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DENSITY ESTIMATION BY ORTHOGONAL SERIES!

By GroOFFrREY S. WATSON

There has been much discussion of density estimation by kernel methods (e.g.,
Whittle (1958), Parzen (1962), Watson and Leadbetter (1963)). Thus, given a

random sample 71, - - - , Z, from the density f(z), the estimator
1 - fo=1/n 2iabu(z — m)

has minimum integrated mean square error (M.I.S.E.) if

(2) ¢, = los*/{n 7L 4+ (n — D)o}

wheres, = [ €'6,(x) dt, ¢; = [ € f(x)dz. Whittle introduced Bayesian argu-
ments to find the optimum kernel; he assumed a covariance function for the
values of f(z) at different z values.

Tt is obvious that orthogonal series estimates could be used if it is assumed that
f(z) = 2.0 ampm(x), where (¢m(z)) is an orthonormal basis. Several papers
(Cencov (1962), van Ryzin (1966), Schwartz (1967), and Kronmal and Tarter
(1968)) have considered this possibility. The estimator that springs to mind is

(3) fn*(x) = Z;o xm(n) am‘Pm(x)
where
(4) Um = 1" 2okt om(). *

and the sequence {A»(n)} is chosen to improve the properties of f (@) e.g., to
make f,*(z) a M.L.S.E. estimator in its class. The papers of Cencov, van Ryzin
and Schwartz use a special sequence {An(n)}; they set Ap(n) = 1,m =1, .-+,
M(n), An(n) = 0, m > M(n), and concern themselves, in part, with the de-
termination of M (n). Now

J=E [ (f@) — f.*@) de = 220 E(am — An(n)am)”

> {an(1 = ()’ + 07N (1) var (om(@)) }.

Hence

(3) Ma(n) = aw/law’ + 07" var (on(2))],

ie.,

(5) An(n) = {an'/E(en)} /(01 4+ (n = 1) an’/E(en)]}
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Thus
(6) min J = 38 [an’ (B(en’) — an)l/[E(en’) + (m — 1)an]
= 220 an var (¢n)/(var (om) + an’).

Since an’/E(om’), like [¢]*, lies in (0, 1) the similarity of (2) and (5) is striking.
Asn — «, Au(n) — 1 for fixed m. Furthermore, if one defines a symmetric func-
tion k.(-, -) by

" - Fu(2,9) = 28 An(0)om(@)on(y),
then
(8) 0 i ka(y @) = 2 A1) G ().

We note that £.(z, y) tends (as n — o) to the Dirac Delta function with repre-
sentation Y ¢m()om(y). The identity would then be complete if the formal
manipulations above could be justified. They can be if we work on a finite inter-
val and f and {¢.} are square integrable. The writer has used the series method,
without the weights {M.(n)}, many times in connection with goodness-of-fit tests
(e.g., Watson (1967a), (1967b)) where the range of the distribution is (0, 1)
and ¢n(z) = exp (2mimz).

The choice (5) serves more as a standard than as a practical suggestion since
am/E(en’) will rarely be known in practice. (The same is true of (2).) Since,
from (5) with m fixed, An(n) — 1 asn — o, there is a strong reason to use

(9) Am(n) =1, m=0,---,M(n)
0, m > M(n)

Il

in which case

(10) J = Z(I)ll(n) n var (om) + Z;} (n)+1 O‘m2-

The comparison of (6) and (10) suggests that the choice (9) will be nearly opti-
mal when the a.(m < M(n)) are large compared with n~" var (¢,), and the
am(m > M(n)) are negligible. As this should usually be the case for some M (n),
it is seen that our suggestion cannot lead to estimates much better than those
based on (9), provided M (n) is chosen to minimize (10). This leads to the esti-
mators discussed by Cencov. To discuss our estimators further theoretically,
classes of densities would have to be defined in which the asymptotic behavior of
am’/E (o) is the same. '

In practice both the series and kernel methods must be used experimentally
(i.e., (1) must be tried with different 8,(-), (2) with different {A.(n)}, (9) with
different M (n)) until the result seems acceptable. Thus there seems very little,
in either theory or practice, to recommend one method more than the other.
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