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MARTINGALES WITH INDEPENDENT INCREMENTS!

By P. WARwicK MILLAR

Unaversity of California, Berkeley

0. Summary. In section one, L; bounds are obtained for transforms of discrete
parameter martingales having independent increments. Section two develops
the theory of quadratic variation for continuous parameter martingales having
independent increments. An application of the results of these two sections to the
theory of stochastic integrals appears in section three.

1. Discrete parameter martingales with independent increments. Let
(2, @, P) be a probability space, and @,, n = 0, 1, 2, - - -, an increasing family of
sub sigma fields of @. Let f = {f, , @, ,n = 1,2, - - -} be a martingale, and d; = fi,
dy=fo—fi, - .Letv = {v,,n = 1,2, ---} be asequence of real random vari-
ables where v, is @,—1 measurable; then the sequence g = {g,,n =1, 2, - - -} will
be called the transform of f under » provided that g, = > v dy . If the incre-
ments {d;} of f form an independent sequence, if G, dy , dnt1, - - - are indepen-
dent for each n = 1, and if sup, |v,| = 1, then we show in this section that

(a) Elg. < 2E|f.l, and (b) Eg.* < 2Ef.*

Here g, = supi<i<x |gx|. Note that the condition concerning the sigma fields
@, will always be satisfied if we take @, to be the smallest sigma field generated
by {di, 1 < k =< n}, and @, to be the trivial sigma field.

If f does not have independent increments, then inequality (a) is false, in
general, no matter what constant one inserts in place of ‘2. If, however, f satisfies
only B |f,]* < o,n=1,2, ..., forsomep > 1, then it follows from Burkholder’s
theory of martingale transforms ([2], page 1502) and from Doob’s martingale
inequalities ([6], page 317) that there are constants A, and B, (depending on p
only) such that analogously:

@) Elgl” = A,EL7  and () E@@") < BEG)"
Finally, we point out that if f has independent increments and v is a sequence of
constants with sup, [v,] < 1, then inequalities (a’) and (b") follow with p = 1
from results of Marcinkiewicz and Zygmund ([11], Theorems 5, 6).

An analogue of inequality (a) for certain continuous parameter martingales is
developed in Section 3.

Lemma 1.1. Let ¢ be a real valued function on [—1, 1] x B (where R is the real
line) with the properties that ¢ is bounded from below, ¢ (—1, z) = ¢ (1, —z) and
e (-, x) is convex for each x. If X vs a symmetrically distributed random variable,
and if b 7s a real number satisfying —1 = b = 1, then Ep(b, X) < Ep(1, X).

Proor. By passing to an appropriate product space if necessary, we may
suppose that there exists a random variable B, independent of X, such that
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1034 P. WARWICK MILLAR

PB=—-1)=(1—-15b)/2, PB=1) = (1 4+ b)/2. Then Ep(b, X) =
Ep(E(B|X), X) = E{Elp(B, X)| X]} = Ee(B, X) = Eo(1, X)I(B = 1)
+ Ee(—1,X)I(B= —1)=Ep(1,X)P(B=1)+ Eo(1, - X)P(B= —1) =
Eo(1, X)P(B=1)+ Ep(1, X)P(B = —1) = Ep(1, X). Here we have used
I(A) to denote the indicator of the set A.

LemMa 1.2. Let f be a martingale with symmetrically distributed, independent
imcrements, and with Gu—1 , dn , duy1, -+« - tndependent for n = 1. Let g be a trans-
form of f under v, with sup, |v,| < 1. Then E|g,| < E |f.| and Eg,* < Ef,*.

Proor. We prove the second inequality first. Let » and k be positive integers

with k < n. Let ox (b, @; @1, -+, Gn1) = maXi<j<n B (b, 2; 01, -+, An1),
where Ry, = |l + -+ + a]if 1 £j < k,and Ry = |aa + -+ + aja + bz if
k £ j £ n. Then, for each k, ox(-, +; a1, --- , a,—1) satisfies the condition of

Lemma 1. Therefore,
Egn* = E‘Pn (vn y dn %1 dl y "y Up dn—l)
= E[E{ﬁon(vn ) dn ;01 dl y "y Up—1 dn—l)l an—l}]
é E[E’{(pn (]-7 dn %t dl y 2 3 Una dn—l)l @n—l}]
= E‘pn—l (vn—l ) dn—l s U1 dl y "t 5y Un-a dn—2 ) dn)
= E[E{(pn—l (vn—l y dn—l s 01 dl y * "y Un— dn-—2 ) dn)l Qna V dn}]
é E‘pn—l (]-, dn—l %1 dl y T Up—2 dn—2 3 dn)
= E‘pn—Z (Un—2 ) dn—2 sy 01 dl gyt 5y Un-s dn—3 ) dn—l ) dn)
< --- =Z E(pl(l, dl;d2, te ;dn) = Efn*
Using a similar argument with ¢, (b, Z; a1, *++ , Gue1) = |@1 + -+ + @n + bzl,
for all k one obtains the first inequality of the lemma.

TarorEM 1.1. Let f be a martingale with independent increments, and with
Qno1, Ay, duy1, - - - independent for n = 1. Let g be a transform of f under v with
SUPw |va] < 1. Then E |g,| < 2E|f,| and Eg,* < 2Ef,*.

Proor. Let G, di’, d’, - - - be independent, where Gw = V 5oy @, , and for
each n = 1, d,” is a random variable having the same distribution as d, . Let
@, be the smallest sigma field generated by dy’, - -+ , d,". Let @& = @, and for
n=1@, =@ V @ . Thenv,is @, measurable, and E(d, — d,/ | @n) =
E(dy| @) — E(d,| Gn1) = 0,n > 1. Therefore the sequence {f, — f,'} is a
martingale, where f,) = D rm di’, and gn — ¢’ = X rm vx(dy — di') is a trans-
form of {f, — f»'}. Using Lemma 2, one sees that

2Ef,* = E supi<i<a |[fi — fr'|
= E'Sup1§k§n ng - gk,l
= E[E{supiziza |gr — 0| | Gu}]
= Esupiziza [E{ge — 9] G}
=FK SUpi1<k<n [gk - Ed1E1)1|
> Eg,* — E diEv, .
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If E dy = 0, then the theorem is proved. If E dy # 0, let r be a random variable
independent of f, with P(r = ==1) = 3. Let F = {F1,F,, - - -} be the martingale
(velative to {@, V o(r),n = 1} obtained by setting Fx = rfi . Then EF; =
Erdy = 0,and s0if G@ = {G, ,n = 1} is the transform of F underv, EG,* < 2EF,*.
Since G.* = go* and F,* = f,*, it follows that Eg,” < 2Ef,".

The inequality E |g.] < 2F |f.| is obtained in a similar manner.

2. Quadratic variation of martingales with independent increments. Sup-
pose that (@, @, P) is a probability space, {@(t), 0 = ¢ = T} an increasing
sequence of sub sigma fields of @, and X = {X (¢),@(¢),0 = ¢ = T} a martingale
having independent increments. For p = 1, we will write [X]," =
supo<e<r E | X (t)7. Let 7 = {m,},n = 1,2, -- -, be a sequence of partitions of
[0, T], with 7, : 0 <t < tne < -+ = T. We will suppose that for each 7, Ty is
a refinement of m, . Let Q. (X, =, T') be the non-negative square root of [X )l
+ Dokt [X Gugenn) — X (ta)]’. We will often abbreviate this @,(X) or @.(T),
depending on context.

The behavior of Q. (X, =, T) as n increases has frequently been studied under
various assumptions on X and . In 1940, Lévy showed ([9]) that Q.}(X) con-
verges a.e. and in L, norm, when X is standard Brownian motion and the m, be-
come dense in [0, T]. (Independently, Cameron and Martin ([3]) obtained the
same result, assuming that ¢, is of the form k27"). Another proof of Lévy’s result
has been given by Doob ([6], page 395) who made the important observation
that, when X is Brownian motion, Q.2 (X) is a reversed martingale. There are
several ways one may try to extend Lévy’s result: (i) one may consider, instead
of Brownian motion, more general martingales; (ii) one may consider, instead of
Brownian motion, more general processes with independent increments. Of
course, there are other interesting ways to extend Lévy’s result (see, for example,
Baxter ([1]), who considers more general Gaussian processes), but the two ways
indicated are the most relevant for this paper.

A generalization of the second type has been given by Cogburn and Tucker
(4]): If X is a separable, continuous, infinitely divisible process with law
(ar , ¥r), where ez is a function of bounded variation on [0, T], then lim, @, (X)
exists a.e. Here, (ar, ¥r) denotes the characteristic function of X (t), which
under the given hypotheses must have the form exp ¥; , where

Yi(u) = tuay + f[exp (ux) — 1 — (fux)( + A)MA + 2P v, (z).

The assumptions of Cogburn and Tucker serve to restrict the path irregularities
of X. In particular, under those assumptions, almost all paths are bounded, have
right and left limits at every point, and all discontinuities are jumps; there are no
fixed discontinuities.

Very recently, several attempts have been made to generalize Lévy’s result to
martingales other than Brownian motion. Here the emphasis has been on norm
convergence and convergence in probability, rather than a.e. convergence. We
indicate briefly this development. In 1966, Fisk ([7]) showed that @,(X) con-
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verges in L, norm if X is a square integrable martingale having almost all paths
continuous. Kunita and Watanabe ([8]) independently obtained the same result,
but used a specially chosen sequence of stochastic partitions =, (the ¢.’s were
taken to be specially chosen stopping times). Meyer ([12]) obtained the con-
vergence of @,(X) in L,, assuming that X was a right continuous, square
integrable martingale which was also quasi left continuous. Independently of the
preceding, Millar ([13]) obtained two results: (a) if almost all paths of X are
continuous and if || X]|, < « for some p > 1, then @, (X) converges in L, norm;
(b) if X has right continuous paths, then @,(X) converges in L, norm,
p > p’ = 1, provided ||X||, < =, and converges in probability otherwise. To
prove (b), the partitions were assumed to be stochastic partitions of a certain
type. Finally, Doléans ([5]) proved that if X has right continuous paths, then
Q. (X) converges in L, norm if || X]|, < <, (p > 1),7and converges in probability
if ”X ||1 < o,

In this section, we develop the theory of quadratic variation for continuous
parameter martingales X on [0, 7], having independent increments. In contrast
to the lines of research described above, we will need no assumptions about path
regularity, nor will we require the separability of the process. We will prove first
(Theorem 2.1) that there exists a universal constant K such that for every A = 0,
AP (sup, @.(X) > \) = KE|X(T)|. A maximal inequality of this type is new
to the theory of quadratic variation. The proof of this result will yield the conse-
quence that E sup, @, (X) < «, whenever || X||, < « for some p > 1. Next we
prove (Theorem 2.2) that if || X||; < o, then @,(X) converges in I; norm. This
result should be compared with that of Doléans for right continuous martingales
satisfying the same norm condition. It is known, incidentally, that @, (X ) need
not converge in Iy norm if X is a (right continuous) martingale not having inde-
pendent increments. Theorem 2.2 is of value to the theory of stochastic integrals
(see Section 3). Finally, we prove (Theorem 2.3) that if E sup, @,.(X) < « (a
condition satisfied, for example, if || X||, < <« for some p > 1) then @,(X) con-
verges a.e. Almost everywhere convergence of @,(X) has not been established
for general martingales, and this is a first attempt in that direction. The result is
both more and less general than that of Cogburn and Tucker for infinitely
divisible processes. It is more general in the sense that we do not make any as-
sumptions on path regularity or about infinite divisibility; it is less general in
that we have a norm condition on the process (viz. ||X||, < « ) which Cogburn
and Tucker do not need.

In what follows, we will make frequent use of an inequality of Marcinkiewicz
and Zygmund ([11], Theorem 5) which we state for the convenience of the reader.
Let {er, k = 1, 2, ---} be a sequence of independent random variables having
mean 0. Let b, = Y re e, and S, = [D_ s &’]'. Then there are positive con-
stants 4, and B, , depending on p only, such that 4,ES,” < E |h,|” < B,ES,’,
whenever p = 1.

Lemma 2.1. (a) Let X be a martingale with symmetrically distributed, inde-
pendent increments. Suppose that | X||, < . Then {Q.°(X),n = 1,2, ---} ds
a reversed supermartingale if 1 < p < 2, and a reversed submartingale if p = 2.
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(b) Let X and X' be two independent martingales, each with symmetric, inde-
pendent increments. Then P,(X, X') = X xdudn is a reversed martingale,
where duyy = X (pprr) — X (o).

Proor. (a) Let ng < n; < --- < n, be positive integers. We will show that

z2Qn if 2=p< .
Letp = (o1, p2, - - - ) be the Rademacher sequence on the Lebesgue unit interval:
pe(s) = 1if s e[2i/2", (27 + 1)/2") forsome j = 0, 1, --- , 2" — 1, and
pr(s) = —1 otherwise. Then p is a sequence of identically distributed, inde-
pendent random variables on [0, 1], with u[or = ==1] = %, where u is Lebesgue
measure. For each s ¢ [0, 1] define a martingale Y (s)= Y (s, -)on (@, @, P)
with index ¢ € [0, 7T'] as follows:

Y(SJ t) = pl(S)X(t), if 0 =t = tnl,l,
= p1($)X (lna) + o2 ()X (@) — X(ayn)l, i tan < ¢S taye,

and so forth. Note that, for each s, Y (s) ~ X (i.e., Y (s) and X have the same
distribution) and that if ¢’ and ¢ both belong to the same interval in the partition
7, , then

Y (s, 8") = Vs, ) = 1XE) — X))

Therefore, @.; (Y (s)) = @.;(X),j = 1, 2,---, r. Let f be a bounded Borel
measurable function on R, and let g(X) = f(Q.,(X)?, -+, Qu,(X)?). Then
g(Y (s)) = g(X) and we have

[0 @uX)7g(X) dP = [i [0 Quy(Y(s))?9(Y (s)) dPds  (since ¥ (s) ~ X)
= [ag(X) [§Qu, (¥ (5))"ds dP
2 Jog(X)@u(X)"dP it 2=
< [og(X)Qu(X)?dP it 1=<p <2

IA
=
8

since 5 Quo (Y ()7 ds < [[§ Qo (Y (s))* ds]”"
= QM(X) Qm(X)p if 1 = Y4 = 2
and [8Qno (Y ()7 ds = [[§ Quo (¥ (s))* ds]?”

= Q., (X)? if 2=2p< oo,

(b) Since it is readily verified that P, (X, X’) is integrable, we need only
show that E[P,,|P.,, -, Pa] = P, , where no < ny < --- < n,. If
p = (pm, p2, ---) is again the Rademacher sequence, define for each s ¢ [0, 1]
martingales ¥ (s) and ¥’ (s) corresponding to X and X’ as described in (a). Then
P, (Y(s), Y'(s)) = Pu;(X, X'),7 =1,2 -+, r. Let f be a bounded Borel
measurable funetion on R’, and let ¢(X, X') = f(P,, (X, X'), -+ -, Pn, (X,X')).
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Then ¢(Y (s), Y'(s)) = g(X, X') and we have
JagX, X)Po(X, X')dP = [ [ag (Y (s), Y (8))Pay(¥ (s), Y'(s)) dP ds
= Jag(X, X') [i Py (Y (5), Y'(s)) ds dP
= JagX, X) [ Pay (¥ (s), Y'(s)) ds dP
= [eg(X, X")P., (X, X') dP.
I am indebted to D. L. Burkholder for suggesting the device of the Rademacher

functions used above; the resulting proof is simpler than my original one.
TreEOREM 2.1. Let X be a martingale with independent increments. There exists a

unaversal constant K such that for all A = 0:
AP{sup, @, (X) > N\ = KE |X(T)|.

Proor. Suppose first that X has symmetric, independent increments. Then
Q. (X) is a reversed supermartingale, and, by an inequality of Doob ([6], page
314), A\P{sup, @.(X) > A} = sup, EQ,(X). But, by the inequality of Marcin-
kiewicz and Zygmund, EQ,(X) = KE |X(T)|, so the theorem is true in the

special case.

If X does not have symmetric increments, let X’ be a martingale with the
same distribution as X, but independent of X. Then the martingale X — X’ has
independent, symmetric increments, so that

2KE |X(T)| 2 KE |X(T) — X' (T)| 2 \P{sup, @, (X — X') > A}.
Since @, (X — X') = |Q.(X) — Q.(X")|, we have
1) 2KE |X(T)| 2 NP{sup, |[@,(X) — Q.(X")| > N}
(\/2)P{sup, [@Qn(X) — ual > A}

by the symmetrization inequalities (Logve, [10], page 247 ). Here u, is the median
of @, . If U is a non-negative, integrable random variable with median m, then
m minimizes E U — b| as a function of b, so that m = E|lm — U + U| <
E|m — U| + EU < 2EU. Thus, if W = 2K sup, E | X (T)|, then u, < W and

() P{sup, [@.(X) — ui| > N Z P{sup. @.(X) >\ + W}.

The final inequality now follows from (1) and (2).
CoroLrary. If X is a martingale with independent increments and || X||, < o

for some p > 1, then E sup, @, (X) < «.
Proor. Apply the proof of Theorem 2.1 to @,”(X), and obtain
AP{sup @.”(X) > N} = K || X]],".
The corollary follows from this.
Lemma 2.2. Let X be a martingale with independent increments. Then Q.(X)
converges in probability.

[1\%
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Proor. If X has symmetric increments, then @, (X ) is a reversed supermartin-
gale, and so converges a.e. 4 fortiori, Q,(X) converges in probablhty

If X does not have independent increments, then consider X’ and @, (X — X’
as in Theorem 2.1. Then

(3) Qn2(X - X,) = Qn2(X) + an(Xl) — 2 Zk dnkd;k

converges a.e. We show next that D i du d dni converges in probability. Let X "
and X” be 1ndependent martingales, each with the same dlstnbutlon as X, but in-
dependent of X and X'. By Lemma 2.1, P, = D (dni — di) (A — dm) is an I
bounded, reversed martlngale, and so converges a.e. and also in L1 (smce it is
reversed ). Hence E (P, | X, X') must converge in L; . Since X, X X", X" are
all independent, the preceding statement implies that > dmd i converges in
L1, by an elementary calculation. It follows that Q. (X) + Q.2(X') converges

in probability. But,
[{Q2(X) — Qu*(X) > & n{QS (X)) — @u'(X') > ¢]u
[{@a2(X) — Q(X) > ¢ n{Q7(X) — @7 (X) > ¢l
(Q2(X) + @' (X)) — @’ (X) — @u’ (X)) > 2d}.
Hence,
PQA(X) — Qu'(X) > & + P{Q."(X) — @(X) > ¢
< P{QS(X) + @ (X)) — @' (X) — @' (X)) > 2¢},

since X ~ X'. Therefore, P{|Q.2(X) — Qu (X)| > ¢} — 0 as m, n — «, prov-
ing the lemma.

TaeorEM 2.2. Let X be a martingale with independent increments. Then @, (X)
converges in Ly norm.

Proor. By Lemma 2.2, it is enough to show that the family {Q. (X )} is uni-
formly integrable. If X' is chosen as in Theorem 2.1, then @.(X — X’) is a re-
versed, I, bounded supermartingale, by Lemma 2.1. Therefore, the famlly
{Q.(X — X')} is uniformly 1ntegrable Since Q. (X — X') = |@.(X) — Q.(X")],
the family {Q. (X ) — Q. (X")} is likewise uniformly 1ntegrab1e By Lemma 2.2,
Q. (X) — Qu(X") converges in probability and so converges in L; norm. Hence,

E{Q.(X) — QX)) X} = @.(X ) — EQ.(X’') converges in Ly, implying that
the family {Q.(X) — EQ.(X)} is uniformly integrable. Since the constants
EQ, (X) are uniformly bounded by the result of Marcinkiewicz and Zygmund
used before, we conclude that {Q.(X)} is uniformly integrable.

TreEOREM 2.3. Let X be a martingale with independent increments such that
E sup, Q.(X) < . Then Q.(X) converges almost everywhere.

Note that the hypothesis on sup, @.(X) will be satisfied if, for example,
|X]l, < o for some p > 1, by the corollary to Theorem 2.1.

Proor. As in the proof of Lemma 2. 2,0.:X — X') = Q'(X) + @}(X)
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— 2> dui di converges a.e. To show that > i du, dni converges a.e., note that,
if {P,} is the sequence defined in the proof of Lemma 2.2,

Pa < [ @ — due) Pk (dri — die)]?
< 2000 (X) + Qu(X")[@n(X) + @u(X™)],
implying that
E sup, |Pa| £ 2E (5upa @u(X) + sup, @ (X”)) (sups @ (X') + sups @ (X))
= 8[E sup, @, (X))’ < .

Since P, converges a.e., it follows from the dominated convergence theorem for
conditional expectations that B (P,|X, X') converges a.e. Hence, D i dus duk
converges a.e. and therefore so does Q,°(X) + Q.>(X’). If we can show that
Q1(X) — Q2(X") converges a.e., then the theorem will follow upon adding the
two. To do this, let M be a large positive number, and let

Ay = {wrsup, Q. (X) £ M}, A = {w:sup, Q. (X)) < M}

and I,; = indicator of 4 ;. By the dominated convergence theorem for conditional
expectations,

ELL{Q." (X) + @ (X)}| X] = @ (X)LP (42) + LE{Q" (X')I2}

converges a.e., and, by conditioning on X' instead of X, we find also that
Q" (X )LP (42) + LE{Q. (X))} = Q. (X")L,P (42) + LE{Q."(X')I1} (since

X ~ X') converges a.e. Hence,
[ (X)L — @ (X)LIP (42) + (I — I)E{Q.(X)I3},

which we obtain by subtracting the two expressions in the preceding sentence,
converges a.e. Therefore, Q,2(X) — Q.(X') converges a.e. on A;n A, . Let
M T « sothat A1n A, T Q to obtain the result.

We conclude this section with a conjecture: if X is a martingale on [0, T
having independent increments, then E sup, @.(X) < «.

3. An application to the theory of stochastic integrals. In this section we
apply Theorems 1.1 and 2.2 to the theory of stochastic integrals. We refer the
reader to [13] for more detail on the concepts and terminology used below. Sup-
pose now that X = {X (¢), @ (¢), t = 0} is a right continuous, L bounded martin-
gale having independent increments. Let # = {m,} be a sequence of partitions of
[0, t] that become dense in the interval. For each interval [0, {] we may compute
(by Theorem 2.2) lim,. Q. (X, t) = Q(¢) as a limit in L; norm. The increasing
process @ (¢) so obtained may be taken to have right continuous paths. Let v be
a left continuous step function (see [13]), and define the norm =;,(v) =
E [ v*(t) d@*(t). Since Q(¢) exists as a limit in L; norm, the discussion of ([13],
section 8) yields the following result: If {v,} is a sequence of step functions con-
verging to v in the norm n; , then the step function integrals fv,, (t) dX (¢) con-
verge in probability to a limit denoted by [ »(t) dX (¢). This extends the defi-
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nition of stochastic integral to all processes » which belong to the completion of
the step functions under the norm n; . Moreover, by Theorem 1.1, we have,
whenever v, is a step function: E | [7 v,(¢) dX (t)| < 2E |X (T')|. An application
of Fatou’s lemma then yields, for all processes v in the 7; completion of the step
functions, the inequality

E|[fv(@t)dX ()| < 2B|X(T)|.
This generalizes Theorem 1.1 to the continuous parameter case.

Acknowledgment. I am grateful to Professor D. L. Burkholder for many
helpful conversations on topics related to the content of this paper.
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