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QUADRATIC FORMS AND IDEMPOTENT MATRICES WITH
RANDOM ELEMENTS!

By FRANKLIN A. GRAYBILL AND GEORGE MILLIKEN
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1. Introduction. There have been a number of papers on the distribution of
quadratic forms of normal variables [1], [2], [3], [4], [5]. The results are of particular
importance in the theory of the general linear model, and idempotent matrices
play a significant role in the distribution properties of quadratic forms for these
models. In fact there are two basic results: let y be distributed as an n X 1 normal
random vector with mean u and positive definite covariance matrix V. (1) y'Ay
is distributed as a non-central chi-square if and only if AV is idempotent; (2)
y'Ay and y'By are independent if and only if AVB = 0.

In the theorems in these papers mentioned above the matrices of the quadratic
forms have constant elements. The purpose of this paper is to extend some of
these theorems to the case where the elements of the matrices are random vari-
ables, and, of course, in these cases the function may no longer be a quadratic
form in the observation vector y.

2. Preliminary lemmas. In the theorems that we shall prove the basic vari-
ables will be assumed to have a multivariate normal distribution. Therefore, we
shall state some results on this distribution.

DrriNITION 2.1. Multivariate normal distribution of rank k. Let y be an n X, 1
random vector with distribution function F,(-) and characteristic function
&, (- ). The vector y is defined to have a multivariate normal distribution of rank
k if and only if the characteristic function of y is defined by

¢y, (t) = exp ('t — 1'Vt); for all t in n-dimensional real space;

where V is a non-negative (definite) » X n matrix of rank k& and with constant
elements, uis ann X 1 vector of constant elements and u is in the column space
of V.

We shall also use the notationy ~ N (¢, V), Visn X n of rank k; to denote the
distribution of y.

We shall state a number of lemmas concerning the multivariate normal that
we shall refer to later. .

LeMMA 2.1. Let y be defined in Definition 2.1. Then &(y) = w; Cov (y) = V
where &(+) denotes expectation and Cov (-) denotes a covariance matrix.

LemMA 2.2. Let y be defined in Definition 2.1. Then there exists an n X k matriz
H of rank k and a k X 1 vector 0 such thaty = H(z -+ 0) where z is a k X 1 vector
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of independent random variables each distribuled as the standard univariate normal,
2.e. mean zero and variance one. (In fact H is any n X k matriz of rank k such that
V = HH').

LemMA 2.3. In Lemma 2.2 we can write z = H’y — 0 where H’, called a con-
ditional inverse of H, is any matric H® such that HH'H = H.

LeMMma 2.4. Let y be defined by Definition 2.1 and let A be an n X n matric with
constant elements. The quadratic form y'Ay is distributed as a non-central chi-square
variable with m degrees of freedom if and only if H'AH 4s idempotent and
tr (H'AH) = m where H 1s any n X k matriz of rank k such that V.= HH'. (The
non-centrality parameter is 3y Aw).

LemMA 2.5. Let y be defined in Definition 2.1. The two quadratic forms y Ay and
y'By are independent if and only if H'AVBH = 0 where H s any n X k matriz such
that V.= HH' (A and B have constant elements).

Lemma 2.6. Let y be defined in Definition 2.1. A sufficient condition for the
quadratic form y'Ay to be distributed as a non-central chi-square with m degrees of
freedom is that AV s idempotent of rank m (A has constant elements).

LeMMmA 2.7. Let y be defined in Definition 2.1. A sufficient condition for the two
quadratic forms y'Ay and y'By to be independent is that AVB = 0 (A and B have
constant elements).

3. The main theorems. In the previous section the matrices A and B of the
quadratic forms were assumed to have constant elements. In this section we shall
generalize some of the results to include the case when the elements of A and B
may be functions of y.

TureorEM 3.1. Let the n X 1 random vector y be such that y ~ N (u, I). Let K be
any non-zero r X n matrix of constants of rank k < n; let L be any non-zerom X n
matrix of constants such that the rows of L are in the orthogonal complement of the
row space of K. Let A be an n X n matrix with elements a;; where a; = fi;(Ky),
and where fi;(+) s a Borel function of the random vector Ky. The random variable
w = y'Ay is distributed as a non-central chi-square if the following four conditions
hold with probability one.

(1) A = L'AL;

(2) A s idempotent;

(8) tr(A) = m; m is a constant positive integer;

(4) w'Au = \; \ s a constant.

Proor. Define the random variable u by

‘

SN MEN

Then u; ~ N (Ky, KK'), u; ~ N (Ly, LL') and u; is independent of u, since
LK’ = 0 (i.e. the rows of L are in the orthogonal complement of the row space of
K). From condition (1) we obtain w = y'AY = y'L’ALy = u,’Au, . Since A de-
pends only on the random vector u; and since w; and u. are independent, the
distribution of the conditional random variable w | i = w" is by Lemma 2.4
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non-central chi-square with m degrees of freedom if conditions (2), (3) and (4)
hold. But this distribution is the same for every allowable value of u;*, hence the
marginal distribution of w is non-central chi-square with m degrees of freedom.

TarorEM 3.2. Let 'y, K and L be defined as in Theorem 3.1. Let the elements of
the n X m matrices A and B be Borel functions of the vector Ky. The two random
variables wy and wy , where wy = y' Ay and w, = y'By, are independent if the following
nine conditions hold with probability one:

(1) L'AL = A;

(2) L'BL = B;

(3) A = A%

(4) B = B%;

(5) tr(A) = ma;

(6) tr(B) = ms;

(7) vAy = \;
(8) wBy = N
(9) AB = 0.

where my , my are constant positive integers, M and A are constants.
Proor. If we use the notation we used in the proof of Theorem 3.1, by condi-

tions (1) and (2) we can write

wy = YAy = yL'ALy = u,’Au,

wy; = yBy = yL'BLy = u,'Bu,.
By Lemma, 2.2 we can write uy = Hi(z; + HiKu); uz = Hz(z: + Hy'Ly) where
HH, = KK'; H;H," = LL’; H; has rank &; H; has rank I. Also let Hi'Ky = 6 ;
H:yLy = 0,. Therefore zs ~ N (0, I); zo ~ N (0, I); z; and z, are independent;

w = (Zg + 02),H2,AH2 (Zz + 02); We = (22 -+ 02),H2,BH2 (22 + 02) where A and B
are functions of z; . We shall determine the characteristic function of ws , ws :

Guoy (t1, b)) = [Zu oo [Zo exp [{ (s + taws)] dF (22) dF (z1)
(2.1) = [ 2 {2 [Znexp [i(ze + 02) HYAH: (22 + 00t
+ i(za + 0.)HyBH, (22 + 02)ta] dF (22)} dF (z1)
— o < h<oo; —wo < f < ©

where dF (z1) = (2r) " exp (—iz'z) dzy ;dF (z2) = 2r) Y exp (—122:) dzs .
The quantity in braces is a constant; i.e. does not depend on z;. We argue as
follows. We chose Hj such that LL" = H,H,. By (1) and (3) it follows that
H,'AH, is idempotent; by (2) and (4) it follows that H,'BH, is idempotent; by
(5) my = tr (A) = tr (L'AL) = tr (ALL') = tr (AH;H,) = tr (H;AH,);
similarly ms = tr (HyBH;), and hence tr (H,AH,) and tr (H,BH,) are constant
positive integers. By (7) and (1) we obtain M = vAy = yLALy =
vl (H)H/AH,H;Ly = 0,H,AH,0;; similarly N2 = 6,H,BH®,. Thus
0, H, AH.0, and 6,’H,’BH.0, are constants.
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By condition (9) it follows that Hy’AH,H,BH, = 0. The quantity in braces in
(2.1) by straightforward evaluation reduces to

(2.2)  {(1 — 24t) ™" exp [it/ (1 — 26t1)]}
(L — 26t) ™" exp [itaho/ (1 — 2ity)]}.

But this does not depend on z; ; hence the characteristic function of w:, w, is
the quantity in (2.2). From the characteristic function we notice that w; and
w, are independent and that w; is a non-central chi-square random variable with
m; degrees of freedom and with non-centrality \; for 7 = 1, 2. This completes the
proof of the theorem.

Next we shall generalize the following theorem. Let the n independent random
vectors yi, a2, - -+, ¥a be dlstrlbuted N (0, V) where Vis a p X p matrix of rank
p. The matrix 7 D 7 yiy; ay; is distributed as W (p, k, V) if A = [a;] is an
idempotent matrix of constants of rank k& where W (p, k, V) denotes a Wishart
distribution [1]. We shall generalize this to the case where a;; is a function of the
vectors y;.

THEOREM 3.3. Suppose that the n vectors y1, ¥z, -+ , Ya are jointly independent
and each s distributed N (0, V) where V is a p X p positive definite mairiz. Let

u; and w; be defined by y; = [lvl;:] where u; has dimension py X 1 where 0 < p; <

p. Let A be an n >< n matrix such that each element a;; is a Borel function of the vec-
tors Wi, Wy, « -+, Wn. The random matrizx S = Z]—l Doraumyay is distributed
as W(p, k, Vi) where Vue = Vu — VuVea Vi if the following conditions
hold with probability one.

(1) A = A%
(2) tr (A) = k; k is a constant positive integer;
(3) Ru[wy, wy, -+, W,JA = 0.

Proor. We shall define R to be V! and partition V and R so that

[Vll VIZ] [RII RIZ:I

V= ; R =

VZI V22 R21 R22

where Vi and Ry; have dimension 1 X p1. We deﬁne the np X 1 vector y, the
np1 X 1 vector u and the s X 1 vector whby u’ =[u, uy, --+, u,/Jandw’ =
W, w, -, W LY = [y, v, -, v andltfollowsthatuNN(O,Vn x I);
w ~ N (0, V22 x I);y ~N(,V x I), (Thenotation A x B will mean the left
direct product of A and B). We define the p; X p; symmetric matrix T to have
real elements ¢;; on the ¢th diagonal and if;; on the 'L]th off-diagonal. We define
the vector t by t' = (tu, tw, tn, 3hs, b, bz, -+, tpp, ). We shall find the
characteristic function of S. We obtain

(8.1) ¢s(t) = gexp [¢ tr (TS)]
= [Zo @m) ™"V x I exp [i tr (TS)] exp [—3y' (V x I)7'y] dy.
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We shall examine the exponent of the integrand. We obtain
—u' Ry x I — 2T x A)Ju +u' Ry x D)W + W Ry x Du 4+ w (Raz x Dw]
= —MHu— Ru xIT — 2T x A) "Rz x D)W]'[Ry x I — %T x A]
Ju— Ry xI — 2T x A)"(Ryz x I)w]
4+ W[Re xI) — Ry x DRu x I — 2T x A) "Rz x I)]w}
= —3{a + ¢l
If Wé substitute into (3.1) we obtain
bs(t) = Cr) "V x I (2, [[2, ¢ dule™® dw.
The value of the integral in the braces is clearly equal to
@r)""™? Ry x I — %T x A|™ = [Ry — 26T Ry ™™ (21 )P1/
since A is idempotent with tr (A) = k = rank (A). Thus we obtain
os(t) = 2r) P Ru[ VTR — 2T (20 - [Z0 67 dw.
To evaluate the integral we write
[P e [ 6™ dw
(3.2) = [Zo - [Zoexp{—3W[(Rz x I)
— R *x DRy x I — 2T x ARy x Diw} dw.
We can write the exponent as
@ =3" Ry x Dw — twW[Rie x )Ry x I — 2T x A)7'(Ree x I)]w
= 35 — 3.

We shall show that g4 is equal to W' [RisRz% Ry x Ilw. For each fixed value of w
for which A exists there is an orthogonal n X n matrix P such that

I, 0
P'AP = = E;
0 o

by conditions (1) and (2). Partition P such that P = [Py, P.] where P; has
dimension 7 X k. Then A = P;P;’ andI — A = P,P,". Now

g =W @Ry x )Ry x I — 2T x A) Ry x Dw

W (Ra x )@ x P)I x PY Ry x I — 2T x A)™
@ xP)T x P)Y Ry x Dw

wWRy x DA xP)[A xP)YRu xI —2%T x A)A x P)[*
@ xP)YRp x Dw



QUADRATIC FORMS AND IDEMPOTENT MATRICES 1435
=wRu xI)T x P)(Ry x I — 2T x E,)"'d x P)Ry x Dw

(Rn - 22T) X Ik 0 -t
0 Ry x I

w(Ry x (I x P)[

(I x P')(Ryy x Dw
(Ry — 2T)™' x I, . 0
x P) 4
0 Ry x L

, (Ru —_ 21,T)—1 X Ik 0 P]I
w (Ry % [Py, Py]) . Ry x L w
0 Ry x L P,

(Ry — 20T)™" x I, 0 Re x P/
0 Ry x I,,_,,:I [ng x PZ':I v
= wW{Ra % P)[(Ry — 2%T) ™" x L] R x Py')
+ Ra x P)Ry x L) Rz x PY)lw
= W[RuRu — %T) 'Ry: x PPYIw + W [RuRiiRi; x PPy |w
= W [Ru(Ru — 20T) 'Rz x Alw + W [RaRTR x (I — A)lw.
Consider the quantity w' (B x A)w where B = Ry Ry — 20T) 'Ry We get

WI(R21 ] (Ree x P/)W

= W/[Rzl x Py, Ry % P2] [

w B x Aw = tr [w B x A)w] = tr [D: D; (w/Baiw,)] »
= 22 2 tr (WiBagw;) = 25 3 tr (Bwayw,)
= tr B2 D wiayw,]

I

tr BWAW'] = tr [Ru (Ru — 2T) 'R, WAW'] = 0

by condition (3) where W = [w;, - -+, w,]. Hence ¢s = W (RuRi7Rys x I)w and
the integral in (3.3) becomes

[2 .o [2exp {—3W[(Re: — RuRiiRy) x Iw} dw
= (27 )"mllezz - Rle1_11R12|—n/2

and the characteristic function is ¢s(t) = |I — 2R:;T| ™ and this is the charac-
teristic function of W (py, k, Vi.2) so the theorem is proved.

4. Illustrations.

ExampLE 4.1. Consider the general linear model y = X8 4 e where y is an
n X 1 random vector, X is an n X p matrix of constants of rank k < p < n, Bisa
p X 1 vector of unknown parameters and e is an n X 1 unobservable random
normal vector with mean 0 and covariance matrix I. Define Q' to be a ¢ X n
matrix whose elements are functions of the p elements in X'y and suppose Q is
such that each element exists with probability one and the rank of Q'[ I—
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X (X'X)X']Q is equal to the positive integer m with probability one. Define A and
B by
A=[-XXX)XQQ T - XXX)X)QIQM — XX'X)X]
B=[I-XXX)X1—-A
where F° is a conditional inverse of F, i.e., FF°’F = F. We identify matrices K and
Las:K =X;L =1 — XX'X)X'. Clearly LK’ = 0. Therefore the elements of

A and B are functions of Ky and the following are easily verified (where appropri-
ate, the conditions hold “with probability one”).

LAL = A AB =0
LBL = B rank (A) =m
A=A rank B) =n —k —m

B =B [s@F)]Aly)] =0
[e¥)I'Bls(y)] = 0

By Theorems 3.1 and 3.2 it follows that y'Ay and y'By are distributed as inde-
pendent central chi-square random variables with m and n — k — m degrees of
freedom respectively.

ExampLE 4.2. Consider the two-way classification model

yii=”+7i+7j+(77)if+eii§ i=172>"':t; j=1>2>”':b7

where D i 7i = Divi = 2 (1Y) = 2.5 (77)i = 0 and where the e;; are
jointly independent and es; ~ N (0, ¢*). Tukey [6] devised a test of the hypothesis
Hq: (rv)s; = 0 for all ¢ and j. The numerator of the test statistic is s,” where

o = o 205 (ss — s — s + y-) (e — 9 ) (ys — ?/~-)]2.
i (g — 9" 25 (g — 9

It is straightforward to show that s, is a special case of y'Ay in Example 4.1.
The denominator of the test devised by Tukey is 8" — s;° where

s =D i0 Wi — yi — Yi+ )

and it is straightforward to show that s,” — s is a special case of y'By in Example
4.1. From these facts we can obtain the distribution of s;*/ (sy’ — si°) as a central
F distribution under H, . '

ExavpLE 4.3. Let y1, y2, -+, ¥ be independent p X 1 vectors where y; ~
N (0, V) where Vis a p X p positive definite matrix with p < n. We define S by
S = > riyyi and S ~ W, p, V). If we partition S and V by

S = [Sll SIZ}; V= [Vll VIZ}
SZI SZZ V21 V22
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where Vi and Sy are p; X p: matrices then Sy — S1pS5Sn ~ W (py,n — pa,
Vii2) where Viie = Vig — VsV Var .

This result is verified by defining u; and w; by y/ = [u/, w.] and noticing that
Su = Z::L=1 uiui'; S = Z?=1 u,-w/; So = Z:;l WtWt, and therefore

Si — S1:87:Su = Zz uui — (21 uiwi,)(zt wow, )_1 (Z: Wjuf,)
=D uidy — wi Qoeww/ ) wilu)
= Zz Za‘ u,-u,-'ai,-,

where A = [a,] is a function of w; ;¢ = 1, 2, - -+, n. If we define W by W =

[Wy, -+, Wa], then A = T — W (WW')™W and the following clearly hold with
probability one:
A =A% tr (A) =n — ps2; [Wi, Wa, -+, W,JA = 0.

Hence we use Theorem 3.3 and the result follows.
ExampLE 4.4. Let the 3 X 1 random vector y ~ N (0, I) and consider y'Ay
where A is defined by

A=c"
T — p) Yo — p) 27y — yo) log |11 — yal
Ty — )’ Fop — ) 274y — o) log 1 — e
27y — o) log [ys — g2l 27y — y2) log [1n — vl log” 1 — 2l

where ¢ = [(y1 — y2)° + log® |1 — #:l]. If we define L, and K by

3 0
L= 3 0 K=1[1-10]
0 01

then LK’ = 0 and the following hold with probability one.

SN

(1) L'AL = A;
(2) A = A%
(3) Ay = 0;

(4) rank (A) = 1.

Hence by Theorem 3.1 y'Ay is distributed as chi-square with one degree of
freedom. )

Examples 4.2 and 4.3 are well known results that are easily proved by using
Theorems 3.1, 3.2 and 3.3 of this paper. Example 4.1 will be used to prove a
number of new and useful results in another paper.

Many of the theorems that concern quadratic forms of normal variables that
are useful in the theory of the general linear model can be extended to include
cases when the matrices of the quadratic forms have random elements. This will
be the topic of a further paper.
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