K.).
Hence by (9) and (61) and Fubini’s theorem
d1(x, 0) = ¢o(z, 0) for almost all (z,0) e R x Q.
This completes the proof of Theorem 5.1.

7. Strong admissibility. As stated in the note below Theorem 5.1, that theorem
implies the admissibility of the usual confidence sets according to the Definition
2.1. A stricter definition of admissibility called strong admissibility may be
formulated as follows:

DEeriniTioN 7.1. A confidence procedure Cp is strongly admissible if there
exists no confidence procedure Ci such that for all & @, (i) Pe(Ci(-, 0)) =
Py(Co(-,0)) and (i) EwCi(x, -) = EwCo(x, -) with the strict inequality hold-
ing in either (i) or (ii) for at least one 8 ¢ Q. Here C; and C, denote subsets of the
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product space B x @, which define non-randomized confidence procedures. It is
obvious that the strong admissibility implies the admissibility according to
Definition 2.2 but not conversely. If a confidence procedure Cy is only weakly
admissible, then there exists a procedure C, with the same or higher inclusion
probabilities, such that Ci, on the average locates 6§ more closely for at least one
value of 9, and at least as closely as Cy for other values of . Hence it would be
reasonable to use procedure C; in preference to Co. It follows that procedures
which are strongly admissible should be preferred over those which are only
weakly admissible, i.e. admissible according to Definition 2.2. Thus for example,
the symmetrical confidence intervals based on the ¢-statistic which were shown
to be admissible by the author (1966) are only weakly admissible.

It follows from Theorem 5.1 of this paper that form = 1 or m = 2 the usual
confidence procedures are strongly admissible up to the equivalence in Definition
2.1 or in the restricted class of confidence procedures with open or convex sets
discussed in Section 3.

8. Case m = 1. In this case the proof is much simpler, and it suffices to in-
dicate its broad outline. The usual confidence sets are now confidence intervals
of fixed length 2h centered at 6 = z. The Bayes procedure in the class of ran-
domized procedure is found to consist of intervals centered at the point 6’ = zg ™,
and of length 2¢ where ¢ is now given in place of (17), by

& =Hyg" + g (log ¢).
In place of (11), we now have
b= 2r) " exp (—hY/2).

Then in place of (33) we get the reduction in expected loss due to Bayes pro-
cedure as

E.Lo(x, 0) — E,L.(z, 0)
= 2(h — ¢) + 2@r) " [ exp (—£/2) dt — 22x)”* [hexp (—£/2) dt
< Wh(1 — g ) + 2b(cg’ — h).
Now
1l—gl=(@ -1 = @—- @+ <i@-1) =",
g —h= (g —h)(eg" +h) < (k) (log g) < (k")
Hence E,L, — E,L, < bhr>(1 + k7). Then in place of (57), we get
(145) E.Ii(z,0) — E.Lo(z, 0) = (k — €) (2mg)"'r " — oA (1 + &),
Since the left hand side of (145) is non-positive, we have
(146) k<e+2r(1+ h2)bhr

Since = can be made arbitrarily large, and e arbitrarily small, we must have
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%k = 0. Hence alternative (II) under the relation (37), cannot be true, and the
equivalence of ¢; and ¢, follows from alternative (I) as before.
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