The Annals of Mathematical Statistics
1969, Vol. 40, No. 3, 743-763

ON THE SUPERCRITICAL ONE DIMENSIONAL AGE DEPENDENT
BRANCHING PROCESSES'

By KrisunA B. ATHREYA
Unaiversity of Wisconsin, Madison

1. Introduction and summary. Let {Z(f); ¢ = 0} be a one dimensional age
dependent branching process with offspring probability generating function
(pgf) h(s) = D j=op;s and lifetime distribution function G'(¢) (see Section 2
for definitions). If m(t) = EZ(t) is the mean function let Y (¢) = Z (t)/m(t).
Our objective in this paper is to study the limiting behavior of the process
{Y (¢);t = 0}. The main result is

TaEOREM 0. Assume Z(0) = 1,m = k' (1) > 1, G(0+) = 0. (Here —, and
—4 mean convergence in probability and distribution respectively). Then:

(1) D e jlogjp; = o implies Z(t)/EZ(t) =50
and
) D jloggp; < o implies Z(t)/EZ(t) —a W
where W 1s an nonnegative random variable such that

(a) EW =1,

(©) o) = E@"")  for u = 0 satisfies
3) o) = [3 hipue™))dG (y)

where o is the unique root of the equation m [ ¢~ dG (y) = 1

(¢) P(W = 0) = q the extinction probability

(d) W has an absolutely continuous distribution on the positive real axis and
the density function is continuous. That is, there exists a nonnegative continuous
function g(z) defined for x > 0 such that for 0 < 21 < @y <

@) Pl < W < 1) = [2g()da.

Kesten and Stigum [4] proved the above result for the case when G'(z) is
the step function

6)) Gx) =0 if =1
=1 x> 1.

This is the Galton-Watson process in discrete time. They considered the multi-
dimensional case. Athreya and Karlin [1] considered the case (here 0 < N < o)

6) Ge)=1—¢" for >0

=0 z = 0.
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This is the continuous time Markov branching process. Their approach was via
split times.

Levinson [6] established the law convergence of Z (t)/EZ (t) under conditions
slightly stronger than ours. Harris [3] claimed mean square convergence of
Z(t)/EZ (t) when h” (1) < « and the absolute continuity of W when in addition
to " (1) < w,1 — G(t) = O( ) for some ¢ > 0.

Our result is the sharpest known in this direction in as much as (i) we establish
the convergence of Z (t)/EZ (t) without any conditions, (ii) we give a necessary
and sufficient condition for the nondegeneracy of the limit random variable
W and (iii) when W is nondegenerate we establish the absolute continuity with-
out any extra assumptions.

The methods employed in this paper are all extremely simple. Among them are
a simplified and sharpened form of Levinson’s [6] arguments and a simplification
of Stigum’s [7] idea to prove absolute continuity of. W. One of the important
ideas used here is the exploitation of the underlying Galton-Watson process
constituted by the size {{.} of the different generations. The key to the under-
standing of the moment condition ), 7 log jp; < « is the simple Lemma 1.

Here is an outline of the rest of the paper. In Section 2 we describe the setting
and introduce the necessary terminology and notation. The functional equation
(3) is studied in detail in Section 3 where it is shown that a necessary and suf-
ficient condition for (3) to have a nontrivial solution is the finiteness of
Z jlogjp;. The next section explores the connection between the process
{Z(t);t = 0} and the underlying Galton-Watson process {{»;n = 0, 1,2, ---}
and shows that if D jlogjp; = « then Z(t)/EZ(t) —, 0. Assuming
Z jlogjp; < o the convergence in distribution of Z (t)/EZ(t) to a nonde-
generate random variable W is shown in Section 5 while Section 6 takes up the
proof of absolute continuity. The last section lists some open problems.

2. The basic setup and a lemma. Let {Z(t, w); ¢ = 0} be an age dependent
branching process 4 14 Harris [3] corresponding to the offspring pgf 2(s) =
> op;s and lifetime distribution function G (¢) and defined on a probability
space (2, §, P) where Q is the space of all “family histories” and & is a “big
enough”’ s-algebra of subsets of @ and P is a probability measure as (2, ) such
that the following interpretation of {Z (¢); ¢ = 0} is valid. We start the process
with a certain number Z (0) of particles. Each particle lives a random length of
time whose distribution function is G (¢) and on death creates a random number of
progenies whose pgf is A (s). All the offspring evolve independently of each other
and of the parent and in the same manner as the parent. Then Z (¢) can be re-
garded as the number of particles in the system at time ¢{. We now make

AssumPTION 1. P(Z©0,0) =1) =1.
AssumpTION 2. m=h(1-)< .
AssuMPTION 3. G@O+) =0.

Under these assumptions it has been shown in [3] that

(M) F(s, t) = BE(™) = [os"" dP ()
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where 0<s=1
is the unique solution to the integral equation
(8) F(s,t) =s(1 —G@))+ Jeh(F(s,t —u))dG(u) for |s| <1, t=0

among those satisfying |F (s, ¢)] < 1.
Further F(1,t) = 1forall¢ = 0 and thus assuring us that P (Z (t) < «) = 1.
Also under the same assumptions one has

) m(t) = EZ({, »)
is finite for each finite ¢ and is the unique solution of
(10) mit) =1—G@t) +m [om(t — u) dG ()

such that it is bounded on each finite ¢-interval.
It is also known that

(11) P(AuB) =1
where A = {w:Z( w) — o}
and B = {w:Z (¢, w) — 0}

and P (B), called the extinetion probability, coincides with ¢, the smallest non-
negative root of the equation A (x) = .

Thus if m < 1 then ¢ = 1 and so P(B) = 1 and hence Z ({, w) — 0 almost
surely (a.s.) ast— .

In order to make the problem nontrivial we now impose

AssuMPTION 4. 1<m< .

We call the process supercritical in this case.

The question that we seek to answer is what can we say about the limiting
behavior of Z(t)/m () as t — o. Theorem 0 of the previous section is the
answer. We break up the proof of Theorem 0 into several bits.

We need one more assumption.

AssumrTioN 5. G (t) is not lattice. (See [3] for a definition).

Since m > 1, and G(0+) = 0 there exist a unique positive number « such that

(12) m 3 e dG(t) = 1.
It now follows (see [3]) that

(13) limsse (m(t)/ce™) = 1

where

c= (m—1)/(am’ [T te™ dG(2)).

Thus it suffices to consider the limiting behavior of Z (¢)/ce*".
We finish this section with a lemma which explains the moment condition

2. jlogjp; < .
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Lemma 1. Let X be a nonnegative random variable with 0 < m = EX < o (of
course, E is the expectation operator). Then for any 0 < @ <

(14)  [Su[E@@™™) — e du < »
iff
(15) EX |log X| < .
Proor. Since EX = m we have the identity
(16) E(@E“™) —¢*
=E@E"™ —14+ wX/m))+1—u—¢" foral u =0.
Noting that for u = 0 we have 0 < ¢™ — 1 4+ u = %*/2 it suffices to prove that
a17) [0 Ble™™ — 1 4+ uX/m)} du < w
Hf (15) holds. Since ¢ “ — 1 4+ u = 0 for u = 0 exchanging orders of integration
the left side of (17) becomes
E{[sw ™™™ — 1 4+ wX/m)]du}  which equals
CE{(X/m) [0 — 1+ v) dv}.
But limr.. (f§ 072" — 1 + v)dv)(log T)™ = 1 and hence (17) holds
iff
E(X/m)|log (aX/m)| < o

which is clearly equivalent to (15). Q.E.D.
We shall find the following consequences of this lemma very useful.
CoROLLARY 1. Let X and Y be independent and nonnegative random variables
such that for some a > 0, EXe *" = 1. Then for any 0 < a < =

—a¥

(18) CUHE@E™ ) — e du < o
iff
(19) EX |log X| < .

Proor. If P(Y = 0) = 1 the assertion is the same as Lemma 1. If for some
8 > 0,P(Y > §) > 0 then the corollary follows from Lemma 1 by noting that,
in view of independence,

EXe ™ [log Xe | < =,
iff
EX |log X| < . Q.ED.

COROLLARY 2. Let h(s) = D imop;s° and G (t) be a pgf and distribution function

respectively. Let G(0) = G(0+) = 0. Let 1 < m = EX < «» and foru > 0

(20) V() = JTu{h(ue™) — ¢} dG(y),
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where « uniquely chosen to satisfy m f o e “dG () = 1.Thenforany0 < a < =,
O0<er<ili,

(21) [bu™@) du < » and Doaay (™) < o
iff
(22) 25 jlogjp; < .

Proor. In Corollary 1 take X to be a nonnegative integer valued random
variable with pgf 2 (s) and Y be a nonnegative random variable with distribution
function P(Y < ¢) = G(t) for all ¢ = 0. By monotonicity of ¥ (u) for u small
the two quantities in (21) are finite or infinite at the same time.

COROLLARY 3. Let h(s) = Do p;s’ be a pgf withm = D 31 jp; < . Define
A (u) on [0, 1] by .

(23) Aw)=m —u1 — h(l —u)).

Then A (u) is nonnegative and nondecreasing. Further, for any r and ¢ in (0, 1)
(24) Dm0 A(er™) < o and lim,;o Y0 A (") = 0

iff (

(25) 2= jlogjp; < .

Proor. For 0 = u =1
AQ —uw)=m— 1 —u)"'A — hw)).

But by mean value theorem the function (1 — %)™ (1 — h(u)) is nonnegative
and nondecreasing and Tm as w T 1 (7 stands for increasing). This shows
A(u) = 0and T in [0, 1]. By monotonicity Do 4 (¢r") < oo iff

[o Aer'ydt < oo
which is equal to

(26) (log.r)™ [Gv A (v) dv.

But

vVAW) = (hE@™) — e+ m[l — e — (u/m)] + (e — 14+ u)ju(w )
where 1—v=¢""

0<e®—1+42 =< 2°/2forxz = 0 we can conclude in view of (26) that (24)
holds iff

(27) SuHh(E™) — e du < »

Since z(1 — ¢ )" is =1 for # = 0 and bounded in any finite interval and

where ¢’ is a constant, 0 < ¢’ < .
The corollary now follows from Lemma 1 if we take X to be a nonnegative
integer valued random variable with 4 (s) as its pgf. Q. E.D.
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3. The functional equation. o(u) = [vh(p(ue ™)) dG(y). If Z(£)/ce* con-

verges in law to a limit random variable W then from the integral equation (8)
and bounded convergence theorem we can readily conclude that ¢ (u) = E "),

u = 0, satisfies the functional equation (3) which we recall here for ease of ref-
erence. It is

(28) o) = [T h(p(ue™))dG(y) for u = 0.

In this section we shall obtain necessary and sufficient conditions for the
existence and uniqueness of nontrivial solutions to the above functional equation.
For this purpose we define the following classes

(29) C = {pipmaps[0, ©) onto (0, 1],¢(0) =1, lim, o u (1 — ¢(w)) > 0}
(30) Co = {pipeC, limyou (1 —o@)) =6 -for 0 <6< o.
Throughout this section we drop our original assumptions and we need to assume
only thatm = A’ (1) > 1,G(0+) < m " and both the following situations do not
prevail simultaneously

(a) m is an integer and & (s) = §".

(b) There exists a d > 0 such that G(d+) — G(d) = 1.

To start with we have the following result on uniqueness.
TuEOREM 1. Let 0 < 6 < . If ¢1 and ¢ are both in Co and satisfy (28) then

1= 2.
Proor. Let

(31) v() = o) — e2(w)|/w  for u > 0.
Then from (28),
¥ (uw)

IIA

J5 I (er (we™)) — hea(ue™))|/ul dG (y)
< m [T (o (ue™) — @2 (ue™)|/u) dG (y)

since by mean value theorem |k (21) — h(z:)| S m|or — @2| for 0= a1, S 1.
Thus

(32) Y) = m[3 e ™)e ™ dG (y)
or Y (@) < By (e ™)

where X is a nonnegative random variable with P (X < z) = m [{ e “dG (y).
Iterating (32) we get

(33) V@) < By (ue ™)

where 8, = >t X;and X;,% = 1,2, -+, - - - are independent random variables

distributed as X in (32).
Since ¢; abd @2 are in Cy and for any v > 0

W) < [(e) — u — 60+ 10 — (1 — ea(u))u |
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we see that
(34) limy o [y (w)] =0

and away from 0, ¢ (u) is bounded by 2u™". Further since G (04 ) is less than m ™,
we must have & > 0 and EX > 0. And hence by strong law of large numbers and

(34)
¥ (ue ™) — 0 a.8.

Applying bounded convergence theorem we now get from (33)
Yyu) =0 forall u > 0.

Also ¢1(0) = 1 = ¢2(0) and hence ¢1 = ¢ . Q.E.D.

A necessary condition for the existence of a solution of (3) in C is given by the
following

TuEorEM 2. There exists a ¢ tn C satisfying (3) only if

(35) Di=e j(logf)p; < .

Proor. Suppose (35) does not hold and there exists a ¢ in C satisfying (3).
Clearly

0=g@)= (1 —e@)u’
(36) = [S{1 — hlp(ue™))}u™ dG (y)
=m [Tl — o ™)l — m™AQ1 — ¢(ue™™))] dG(y)
where 4 (u) is defined by (23). Thus
B7) 0=g@)=m[0ge ™)1 — m A(gue ™ )ue )™ dG(y)
E{g(ue™ )1 — m™ A (g (ue""  yue )]}

where X is as defined by (32) in Theorem 1. Since lim, ;o g (%) > O there exist
¢ > 0,0 < B, uo < 1 such that

(38) uSu=c=gu)=p>0.

Now by Corollary 3, A (») is nondecreasing and nonnegative and so if u < wuo
(37) yields

(39) 0<B8=g) = E{g(ue ™) exp (—m A (Bue *¥))}.
On iterating (39) we get for u < wuo
(40) 0 <B = g@) = E{glue ™) exp (—m™ Tones A (Bue ™))}

where S, is defined in (33). From (40) noting that g(u) is bounded by ¢ for
u = uo we have for u < u

(41) 0 <B = g(u) = cBlexp (—m ™" 27 A (Bue™™%))}.
We now claim that Y ;=1 A (Bue *¥) = o a.s. if (35) does not hold.
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The quickest way to see this is to note that
0 = EX = m [§ xe* dG ()

is finite and hence for some ¢ > 0, S; < j(6 + ¢) for all large j, a.s. But 4 (z)
is nondecreasing and hence for j large A (Bue *%) = A (Bur’) where 0 < r =
¢~ > < 1. However, from Corollary (3) we know that if (35) does not hold
then

Z;;O A (B’wrj) = o,

and this establishes our claim.
From (41) we see that for u <

0<B=gu)=0

which is absurd. Q.E.D.

We shall now show that (35) is a sufficient condition for the existence of a
solution to (3) in the class C; (i.e. in Cy with § = 1).

TuEOREM 3. Let po(u) = ¢ “ and opa(u) = (Ten) ) forn = 0,1, 2, -
where for any ofinC

(42) (Te™) () = [Th(e™ we™)) dG(y).

If (35) holds then ¢ (4) = lim,.« ¢, (1) exists for each u = 0, ¢ (») belongs to
C1 and ¢ (u) satisfies (3) i.e. ¢ = To.

Proor. Foranyn = 1let foru > 0
43) Yn () = loa(u) — @na(u)|/u.

Then as in Theorems 1 and 2 using mean value theorem we get the recurrence
inequality

0 < ¥nn(u) < m [T ¥a(ue™)e™™ dG (y)

= By, (ue ™)
where X is defined by (32) in Theorem 1. On iterating the above we get
(44) 0 = Y (u) £ By (ue )

where S, has the same meaning as in (33).
If we define ¢ () = u o1 () — o(u)] we can easily check that

V@) = u[EE ) — e,
lim, oy () =0 (use I’Hopital’s rule)
limy oy (u) = E(Ne ®")" — 1 (use I Hbpital’s rule)

where N and Y are two independent random variables and N is nonnegative
integer valued with 4 (s) asits pgf while Y is nonnegative valued with distribution
G (y). From the choice of « in (12) it follows E (Ne *¥) = 1 and so

lim, oy’ (u) = Variance of Ne™**
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which is strictly positive unless both N and Y are degenerate random variables,
a case excluded by us.

Thus there exists a uo > 0 such that y (u) is nonnegative and nondecreasing
for 0 < % = uo and hence

45) Yv(u) = $1(u) for u =< .
We shall now show that for any w > 0

(46) 0= 2 T¢.(uw)=¥(u) < », and

47) lim, 0¥ (u) = 0.

From (44)

0 =) £ D7 E @ (ue™™)).
Let G*(\) = [§¢™dG(y) for A > 0. Choose u > 0 such that
(48) e¢mG* (@ + 1) < 1.
Such @ u > 0 exists since mG™ (@) = 1 and hence mG™*(a + 1) < 1. For such a u
2XP(Sn S mp) = 3TP(Eze™)
< DT E(e )
=27 (Em@a+1) < »

by (48). For any u > 0 supocy<u¥1(y) = ¥1™ (u) is finite since limy o9 () = 0
and ¢ (y) is continuous on (0, « ). Let for any w > 0, no(u) be an integer such
that no(u)u = o ‘log (u/u). Thus for any w > 0 using (45)

0 < ¥(u) £ ¥ @)™ P@S, > nu)) + Dimi¥(ue(e™)*
+ 95 @) TP (S, < nu).

From Corollary 2 we see that D1 ¢(ue ") < o under (35). This establishes
(46). To check (47) choose u = uo so that ¢1(u) = ¢ (u). Then

0=¥(u) = 2XEWue™™))
S Y) TP (S = np) + TP (™)),
Butfor0 < r <1land0 < u = u,
20v@™) £ [Ty ur')dt = ([§vT ¥ @) dv)(log, 7)™
by the change of variable v = ur’. Hence by Corollary 2
limy o 2o ¢ (ur") = 0.

We know already that lim. oy (w) = 0. Thus (47) is established also. Clearly
(46) and (47) imply that lim,..e.(4) = ¢ (u) exists forallu > 0 and ¢ (w) € Cs .
To see this last point note that for v > 0

0= ulew) —eo)| < ¥(u)
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and hence
limy o lu ™ (1 —@@)) — 1] = limy o[u™ (1 —@o(u)) — 1 —u" (o (u) — o(u))]
= limulolu_l(l - (po(u)) - ll + hmulo\I/(u)

= 0.

That ¢ (u) satisfies (3) is obvious from bounded convergence theorem and the

relation
enr1(u) = Ton(u). Q.E.D

COROLLARY 4. For any 0 < ¢ < « let go(u) = ¢ (0u) where ¢ (u) is defined in
Theorem 3. Then oo (u) satisfies the functional equation T = ¢4 and s the unique
solution in C .

Proor. Trivial.

4. The imbedded Galton-Watson process. It is well known [3] that if {a(w)
denotes the number of particles belonging to the kth generation for the family
history corresponding to « then the sequence of random variables {{,(w);
n =20,1,2 ---} (note that we can always assume that the s-algebra on & is
big enough to make the {,(w)’s random variables) forms a Galton-Watson
process in discrete time with A(s) as its associated pgf. If G(04) = 0 and
m = h'(1—) < o« then one can construct the process {Z (¢, ); t = 0} in two
stages. First one gets the sequence {{o(w) = 1, {1 (w), f2(w), -+ -} and then in-
dependently generates lifetimes corresponding to the particles that have been
created and construct Z (¢, w) as those particles that are “born before or at ¢”
and “alive” at ¢. These terms can be precisely defined but as this is all done in
[3] we omit details. For any ¢ = 0 and « in © we can write

(49) Z(tw) = Ximo Vit w),
where fork = 0,1,2, -+, -+

Yi(t, ) = 2547 8t 0) i ful(w) # 0

=0 if fi(w) =0

and forj = 1,2, -+, {i(w)
6kj(t, w) = 1

if the jth particle belonging to the kth generation is born before or at ¢ and is

alive at ¢t and O otherwise.
That is for any k and ¢, Y (¢) represents the number of particles belonging to

the kth generation present at time ¢.
Let §1 = o (fo(w), {1(w), -+, (@), -+ ) be the sub s-algebra of F generated

by the random variables {o(w), {1(w), falw), <+, -+
One of the immediate consequences of (49) is to note that the mean function

m(t) = EZ (i, w) can be written as
(50) m(t) = 2icom®* (@u(t) — Gra(t))
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where G, (-) is the n-fold convolution of G(-) with itself. Of course, (50) is
the well known solution of the socalled renewal equation (10) that m (¢) satisfies.
We arrive at (50) via the following simple
LemMma 2. For any k and t one has

(51) E(Y:(t)|%1) = Gpet)  as.
where pk(t) = Gy (t) - Gk_|.1(t).
Proor. If ¢ (w) = 0 then (51) is evident. If {3 (w) # O then by symmetry
E(Yi(t)[%1) = B @u(t, @) |51)
= g'kP(Bkl(t, w) = 1 |‘:F1)

A particle belonging to the kth generation is “born” at or before #” and “alive
at ¢’ if and only if the sum of the life times of its parent, grandparent, great
grand parent, etc. is less than or equal to ¢ while if you add the life time of this
particle to this sum it exceeds ¢. Thus by the independence of life times and the ¢’s

P(akl(t, w) =1 |if1) = PI’Ob (Sk é_ t < Sk+1)

where S, = Y1+ Yy -+ 4+ Yifork = 0,1,2, --- and Y/’s are iidrv with dis-
tribution function G (¢).

This proves the lemma since px (t) = Prob (Sy = ¢t < Sp1). Q.E.D.

Clearly E (¢4 (w)) = m" if we assume P ({o(w) = 1) = 1 and in this case Lemma
2 yields (50).

Now we are ready to prove (1) namely that unless (35) holds Z (t)/EZ (t)
must go to zero in law.

TurorEM 4. If (35) does not hold then

Z(t, )/m(t) — 0.

Proor. We know from Kesten and Stigum’s result [4] for the Galton-Watson
process that if (35) does not hold then

(51) liMp e &n(w)/m” = 0 a.8.

Let 71, 7. and e be three arbitrary positive numbers in (0, 1). By Egoroff’s
theorem (see [5]) there exists a set A & F; such that P(4) > 1 —mandon 4
the convergence in (51) is uniform. Thus for any 5, > 0 there exists an N such
that w e A, n = N implies {»(w)/m" < 72. Thus

(52) P@ZE w) > en(t)) < m+ Pw:Z(t 0) > en(t), 0oed).
But
PiZ{t o) >en(t),wed) < P ducn Vi, ©) > 27m(t), wed)
+ P(w: Y ion Yi(t,0) > 27'm(t), we A)
= Bi(t) + B:(t) (say).
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Now
Bi(t) £ P(w: 2 psn Yi(t, 0) > 27m(t))
< 27 B[S an Vit ©))/m(0)]
= 2 [Dan mpi (1)) /m(@)].
Since px(t) | Oand m(t) T « ast T
(53) lim supi. B1(t) = 0 for every ¢ > 0.
Also if D is the set {w: D_row Yi(t, @) > €27 'm(t)} then,
B:(t) = Elxa(w)xp(w)]

where x4 (w) as usual is the indicator function of the set A. Since 4 ¢ by
conditioning an &, we get
By (t) = Elxa(w)Elxp (@) [F1)]

< 2(em(t))E (xa (@) 2okzn Sip(t))

< 2(em (8)) ' 2pan mpi (2))
2 'ge . '
This with (52) and (53) implies for any ¢ > 0

lim Ut P (0:Z (t, w) > em(t)) < m + 2€ 2.

IA

But #; and 7, being arbitrary the lemma is now proved. Q.E.D.

REMARKS.
1. Note that all we need for Theorem 4 is that G (¢) be such that the representa-

tion (49) and Lemma 2 are valid. This does not need, for eg, that G(0+) = 0.
2. Although Theorem 4 asserts only convergence to zero in probability one
could with a little more work establish the convergence with probability one.

We omit this.

5. Convergence of Z(t)/EZ(t) to a nondegenerate distribution. In Section 4
we proved (1) which ways that (35) is a necessary condition for Z (t)/m(t) to
converge to a nondegenerate limit distribution. This section will establish the
sufficiency of (35). We shall, in fact, show that Z (t)/m (t) converges in law to a
distribution on the nonnegative reals whose Laplace transform or the moment
generating function is given by ¢ (u) of Theorem 3. We follow closely Levinson’s
[6] route. The first step is

THEOREM 5. With the notations and assumptions of Section 2 we assert that if

(35) holds then
(54) lim, | o SUP:z0 |H (u, t)] =0

where H (u, ) = (m(0)/ec™) — (L = F1u, 1)}/) and Fi(u, ¢) = F ("7, 1)
with F as in (7).
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Proor. Since H (u,t) = Eu '[uX — 1 + ¢ “*] where X is the random variable
Z (t)/ce* and since ' (¢* — 1 + z) = 0 for z > 0 and nondecreasing we have
H (u,t) = 0 and nondecreasing in % for all ¢ > 0 and « > 0 and thus |H (u, t)| =
H (u, t). From (8) and (9) we get

0= Ht) = [cu {muem(t—y) — 1+ hFr(ue™t —y))} dG (y)
+ [@/c)e™ — 1 + exp (= (u/c)e “VNu™ (1 — G(t))

(55) < [ou{ue mH (ue™™, t — y)
+mll — Fi(ue™, ¢t — y)]A (1 — F1(ue™,t — y))} dG(y)
+ (/2

using the fact 0 < (¢ ° — 1 + ) £ (2*/2) forx = 0 and both 1 — G(¢) and
¢ *' are less than one for ¢ > 0. Here A (u) is the function defined by (23). For
any T' > 0,4 > 0 let

(56) Hr(u) = SuPthH(u» t).

Since H (u, t) is a continuous function of % and ¢ in [0, « ) there exists a i
in [0, 7] such that

(57) Hy(u) = H(u, t).

Since H(u, t) converges to zero uniformly for ¢ in finite intervals we need to
consider only the case when {p — as T — .
Also from (13) and the nonnegativity of H we get

(58) 0= (ue™) (1 — Fi(ue ™, t —y)) < (™) 'mit —y) S
where c; is some constant independent of u, y, t all = 0. Thus (57) yields
(59)  Hr@) = ["H@ue ™, to — y)dG(y) + ad (cu) + (u/2),

where function G(») = m [; e dG(y) in v is continuous, nondecreasing, is
zero at zero and one at . Clearly, there exists a » such that G(») = 1. For
to > v, observe that since H (u, ¢) is nondecreasing in » we have

Hue ™ to—y) < Hr(u) fory in [0, v]

and
Hue ™ ty—y) < Hr(ue ™) foryin (v, t).

Breaking up the integral appropriately we get from (59)
Hry(w) = G)Hrw) + G)Helue ™) + ad(ow) + (u/2¢)

or
Hr(w) £ Hr(ue ™) + 2c4 (cw) + (w/26%)
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which on iterating yields

60) Hr(u) = GHu(l — ) + 20 D 120 A(cue ™) + Hp(ue™).

Noting again that for 0 < 7' < 0 lim, o Hr(u) = 0 we have from (60)

61) Hr(w) = GMul — ™) 4 oA (aue™) = H(u) (say)

and the right side being independent of 7' we get on letting 77 T «
supesoH (u, t) < H (u).

It remains to show that lim, ;o A (v) = 0. But this is immediate from (35)
and Corollary 3. Q.E.D.

The converse to the assertion in Theorem 4 is an easy consequence of the
following result which makes crucial use of the above theorem.

TraEOREM 6. With the notations and assumptions of Section 2 we assert that if
(35) holds then for each 0 < u < o

(62) limess 0™ (F1(u, 1) — ¢ ()] = 0

where ¢ (w) is defined in Theorem 3 and F1 is defined in Theorem 5.
Proor. Let

(63) K(u,t) = u ' {Fi(u, t) — ¢ (u)}.
First observe that
(64) lim sup. o lim supet« |K (u, t)] = 0.
This follows easily by majorizing K (u, t) by
K (uy )] < [ Fa(u, t) — 1) = (m(t)/ce™)|
+ | @)/ce”) — 1] + |1 + w7 (1 — o(w))],

and then using Theorem 5, (13) and Theorem 3. We are aiming at proving (62)
or equivalently

lim sup: e |[K (4, t)| = limz.e (Supezz |K (4, t)|) = limrj Kz (w) (say) = 0.
By usual arguments
K@, t) = [¢ @) {h(Fr(ue™, t — y)) —h(p(we™))}e™™ dG (y)
+ 7 (ue™) e — hle (ue™))}e ™ dG )

é Il + Ig (say).
Now

L] = [Tue ™™ — 1]1dG @) + [T (1 — hle@e™)l/ue™)e™ dG(y)
S ™)+ m [T (e )T A — o (ue™))e ™ dG (y)
(by mean value Theorem on &)

(e’ 4+ 1 = G@)) (see (59) for a definition of G)

IIA
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since 0 < w (1 — ¢(u)) < 1. Fort > T
Ll = [0+ [i—e = Iu + Iy (say).
Let t > 2T. Then, in view of (64), and mean value theorem on A
[Ie] = (1 — G(T)) where ¢, is some constant.
As for Iy for any ¢ > T again by mean value theorem on A
Hul = m [T K @ue™,t — y)e ™ dG(y) < [ Kr(ue ™) dG (y) < EKy(ue™*¥)

where X is a random variable with G as its distribution function.
Combining the above arguments we get for ¢t > 27

K, )] = EKz(ue™™) + a2l — G(T)) + (™)™ + (1 — G(T))
or equivalently
Kyr(u) £ E(Kr(ue™™)) + (™) + (@ 4+ 1)1 — G(T)).
On letting T — o this yields by bounded convergence theorem
K (u) £ EK (ue™*¥)
which on iteration yields
(65) K(u) < EK (ue”**")

where S, = X1 4+ .-+ 4+ X,, X, are iidrv with the same distribution as X.
By strong law of large numbers and bounded convergence theorem (65)
implies for any v > 0

0=K(@u)=K©O+).

But K(0+4) = 0 by (64) and the theorem is proved. Q.E.D.
It only remains to prove (¢) and (d) of Theorem 0. We turn to this now.

6. Absolute continuity of W. Just from the facts that E(e ") coincides with
¢ (u) and hence satisfies (3) and EW = 1 we can deduce a lot of things about W
the most important of all being the absolute continuity of W. If the higher
moments of the offspring distribution exist, one can, by differentiating both
sides of (3) determine the corresponding moments of W (see [3]). Throughout
this section we assume (35) holds so that P(W = 0) < 1.

Our proof of (4) depends on the following lemma on characteristic functions.
We state the result in a slightly more general fashion than we need.

Lemma 3. Let F (z) be a cumulative distribution function (cdf) on (— «, ).
That is F (z) is nonnegative, nondecreasing and left continuous, F(—o) = 0,
F(w)=1.LetF(0+) — F(0) =p 2 0. Let¢(t) = [7 ¢ dF (x) be the charac-
teristic function of F (x). Suppose

limeo [ () — p| =0, [F2|z|dF(z) < « (sothaty' (¢) exists for allt) and
@) d < .
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Then there exists a nonnegative continuous function g(u) defined for all real u
except at 0 such that
(67) F@) —F0O+) = [tigm)du  for >0 and
FO)—F(x) = [2g(u)du for z < 0.
Proor. If p # 0 set
F*@) = 1 —p)'F(z) if z<0
1 — p)[F(x) — p] if > 0.
Then F*(z) is a cdf with 0 as a continuity point. Also
V@) = [faedF* (@) = (1= p) @) — D).
Thus our assumptions imply )
lim; e ¥*(t) = 0, [T2|a|dF*(z) < © (so that ¢*'(t) exists for all ¢) and
LY @)ld < .

Therefore, if the theorem is true in the case p = 0 then there exists a continuous
nonnegative function g* (u) defined for u 5 0 such that

F*@) — F*(0) = [fg"@)du if = >0,
F*(@) — F*(z) = [2g" (u) du if z=0.

This and the definition of F* imply (67) with g(u) = (1 — p)g* (u). Hence we
need to consider only the case p = 0. Further we need to establish (67) only for
# > 0. The argument for x < 0 is entirely analogous. By a classical inversion
formula [5] for any two continuity points z; and @ of F (x) with 0 < & < 7 < 0

68) F(m) — F(m) = limpo [Zo{ (€™ — ¢ ™) (2rit) "}y (t) db.
But
T, @rit) e — W) dt = [Tr @r)T ([ e duy (@) dt.

Since ey (t) is a bounded function of ¢ and w in the finite set
[x1, 2] * [—T, +T] on interchanging orders of integration we get

F () — F (1) = limrw [22 g2 (u) du
where
(69) gr(w) = @) [Lre My (t) dt.
On integrating by parts, since 0 < &1 S u = 22 < ©,
gr(u) = Qmu)7 ™Y (=T) — e T (T)] + Qru) ™ [Tre ™™y (¢) dt
by hypothesis limz.e [¢ (£=7)| = 0 and
Tole ™y @) de < [X2W )] dt < .
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Hence
SUDz, <ugss 720 |gr (U)] < o and
limzwgr (@) = g(u) existsand = (2ru)™ [Toe ™y () dt.

Clearly since [*&|¢'(¢)| dt < oo, g(u) is a continuous function of « for w > 0.
(In fact, ug (u) is uniformly continuous on u > 0.)
From (69) we now get by bounded convergence theorem

F(x) — F(m) = [2g(u)du

which on letting z; | 0 through continuity points of F (z) becomes (67) for any
continuity point x.. Since F is left continuous and the continuity points are
dense on the real line (67) holds for all z > 0. Q.E.D.

We now return to the proof of absolute continuity of W. All we need to do is
to check that the hypotheses of Lemma 3 hold for F (z) = P (W =< z). This we
do in the following lemmas.

LEMMA 4. The distribution of W is not concenirated at one point.

Proor. Since EW = 1 and P(W = 0) = qif ¢ > 0 there is nothing to prove.
If ¢ = O then since EW = 1, W is concentrated at one point means
P(W =1)=1.Thuse(u) = E(e ") = ¢ and since

o) = [Thlpe™))dG@y) we get ¢ = [Th™™)dG().
But G(0+) = 0 and h(s1) < h(se) for0 < s; < s = 1 implying

e = [The™ ™) dGy) < e
which is absurd. ‘

Lemma 5. If we denote E (e*7 ) by ¢ (it) then |¢ (it)| < 1 fort 5 0.

Proor. From Lemma 4 we infer that (see [2], pp. 475) there exists a6 > 0
such that

lo(it)] < 1 for all [f] < 8, ¢ # 0.
Clearly ¢ (i) satisfies
o(it) = [T hlp(ite™))dG (y)
or
¢ (it) = Eh(p(itX))
¥ and Y is a random variable with
P(Y <) =G for t20.

Since G(0+) < 1, there exists an > 0 and < 1such that P(X =1 —1n) > 0.
Choose ¢ such that |t| < (1 — n)™". Then

lo@)| < Eh(le@X)]); X<1—9+PX>1-—n1).
On the set {X < 1 — 7)} we must have 0 < [i¢X]| < 6 since P(Y < ) = 1.

o

where X = ¢
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Hence h (| (itX)|) is strictly less than oneon {X <1 — 9} if0 < || < 8(1 — 5)%
Thus
lp@it)] <1 for 0<t| <o
=lo@) <1 for 0< |t <61 —1n)"
=lp@t)] <1 for 0<|f| <@ —9)"

for any nonnegative integer r. Q.E.D.
LemMma 6. lim supj¢-w |¢ (5)] < 1.
Proor. Suppose not. Let lim supi.« ¢ (%) = 1. Let 0 < ¢, < . Then by

Lemma 5 p ()| < 1. Let 0 < e < 1 — |o(ity)].
Since |p(¢t)| is continuous in %, goes to 1 as ¢ — 0 and by assumption
lim sups.« | (©t)] = 1 there exists & < # and & > ¢, such that

@) <1 —e for H<t<t
lo (itz)] = le (i) = 1 — e
But as in Lemma 5
(1 =€) = lp(i)| = |Eh(p (i6X))| < Elh(lp (it:X)|; X > tity ]+ P(X S tuty ).
That is |
1 —e=<h(l—ePX >t") + P(X < tty")
(70) or PX >t )l —h(1—el<e
or  P(X >l —h(l—ele' <1
Let e | 0. Then ¢; | 0 and since &» = £
PX>th)2PX>tty") ] P(X>0)=1.
Also 1 —=h1—=e)' T m.

Thus (70) implies m < 1 and this contradicts our assumption that m > 1.
LemMMA 7. lim sup|¢j-« j¢ (i)] =< q.
Proor. Let Br = supysr o (it)].

Let ¢ > 0 be arbitrary. For any e

le(@t)] < Eh(le(itX)]); X =2  + P(X = e).
Hence choosing |[¢{| > T
(V1) Br < h(Bre) + P(X = e).
Let T T «.ThenBr | 8= lim supsj-« ¢ (2t)]. Now (71) implies
B=h@B)+PX =e)
and e being arbitrary

B = h(B).
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By Lemma 6, 8 < 1. Also h(z) is convex in [0, 1]. Thus 8 < q. Q.E.D.
LemmMa 8. lim sup)¢j» ¢ (i) — ¢q| = 0.
Proor. As in Lemma 5

o@) — g = Elh(e@tX) — q)]
= B[R (p(itX)) (e (itX) — )],

where R@)= (z— ¢)'(h(z) — q), x# g,
= h/(q); z=4q
Let lr = supssz o (it) — ql.

For any ¢ > 0 proceeding as in Lemma 6
(72) lr £ R (Bre)lre + cP (X <€)
where ¢ = 2 supo<.<1 R (z) < », By is as defined in Lemma 7. On letting 7' T oo
(72) yields (sincer | 8 < gandlim, s R (z) < lim,., R(x) = h'(q) = v (say))
(73) l=vyl+cP(X <€)
where
I = limrye lr = lim supjsj-« [¢ (i) — g.
Since € > 0 is arbitrary we get from (73)

I =4l
Buty = '(¢) < 1 and [ s finite and so = 0. Q.E.D.

Lemma 9. 20’ (t)] dt < wo.

Proor. Since ¢ (it) = Eh(p (1X ) where X is as in Lemma 5, we get
(74) ¢ (it) = EI (¢ (itX))¢' (itX)X].

By Lemma 7, there exists a 7 > 0 and 6 in (0, 1) such that
(75) W (pGy))| <6<1 for |yl > =
Let

Mr = [iqucrle’ @) dt if T>r
=0 if T=sit
Then

Mz = [iquer BIN (lo itX)]) ¢’ (i£X )| X] dt
= B (frx<imi<rx ' (le Gy)) e Gy)| dy)
= E([rciyi<rx + [rx<ini<r)
0EM rx + [1u<- k' (lo Gy)|) I Gy)| dy
=0EMrx + ¢ (say)

IIA
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where c is a constant independent of 7. Iterating
(76) My < 0E(Mox,xyx,) + @ +60"+ - +0+ 1)

for any integer n. Applying strong law of large numbers to the variables —log, X
we conclude that P, = XX, - - - X, — 0 a.s. Since M rx,...x, = My for all n by
bounded convergence theorem (76) yields now

77) Mr<cl—6)"< o
The right side of (77) being independent of 7' we get on letting 7' T .
Jiuse e’ @) dt < .
But ¢’ (i) being continuous is bounded in [—, 7] and
fus e @ldt < ». QE.D.
The assertion (4) now follows quite easily from Lemmas 3, 8 and 9. This with
Theorems 4 and 6 completes the proof of Theorem 0, our main result.

7. Concluding remarks. A strengthening of Theorem O would be to prove
that Z (t, w)/m(t) converges with probability one to a random variable W (w).
For the cases when @ satisfies (5) or (6) martingale arguments yield this very
quickly (see [3], [1]). For a general G too we conjecture that a martingale argu-
ment would work. The support for this comes from the following (see [3] for
details).

Let:

Z (z, y, t) = number of particles living at time ¢ and being of age
less than or equal to y given that the branching process started
with one particle of age x at time ¢ = 0,

M(ﬁl), Y t) = EZ(IIJ, Y, t)y

(78) V) = (1 — Q@)™ [7e ™ dG (),
A@) = (Jse @ — @) d)(JTe™a — G@)) dt)™,
Vo= D20 V() where 1,22, - , Tz

are the ages of the Z (¢) particles in the system at time ¢.

One can now verify that M (z, y, t) satisfies an integral equation similar to (10)
and that V(z) is a rlght eigenfunction for M (z, y, t) with eigenvalue ¢*‘. That

is,
(79) SV @) &M (z,y,t) = €V (@).

This implies that the process {V:(w)e *‘;¢ = 0} is a martingale and this being
nonnegative we get

(80) limew Vi(w)e ™ exists and = W (w) (say).
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Now look at V:(Z (2) )", of course only on the set of nonextinction. If we could
conclude that this converges to a nonzero quantity with probability one then we
get from (80) that

(81) lim;.. Z (t)e **  exists with probability one.

The measure 4 (z, t) = (Z (y, z, t))(Z(t)) ™" is the age distribution at time .
Also V (z) is a continuous function with values in [0, 1]. So if the age distribution
converges with probability one then we are done since

(82) ViZ )" = [ V(@) d:A (2, 0).

At this moment the convergence of age distribution A4 (z, ¢) remains a con-
jecture. One can show that 4 (z, ), if it converges to something, that limit must
be A (x). For this reason 4 (z) will be called limiting age distribution. The quantity
V (x) is called reproductive value by Harris. (See [3] where the reader may find
more material on this subject.) If one proves (81) then (1) will follow from
Theorem 2 and we don’t need the {, argument given in Theorem 4.

Another open problem is to find the relation, if any, between the limit dis-
tributions of (m (t))7'Z (t,») and ¢, (w)m " assumingm > 1and Y_; jlog jp; <'
so that they are nontrivial.

It will be useful i in studying the order of magnitude of Z () — m @)W (pro-
viding Z () (m (t))™" converges to W with probability one which is the case when
G satisfies (5) or (6)) to know the relation between the tails of the distribution
{p;} and the distribution of W.

The treatment here can easily be adapted to the simpler case when @ satisfies
(5) thus yielding an easier proof of one type case of the theorem of Kesten and

Stigum [4].
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