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FUNCTIONS OF PROCESSES WITH MARKOVIAN STATES—II

By MarTiN Fox! anp HErMAN RuUBIN?

Michigan State University and Purdue University

1. Summary. In [4] the rank of a state of a stochastic process was defined,
although the notion, without the name, is originally due to Gilbert [5]. Let
I = {1, 2, ---}. The purpose of the present paper is to prove the

THEOREM. Let {Y3i} have state space Uy at timek (k = 1, 2,--- ork =0,
+1, £2, ---). Let N be a finite subset of the index set and, for each n e N, let
V. © U. be a set of states of finite rank at time n. Without loss of generality, assume
(Un~Va)n (Vo x I) = &. Then, there exists a process { X} such that

(i) {Xx} has state space Uy at time k 2 N and state space (U, ~V,)u (V, xI)
at timen e N ;
(ii) The states (¢, 7) for e Vo, i eI and n ¢ N are Markovian; and

(i) Yi = Fi(Xy) where Fy,(8) = 84f 6 Ux ~ V; (take Vi, = & for k2 N)
and F,(e,7) = eifecVy.

This theorem is a generalization of Theorem 1 of [4]. Its proof is in Section 2.
Section 3 contains corollaries which are the analogues of the corollaries to
Theorems 1 and 2 of [4]. These show that if, in addition to the e & V,, for n ¢ N,
there are states of rank 1 (Markovian states) or 2, then {X;} can be constructed
so as to preserve the ranks of these states.

Section 4 contains a third corollary giving conditions under which N may be
infinite. In particular, under these conditions NV may be the whole index set and,
for each n ¢ N, we may let V, be the set of all states of finite rank at time n.
Corollary 4, also in Section 4, states that, under the conditions of Corollary 3,
stationarity in {Y%} may be preserved in {X,].

Dharmadhikari [1], [2], [3] has given conditions under which {X}} can be con-
structed to be a stationary, finite Markov chain. In [2] he requires the condition,
among other, that each state of {Y3} be of finite rank. We have weakened our
conditions by not insisting on stationarity or finiteness of the state space of { Y}
and by imposing finiteness of rank only on some states. We have completely
dropped his condition that certain cones be polyhedral. This last is the reason
that we have countably many Markovian states mapping into a single state of
{Y}:} instead of finitely many.

2. Proof of the Theorem. Let the rank of e at time n be »,(¢). Let 8, and 3,
be the families of all measurable sets of sequences of states prior to and after,
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(n)

respectively, time n. Then, there exist functions &' on S, x V, and

S\ (e)eS W =1, -+, ,(e)) such that
P((- ,Yuo,Yur)eS, Yy =r¢ (Ynp1, Yugo, -+ ) eT)
21) = 220B" S, )P, Yae, Yaa) eV (e), Vo = ¢
Yor, Yogz, oo )eT)

forall SeS8,,Te3,.

Let 7 < -+ < %, be elements of N and set 4o = —« and 4,,; = «. For
l=1,2 .- ,r 4+ 1, let ®; be the family of all measurable sets of sequences of
states between times ;-1 and 7; not inclusive. Let

ph"'nir(Rly"'7RT+1;€17°"16T)
=P, Yy, Yya)eR, Yy =a, YVin, -+, Yua)eR,
Yiz =€, 00, Yif = €r, (Yi,.-H, Yif+27 "')eRHJ)'

ForRie®, (I =1,---,r 4+ 1) and ¢ ¢ V;, repeated application (r times) of
(2.1) yields

vy (B, oy Rea e, oo 6)
iq(€) vi (f)
(2.2) = Dk DT B Ry, e)BNY (R, &)
. (I))(‘f-r) (RT()\r—l)’ ér)‘I’)(\i') (Rr+1 , fr)

where (--+, Yis, Vi) e R™-7 if, and only if, (--+, Yi_,ca, Yi_,-1)

S(;lll)y Yll v€eiy, Yo 41,00, Yia) SRland\I’)\(j) (T,e) = pJ(S)\(j) T;e).

Let 24 (R)) = @Y (R/®, &) and let =” (R;) be the matrix whose element
in the ath row and gth column is Z.3 (R;). Similarly define column vectors ® (R )
and ¥ (R). Note that we have deleted the superscripts on ® and ¥. Since & only
occurs for time % and ¥ only for 2., this will cause no confusion. In this notation
the dependence of ® (R;) on e, of Z” on e;,; and ¢, and & (R,41) on ¢ has been
suppressed. This will cause no confusion since throughout this argumente; , - - - , ¢
are fixed. Then (2.2) may be written as

(2'3) Diy,eee iy (Rl y T RT—H €L, * 0, GT)
= ®(R)EY [Re) -+ EV (R )Y (Ry41).

Forl=1,---,r+ Llet X, = U;;_,41 X --+ % Uy (recall thats; = — « and
ir+1 = 0,

Let QZ(R) = Pigyeeyiy (fx:l y TN X1 ) Ry Ex:l+1 y "t Er7‘+1 Y€, * 67)- By the
proof used in the analogous step in [4] we see that ® < @1, ¥ < @41 and
5P <« Q forl = 2, ---,r. Since these set functions on the ®; are matrix valued
measures, we have the existence of ¢ = d®/dQ:, of ¥y = d¥/dQ,.1 and
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g9 = d="® /dQ, for 1 = 2, .-+, r. Hence, (2.3) becomes
Diyooyiy(Bry oo s By, 000 5 &)
(24) = f tee le><~~-><R,+1 ¢(x1),5<2) (wz) - -~ E(” (@ )Y (Xry1)
(AQ1 (1) -+ dQrt1 (Tt ).

In the next part of this argument any norm will do. We adopt the convention
0/0 = 0 since this will yield the proper results in the computations which follow.
Lete™ (@) = ¢ @)/lle @), ¥* @) = ¥ @)/ ¥ @)|| and £V* (&) = £ (2)/]|£” (@)
for I =2,---,r. Since the integrand in (2.4) is nonnegative a.e.
Q1 x --- % Q.11) we obtain

D, ",ir(Rli Tty RT+1 y €Ly, er)
25) = [ [rpere lo@)] EP @I - 1E7 @)l ¥ @41
. I‘P* (xl)lgm*(@) v E(T)*(xr)‘ab*(xﬁl)l dQi (1) « -+ dQrya(z,).

We now consider the matrix function |[Wi'W; - -+ W,y| where Wi and W,y
are vectors. For W, of norm 1 this is a nonnegative continuous function on a
compact product set. By a theorem of Rubin [6] we may write

(2.6) ]W1IW2 s Wr+1l = EI“I Hk='1 Qg (Wk

where the functions on the right hand side are nonnegative and continuous. Set
Bi@) = lle(@)] a;(e™ (x));*'w(l) @) = ¥ @) ayE?* @) forl = 2,---,r
and 8; () = || @)| @rt1.; @ (x)) and apply (2.6). Then (2.5) yields

.h(Rl, tte ,Rf+l;€17 e 767)
2.7) = D0 [ Jrascoxess Bi @YD @2) -+ i (@ )85 (%r41)
<dQ1 (1) -+ dQr1 (Try1)

where all factors of the integrands are nonnegative. For each j = 1, 2, - - these
functions can be normalized so that

St i1 hrss 05 0Qra = 1 and [y, 7" dQi = 1

forl = 2, --- , r where Y, is the set of elements of U;,_,41 % --- % U; which
visit some € ¢ V,, for some 7.

We now define a process {Z}. For n £ N let the state space of {Z:} be U, . For
n & N the state space will be clear by the following. Forl = 1, - -+ , 7 4 1 assume
no element of R; visits a state e ¢ V, for n ¢ N. Let

(28) P((-++,Zi2,Zi1)eRi, Ziy = (a,%, 5 %,5)) = [z BidQs.
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Forl =2,.--,rlet
P((Ziyys1, 1 Ziy1) €R1, Ziy = (e1, 81, 50, 7)]
(2.9) Zipy = (1,0, , 0, k))
= [P dQ i k=7
=0 if k= j.
Let
(2.10) P((Zipr, Zippa, -+ ) € Ry | Ziy = (ery 8, o+ 5, 0)) = [0 85 dQria -

Finally, for R which consists only of sequences never visiting an e ¢ ¥V}, for any
neN, let ’

(2.11) P(("',Z__1,Z0,Z1,"')eR)=P(("',Y_1,Y0,Y1,"')£R).

Let X = fi (Z:) where the f; are one-to-one functions chosen so that the state
space of { X3} will be as in (i) of the theorem.

Consistency of the probabilities in (2.8) through (2.11) follows from the
normalization. Also (2.8) through (2.11) imply Markovianness of the elements
of V, x I for neN. By (2.7) we see that {Yi} and {fi (Xx)} have the same
distribution.

3. Corollaries concerning ranks 1 and 2. Corollaries 1 and 2 are analogous
to the corollaries to Theorems 1 and 2 of [4], respectively. Their proofs are so
similar that only outlines are given here.

CoroLLARY 1. Under the conditions of the theorem, there exists {Xi} satisfying
the conclusions but such that, for all n, every state § 2 V., which is Markovian at time
n i {Yy} @s Markovian at ttme n in {Xi}.

We restrict the construction in Section 2 to the case in which no sequence in
Ry, ---, R, visits a Markovian state and if a sequence in R;(R,.1) visits a
Markovian state all sequences which differ from it only at earlier (later) times
are in By (R,41). We can then complete the construction by piecing together the
various parts using the Markovian property.

CoroLLARY 2. Under the conditions of the theorem it is possible to construct
(X3} satisfying the conclusions but such that, for all n, every state 6 & V., which s
of rank at most 2 has its rank preserved in {Xx}.

We first apply Theorem 2 of [4] to split all states of rank 2 which are not
elements of V,. Then we apply Corollary 1. Let {Z:} be the resulting process
and set X = g (Z:) where g reconstitutes the states of rank 2 not elements of
Vi and is the identity map otherwise. The ranks of other states are preserved
while the ranks in {X} of these states of rank 2 in {Y5} is 2.

4. Countably many times. Corollary 3 gives conditions under which N may be
any subset of the index set. Corollary 4 covers the stationary case. Only outlines
of the proofs of these corollaries are given.



FUNCTIONS OF PROCESSES WITH MARKOVIAN STATES—II 869

CoroLLarY 3. Under the conditions of the theorem, if the set of states of ranks
1 and 2 in { Y3} is recurrent, then N need not be a finite set.

The proof is the proof of the theorem with the following modifications:

(i) Apply Theorem 2 of [4] to all states of rank 2. This can be accomplished
since the set of all such states is countable. This yields a process {Z;} in which the
states of rank not 2 in {Y}} are preserved with their ranks. Furthermore the set
of Markovian states in {Z,} is recurrent. For the remainder of the construction
use {Z;} in place of {Y;};

(i) Let Ri(R1) contain only sequences with a Markovian state at some
fixed time m < % (m > 4,) and no Markovian states between m and 4 (z- and m)
with the further restriction that if we modify on elements of R; (R,41) before
(after) time m; then the result is also an element of Ry (R,41).

(iii) Forl =2, .- ,r, let R; consist only of sequences not visiting a Markovian
state; and

(iv) Apply Corollary 1 to Markovian states of {Z}.

Rank 2 states of { Y} which are not elements of any V, may be reconstituted
as in Corollary 2.

CoroLLARY 4. Under the conditions of Corollary 3, if {Y3} s stationary and the
Vau are identical, then a stationary process {Xi} can be constructed satisfying the
conclusions of the theorem.

In this case clearly the probabilities given by (2.8) to (2.10) are stationary. In
particular, from (2.8) and the choice of R; in Corollary 3, any sequence beginning
and ending in states of the form (e, j) for e V, has stationary probability.
Sequences containing no such states have the stationary probabilities given in
{Y}. In the case k = 1, 2, - -- we guarantee stationarity of sequences starting
at time 1 by extending the process in a stationary manner to & = 0, &1, =2, - - -
and then using the distribution for (X, ---, X,) which is so obtained.
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