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1. Introduction. Let X, -+, X,» and Yy, -+, Y, be independent samples
from the same continuous distribution. Let Ry; (z = 1, 2, - - - , m) be the rank of
X in the combined sample (N = m + n), and define
Z; =2y =1 if the 7th element of the combined ordered sample is an X ob-
servation
=0 otherwise.

Let AV = (a{¥) be a sequence of symmetric matrices. We find conditions under
which a statistic of the form

(1'1) SN = Z:’”=1 Z;!;l al(ilgf);,RNj = Ity=1 ?Ll aif\,’)Z@Z,

converges in distribution as N — o and mn™ — A, 0 < A < 1.

Several examples of non-parametric test statistics of the form (1.1) can be
found in the literature. In fact, any two-sided symmetric test based on a linear
rank statistic is trivially equivalent to a test of the form Sy = C. More interest-
ing examples arise in the area of non-parametric statistics for circular distribu-
tions. Wheeler and Watson [6] proposed a two-sample non-parametric test for
circular distributions of the form (1.1), which is related to the usual parametric
test (likelihood ratio test for the class of v. Mises distributions) in much the
same way as the Wilcoxon test is related to the two-sample i-test. The author
[4] found that in detecting rotation alternatives for circular distributions a locally
most powerful invariant test under a suitable group of transformations is based
on a statistic of the form (1.1). Matthes and Truax [2] obtained a test statistic
related to (1.1) when deriving locally most powerful invariant tests for two-sided
shift alternatives.

2. Step function representation. Degenerate and non-degenerate limit func-
tions. Let hx(- , -) be a step function on the unit square, which is constant on
subsquares of the form (1 — 1)/N < z = ¢/N, (j — 1)/N < y = j/N and whichis
symmetric, i.e., by (@, ¥) = hy(y, z). If we set hy(i/N, j/N) = a then ob-
viously every statistic of the form (1.1) can be written as

(2.1) Sy = 2 71D 7 hy(Ryi/N, Ry;/N) = i 25= by (i/N, j/N)Z:Z;
and vice versa. Since conditions on covergence can be stated more easily in terms

of sequences {hy} we will use representation (2.1) in the sequel.
Assume that there exists a function A (- , -) such that hy — h in Ly(I*), i.e.,
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in the sense of convergence in the Hilbert space of square integrable functions
on the unit square. By Fubini’s theorem the function

(2.2) g(x) = [T hiz,y)dy
exists a.e. For convenience we assume that
(2.3) [6 [§ bz, y) dedy = 0

for each N (this can always be achieved by a suitable standardization of Sy).
Then f(l) fﬁh(w, y) dx dy = 0.
DEeriNiTION. We say A(- , -) is degenerate if g (z) = fé h(z,y) dy = 0 a.e.

3. Asymptotic distribution of Sy if h is non-degenerate.
LemMa 3.1. If hy(-, ) — h(-, -) in Ly (I*), then

(3.1) Jobw(Goy)dy— [oh(-,y)dy

i Ly (i.e., in the space of square integrable functions on [0, 1]).
Proor. Straightforward.
If we set

(3.2) Wz, y)=nh@y) —g@) — g@),

then %’ (z, y) is symmetric and degenerate, since

(3.3) Job @ y)dy = [sh(@,y)dy — g@) — [39(y) dy = 0.

We define corresponding step functions

(34) g @) = [0 (z, y) dy,
and
(3.5) h' @, y) = hy(z, y) — g (@) — gx ().
hy is symmetric and degenerate. Now set
(3.6) Ty = 2% 2 3= hw' (§/N, j/N)Z:Z; ,
then
(B.7) Sy = Tw+ 225 25 gn §/N)ZiZj + 2200 205 9w (§/N)ZiZ;
= Ty + 2m 3 1 gn (i/N)Z:
=Ty + 2mUy
where
(3.8) Uy = 2284 9w G/N)Zs = 2% gw (Ri/N).

THEOREM 3.2. If hy (-, +) —ms. A (-, -) then N *Uy is asymptotically normal
with

(3.9) ww = NPEUy =0, & =21 —1) [ig() de.
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Proor. This result follows immediately from Theorem V.1.6. a of Hijek and
Siddk [1] provided that
gn(+) — ¢g(-) in m.s., as N — o,

But by Lemma 3.1 this condition is satisfied.
LeMMA 3.3. If hy —w.s. h, then hy' —m.q. b,
Proor. By Lemma 3.1 gy —m.s. ¢. Since

hy' @, y) — B (@, y) = hw(z, y) — h(z, ) + gv(@) — g@&) + gv(y) — g ()

the desired result follows.
LeMMA 34. If by —m.s. by [§ by (2, 2)* dz 4s bounded and

(3.10) b b (2, y) dz = 0,

then for Sy defined by (2.1) we get

(311) N 'ESy=mN'(1— (m—1)/(N — 1)) [7 hn(z, z) dx
= N1 =) [§ hy(z, ) dz + ox (1),

(3.12) N2 Var Sy = 21 — )27, + ox (1).
Proor. Obviously,
(3.13) EZ.Z; = m/N ifi=y

f

(m/N)Y(m — 1)/ (N — 1) if ¢ 5 7.
Hence
(3.14) ESy = 2°i4 3.5 hw(i/N, j/N)EZZ;
= [(m/N)((m — 1)/N —1)] 223 2 5% hn(i/N, j/N)
+ (m/N)A = (m — 1)/ (N = 1)) 225 ha (i/N, j/N)
=N-(m/N)(1 — (m — 1)/ (N = 1)) [o hn(z, 2) da.

Since ﬂ, hy (z, ) dx is bounded ( (ffl, by (z, z) dz)’ < ﬁ hy (z, x)* dz) and since
m/N — N\ (3.11) follows.

A straightforward, but tedious, calculation (using (3.10) repeatedly) shows
that

(3.15) ESy’ = 2NN (1 — N*|lhw (-, )3,
+ NN (1 — N’ (f6 hy (z, z) da)® + O(N).
Hence
N*Var Sy = 227 (1 — M)A, + ox(1).

We are now able to prove the main result of this section.
THEOREM 3.5. If hy —m.s. h, h non-degenerate, [ hy(x, x)’dx bounded, then
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for Sy defined by (2.1) we have

(3.16) limy.o PN ISy < 20] = [% @r) " exp (—1/2) dt
with
(3.17) @ =a°1Q — Vg3, ,

where g (- ) 1s defined by (2.2).
Proor. By (3.7) we have

Sy = Ty + 2mUy .

Ty , defined by (3.6), is based on the function %y’ defined by (3.5). By Lemma
3.3 hy' —m.s. k', and thus hy satisfies the assumptions of Lemma 3.4. Hence by

(3.11) and (3.12),
(3.18) NPETY—0 as N «,

which implies that N *Ty — 0 in probability. From Theorem 3.2 we obtain
asymptotic normality of N 'mUy . Thus N Sy is asymptotically N (0, ¢°),
where ¢* is defined by (3.17).

ReMark 3.6. Under the conditions of Theorem 3.6 the asymptotic distribu-
tion of Sy depends on iy only through the ‘“marginals” ¢gx ; in fact, it depends
only on [lg|* = limy.s [lgn]*.

4. Asymptotic distribution of Sy if % is degenerate. In this section we obtain
the asymptotic distribution of Sy if 4 is degenerate, provided that certain condi-
tions on A and on the approximating sequence Ay are satisfied.

We first obtain the limiting distribution for a particular sequence {Aix} of
approximating step functions (Theorem 4.7). Then we extend the results to
more general approximating sequences (Theorem 4.10).

Let (- , - ) be a symmetric element of Ly (I*). Then it is well-known that the

relation 4: f — ¢ defined by
(4.1) g@) = [sh(z, y)f (y) dy

is a compact operator which maps Ls into L, . The spectrum of A consists of a
countable number of real eigenvalues ), such that Y -1 M < . Let {¢}
be a corresponding sequence of eigenfunctions. Then by the spectral theorem

@2) h(z, y) =2imha@a@), [ia@aE) d = &.

Lemma 4.1. If h is degenerate, then [§ ¢, (z) dz = 0 for all k.

Proor. Straightforward.

If & is any element of Ly (I*), then the projection Zyp of h onto the space of step
functions of order N is characterized by

43)  hwe(/N,j/N) = N* [1y; J1y; h(x, y) do dy, 1=4j=N,

where Iy; = {x: ({ — 1)/N < z < ©/N}. hyp is also the conditional expectation
E®h, where § is the field generated by squares Iy; x Iy; . Using the continuity
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of the projection operator it is easy to see that from the expansion (4.2) we get
44) Tve (2, y) = D=t Neeows (2 )ewr (¥)

where ¢i (- ) is the projection of ¢, (- ) onto the space of step functions of one
variable, i.e., forzeI; 1 £ ¢ = N)

(4.5) ene(x) = N fri o (u) du.
Set vy = l>\k|%, k=1,2 ---,and
4.6) Nk = NHy, Zﬁq owk (1/N)Z; , k=12 ---.

TarorEM 4.2. Let {¢ 1k = 1,2, - -+ , K} be an orthonormal set in Ly such that
f}) ox (@) dz = 0. Define the step functions owi by (4.5). Then as N — o« the joint
distribution of (M1, Mwz, * - , Mwx) 1S asymplotically normal with mean vector 0
and covariance matriz (ox1), where or = N(1 — N)dewi®.

Proor. It suffices to show that any linear combination & = Zf=1 bk 18
asymptotically normal with Ety = 0, Var &y = A(1 — \) > i ty’w. From (4.6)
(47) v = N-% Zf=1 v Zliv=1 PNk ('L/N)Zz = N_§ ZI,Y=1 ZkK=1 tevionn (%/N)Z, .
Obviously Ety = 0. Since ¢ — ¢ in m.s. for each k, we get Zf;l tovrony () —
>k twien (- ) in Ly . Hence the theorem by Hijek and Siddk mentioned above
implies asymptotic normality of & with

p=0 and o = N1 —\) [5 (O tuner ()" da.
Since {¢x} is orthonormal we get = N1 — \) D tin’ qed.

CoroLLARY 4.3. If h(- , +) is a degenerate function with a finite expansion
(4.8) h(z, y) = 2= Mo (@) (¥,
then the asymptotic disiribution of
4.9) NSy = N>V > % hwe (i/N, j/N)Z:Z;

exists and is equal to the distribution of N(1 — ) Doy Nextlw » where X%
k=1,2, ---, K, are independent x* random variables with 1 d.f.
Proor. Because of (4.4) we have

(4.10) N8y = N7 D08 Do D=1 Nown (¢/ N )i (§/N ) ZZ;
= D i1 sgn (W) ()’

and hence the result follows immediately from Theorem 4.2.

For % with an infinite expansion we use the theory of measures on separable
Hilbert spaces in order to derive the limiting distribution of N Sy , where Sy is
based on a sequence {hy} defined by

@.11) v (2, y) = Dt Neowe (@ )owe ().

Let H be the Hilbert space of real sequences with finite sums of squares. Then
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we define a sequence { My} of mappings from the space of the Z’s to H by
(4:12) My: (ZNI, c ,ZNN)’_> (nNI: e 7"7NN70:07 "')

where nxi is defined by (4.6). These mappings are measurable and hence they
induce a sequence {uy} of probability measures on H.

The set of probability measures on H can be metrized in such a way that con-
vergence in this metric is equivalent to weak convergence. With this metric the
space of all probability measures on H is a complete separable metric space
(Prokhorov [3]).

DEeFINITION 4.4. We say that (-, - ) is a trace-class function if

(4.13) Do N < oo

From now on we always assume that 2 (-, - ) is a symmetric, degenerate, trace-
class function.
TrEOREM 4.5. The sequence {ux} of probability measures is sequentially compact.
Proor. According to the corrected version of Prokhorov’s Theorem 1.13 it
suffices to show that
(i) supy [ [|2]* duy <
(i) limpoe supy [ D imr @ duy = 0,

where x = (21, 22, -+ ) is a generic element of H. Since z; = 0 a.e. (ux) for
1> N, we have
(4.14) fH e 20 duy = f}I ZJZV=L xi duy .

For k £ N we have

Jra’ duw = BE(m)* = N B2 25 om i/ N Yowm (/N )Z:Z)]
MmN 71 — (m — 1)/(N — D)I)N " 2 omi §/N)?
v ||€0Nk”2 = N
Combining (4.14) and (4.15) we obtain

(4.16) fH Zolonr, z! duy < Z‘;;L N,
which shows that (i) and (ii) are satisfied. This completes our proof.

Let (-, -) be the inner product on H. For every f ¢ H and every probability
measure p we define the characteristic functional
(4.17) x(,u) = [ae? du(@).
x (-, u) is continuous on H, and it determines u uniquely.

TaEOREM 4.6. {ux} converges to the Gaussian measure with mean 0 and S-oper-
ator of the form [Sl,i = M1 — X)d,1 [N

Proor. If uy— u in the sense of weak convergence, then obviously
1 = uy(H) — u(H), so that any limit has to be a probability measure.

Let f* = (fr, fo, -++ ,fr, 0,0, --+), then by Theorem 4.2

@.18) x(fP, uw) —exp {—=IN(L — \) 2ia NI fF,  as N— o,

(4.15)

A
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If u is any limit measure of a suitably chosen subsequence, then by the definition
of weak convergence we must have

(4.19) x(f, n) = exp {—3N(1 — \) 207 [N 7.

The right hand side of this last equation characterizes p uniquely. Hence any
convergent subsequence of {uy} converges to the same limit, and since {un} is
sequentially compact, we have uy — u. (4.19) shows that u is a Gaussian meas-
ure, which has mean 0 and S-operator of the desired form.

TuroreM 4.7. If h is a symmetric trace-class function and if Sy s based on hy
defined by (4.11), then N 'Sy converges in distribution to the distribution with
characteristic function

(4.20) ¥(@t) = [Te 1 — 2001 — M)

Proor. Because of (4.14) we have
@4.21) NSy = N7 230 20 D25 Neews i/ N Jew (/N ) ZiZ;

= 2isgn (W) (nwe )™

Let Wy (- ) be the characteristic function of the distribution of NSy . Then
(4.22) Uy (t) = Euyexp {3t Y _p 6i2z’},  where & = sgn \; .
By the definition of weak convergence
(4.23) Uy (t) = B,y exp {1t D ot 0xi’} — By exXp {1t D pe1 027} .

But this limit is continuous in ¢, and hence N 'Sy converges in distribution.
Furthermore

(4.24) V(t) = Eyexp {it D p1 o1’} .
We now evaluate ¥ (¢). From Theorem 4.6 it follows that for each finite K
(4.25) E,yexp (it D rm i’} — [ (1 — 2001 — M)~
= E,exp {it ) 1 b2’
By the dominated convergence theorem we can pass to the limit in K and get
V() = Eyexp {it D pe1 o’} = [[oer 1 — 2001 — MMt

This finishes our proof.

So far we have studied the asymptotic behavior of N~ 'Sy only for the particular
approximating sequence {Aiy} defined by (4.11). Since this is our standard
sequence we will denote it by {Ax'}, i.e.,

(4.26) Iy’ (@, y) = Dok Meows (2 )own (y)-

We now find conditions under which the statistic N 'Sy , based on an arbitrary
approximating sequence {/Ax}, converges to the same law as the particular one
based on {Ay"}. Let {Ax (-, - )} be a sequence of symmetric step functions (i.e.,
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hy is measurable with respect to ¥y ), such that

(4.27) Jo [6hw(z,y)dzdy =0 forall N
and define
4.28) g (@) = [shn(z, y) dy.

The following lemmas are used in the proof of Theorem 4.10.
LemMma 4.8. Let the following conditions be satisfied: As N — «

(4.29) hy — 0 m m.s.,
(4.30) Ngul* = N [Sgv ()" dz — 0,
(4.31) Johw(z, z) dz— 0,
(4.32) f(l, hy(z, 2)dx < K* for some constant K.
Then for Sy defined by (2.1) we have
4.33) | NSy —0 inms.
Proor. Define
(4.34) hy' (2, y) = (2, y) — gn (@) — gn(y)
and let Ty be the statistic based on hy’, i.e.
(4.35) Ty = 2% 25« hw' /N, j/N)Z.Z; .

By direct calculation we get
4.36) N 'E(Sy — Tx)* = 4(m/NN —m)(N — 1)7'N [ gn ()’ dz— 0,

since N [ gv (x)* dz — 0.
By Lemma 3.3 kv’ —m.s. b = 0. Also

h
437) (Johy' @, 2)d2)! = (Jobw(m, 2) de) + 2(Jogn @) de) = K + 1
for N large enough. Since ky’ satisfies (3.10) we may apply Lemma 3.4 and obtain
(4.38) N7ETy = A1 — \) [0 hy' (z, x) dx + ox(1)
=21 =) [thn(x,z)dz+ oy (1)—0
by assumption (4.31), and
(4.39) NETY = 22(1 — A)*[|0]| + ox(1) — 0.

Thus N 'Tyx — 0 in m.s., and by (4.36) we obtain N 'Sy — 0 in m.s.
LemMma 4.9. For the particular sequence {hx"} defined by (4.26) we have

(4.40) hv'—h inms.as N— .

Proor. For convenience we use the terminology of conditional expectations
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wrt §y instead of projections. Expectations are with respect to uniform measure
on I”. Set
(441) Py (@, y) = 21 Mew (%) (y)
then hy* = E™hy . By Jensen’s inequality for conditional expectations,

E(hy' — E™h)* = E[E™ (hy — h) < Elhw — hf — 0

as N — «. Since Eh — h in m.s. the lemma follows.

We are now in a position to derive our final result:

TraroREM 4.10. Let h (-, - ) be a symmetric trace-class function. Let hy — h in
Ly (I*) such that

(442)  hy(,z) — hy'(z, z) -0 i Lsf0,1], as N— o«
(4.43) N [sgn(x)dz—0 as N — o,
Then, if Sy and Sy’ are the statistics corresponding to hy and hy’, respectively, we
have
(4.44) NSy —8')—0 inms.

Proor. We apply Lemma 4.8 to hy' = hy — hy’. By Lemma 4.9 hy’ — A in
Ly (I) hence by’ — 0 in Ly (I*). Since

(4.45) Joh' (=, 9) dy = 28 Mowe (@) [som (y) dy = 0
for all  and all N, we have

(4.46) gv' @) =[5 (wlz, y) — by’ (2, 9)) dy = g (),
and hence

(4.47) Nlgv'|?—0 by assumption (4.43).

Finally, (4.31) and (4.32) are satisfied by (4.42).

ReMARK 4.11. Condition (4.42) seems to be satisfied in all cases of practical
interest (provided that A (z, x) is defined in some natural way, e.g. by continuity ),
because we usually have hy (z, ) — h(z, z) and k¥’ (2, ) — k(z, z) in L0, 1].

REMARK 4.12. The particular case where Ay (2, y) depends only on the differ-
ence £ — Y has been studied by the author in a previous paper [5]. In this case
h(z, y) is always degenerate, and the results are easier to obtain since in (4.2)
we can use the Fourier expansion, which has uniformly bounded eigenfunctions.
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