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DENSITY FUNCTION
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1. Introduction and summary. Let X, ---, X, be independent random
variables identically distributed with absolutely continuous distribution func-
tion F and density function f. Loftsgaarden and Quesenberry [3] propose a con-
sistent nonparametric point estimator 7,(z) of f(¢) which is quite easy to com-
pute in practice. In this note we introduce a step-function approximation f,* to
f., and show that both f, and f,* converge uniformly (in probability) to f,
assuming that f is positive and uniformly continuous in (— o, ). For more
general f, uniform convergence over any compact interval where f is positive and
continuous follows.

Uniform convergence is useful for estimation of the mode of f, for it follows
from our theorem (see [4], section 3) that a mode of either f, or f,* is a consistent
estimator of the mode of f. The mode of f,* is particularly tractable; it is applied
in [2] to some problems in pattern recognition. From the point of view of mode
estimation, we thus obtain two new estimates which are similar in conception
to those proposed by some previous authors. Let k(7 ) be an appropriate sequence
of numbers in each case. Chernoff [1] estimates the mode as the center of the in-
terval of length 2k(n) containing the most observations. Venter [5] estimates
the mode as the center (or endpoint) of the shortest interval containing k(n)"
observations. The estimate based on f, is that z such that the distance from z
to the &(n )th closest observation is least. Finally, the estimate from £, is that
observation such that the distance from it to the k(7 )th closest observation is
least.

2. The result. Choose a non-decreasing sequence of positive integers, {k(n)},
such that k(n) — o but k(n) = o(n). For any real number z, let ryw)(2) be
the distance from 2z to the k(n)th closest of the observations X;, -+, X, .
Then the univariate form of the Loftsgaarden-Quesenberry estimator is

fa(@) = {(k(n) — 1)/m}{1/2rum (2)}.

We define also the random step-function fn* as follows: let X1, < Xon
X.. be the order statistics from X, --+, X, . Then

f.5@) =0, ife < Xy orz = X
=fn(in); ifX’in§Z<Xi+1,n,' i=1,-~-,n—1.

A
A

TueorEM. If f(2) is uniformly continuous and positive on (— o, ©) and
(log n)/k(n) — 0, then for every ¢ > 0
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(2.1) PlSUp_w<sce |fn(2) — f(2)] > ] =0
and
(2:2) PlSUP—wcecw |fa*(2) — f(2)| > € — 0.

Proor. We will abbreviate (2.1) by f, — f (UP) and denote convergence in
probability by a, — a (P). Define
Uiy (2) = F(z + 15wy (2)) — F(2 — man (2))-
We show first that
(23) {n/(k(n) — 1)} Urw(2) — 1 (UP).

By definition of rxwy(2), the interval [z — 74y (2), 2 + 71y (2)] contains ex-
actly k(n) observations, one of which falls at an endpoint of the interval. Sup-
pose the order statistic X, is the lower endpoint. Then

(24) K THF (X g4im) — F(Xgrim} < Usw(2)

< 2P (Xgrim) — F(Xqt i)}
with the conventions F(Xy,,) = 0 and F (X, 1,,) = 1. Upper and lower bounds
having the same distribution as those in (2.4) exist when X, is an upper end-
point. (It is stated in [3] that Uy has the beta distribution of one of the sums
of elementary coverages in (2.4). This is false, since with probability one only
one endpoint of the interval coincides with an observation; the modifications

required to correct the proof of [3] are trivial.)
It is well known that »

F(Xuw), F(Xw) — F(X1), -+, 1 — F(Xua)
have the same joint distribution as
Yl/Sn-ll y T Yn+1/Sn+1 )

where Y1, - -+, YV,41 are independent exponential random variables with mean 1
and S,41 = Y1 + -+ 4 Y41 . So the upper and lower bounds for {n/(k(n) —
1)} Uk(ny obtained from (2.4) will converge to 1 (UP) if we can prove that

(2.5) maXocigawmr ()} 2EHY Vi/(n 7 8)} — 1] — 0 (P).

Since n 'S, — 1 with probability one by the law of large numbers, (2.5)
will follow if we can show that the sums {k(n)} ™" > it%™ ¥, are uniformly near
1 in probability. For any ¢ > 0,

P, = Pffor some ¢, | D i3 (V; — 1)| > k(n)e
(2.6) < 2 P[2ERY (V5 — 1) > k(n)e]
+ 2L PSR (Y5 — 1) < —k(n)e].
Using the fact that P[X > 0] < E[e**] for any random variable X and ¢ > 0
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such that the right side is finite, we obtain
P25 (Y5 — 1) > k(n)e] < Elexp {(X ¥, — k(n) — k(n)e)}]
= {1 — O, o<it< 1L

(Recall that a sum of k(n)Y s has the gamma distribution with parameter
k(n).) Choosing the minimizing value ¢t = 1 — (1 + )" gives the bound
{(1 + €)e™}*™. A similar bound holds for each term of the second sum on the
right side of (2.6). Therefore P, < (n + 1)a(e) ™ ™, where a(e) > 1 for ¢ > 0.
Since (logn)/k(n) — 0, P, — 0 and (2.5) is proved.

It follows from (2.3) that Uiwy — 0 (UP) and hence, since f is everywhere
positive, that r,y — 0 (UP).

To conclude (2.1) we need only (2.3) and the fact that Usy/2remy — f (UP).
Since f is uniformly continuous and 74,y — 0 (UP), this is immediate from the
estimate

Uk (2)]/[2r0ny (2)] — f(2)]
(2.7)

| [2rece ()7 [257 [£(2) — f(2)] dY
max {[f(¢) — f(2)]:2 — rem(z) S ¢
S 2+ nw(2)}.

The argument for (2.2) is slightly longer. Let 7(z) be the index such that

IIA

Xicyn = 2 < Xiey 41

For any compact interval I, the probability that X, and X, fall outside T ap-,
proaches 1 as n — o, by positivity of f. Thus 4(z) is defined for all zel with
probability approaching 1 for large n. The Glivenko-Cantelli theorem and uni-
form continuity of F~' on [a, 1 — o] for any « > 0 give that

(2.8) Supzer [ Xi@ym — 2| — 0 (P).

From (2.8) and the fact that ..,y — 0 (UP), we can conclude by an estimate
analogous to (2.7) that

SUPzer |[[Ukiny (Xicayn )/ [2rkemy (X iy )] — f(2)] — 0 (P)
and hence, using (2.3), that for any compact interval I and any e > 0,
(2.9) limy e Plsupzer |f2*(2) — f(2)| > ¢ = 0.
If we can establish that for any ¢ > 0 there is a compact interval I. such that
(2.10) limyse Plsup,er, |f.*(2) — f(2)| > € = 0,

this with (2.9) will imply (2.2).

Since f(z) — 0 as 2 — =, we can choose a compact interval I* = [a, b]
such that f(z) < ¢/2 outside I*. Then by (2.1), f.(z) < e for all z ¢ I* with
probability approaching 1 asn — . Let I, = [a, b + c] for some ¢ > 0. Then



1502 D. S. MOORE AND E. G. HENRICHON

by (2.8) and the fact that P[X;, < @, X,.. > b + ¢] — 1, we have that
P[Xiyn g I for all z 2 I with Xy, < 2 < X — 1.

Thus with probability approaching 1, £.¥(2) is either 0 or f,(X:,) for some
Xin 2 I*, for all z 2 I, . This establishes (2.10).

3. Acknowledgment. We thank the referee for the remarks in the Introduction
concerning the relationship of several estimates of the mode.
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