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1. Introduction and summary. In 1929 Behrens introduced the concept of
testing equality of two population means without assuming the homogeneity of
the two population variances. Since that time there have been extensive discus-
sions of the validity of the test and of the interpretation of the results.

Fisher (1939) published a detailed paper defending Behrens’ work and thus
the work started by Behrens became known as the Behrens-Fisher problem.
Fisher presented the test statistic (unequal variance t-test; Fryer, 1966) he felt
was best for handling this situation. However, Fisher could only approximate the
distribution of his test statistic. This approximation was tabled in Fisher and
Yates (1948). Fisher’s test statistic can also be approximated by the ¢-distribu-
tion, but the ¢-distribution approximation is not very good for small sample sizes
(Cochran and Cox, 1957).

Box (1954, a and b) wrote two extensive papers concerned with the violation
of the assumptions in the analysis of variance. Box states that the one-way analy-
sis of variance with equal sample sizes (the t-test is the same as a two-sample
one-way analysis of variance) is robust when the variances are heterogeneous.
However, little is said about the power of the test when the variances are heter-
ogeneous. *

F. N. David and N. L. Johnson (1951, a and b) and Bozivich, Bancroft, and
Hartley (1956) have written papers on the approximate theoretical power of the
analysis of variance when the assumptions are violated. B. L. Welch (1937)
and D. G. C. Gronow (1951) have written papers examining both the robustness
and the power of the unequal variance i-test when the variances are heterogene-
ous.

This paper examines by simulation techniques both the power and the robust-
ness of the i-test and several other tests when the variances are heterogeneous,
and presents a new test statistic designed for the situation where the coeflicients
of variation are homogeneous. This new test is more powerful than the ¢-test for
certain ranges of the coefficient of variation. The assumption of homogeneous
coefficients of variation is a valid assumption in many types of agricultural,
biological, and psychological experimentation, because many times the treatment
that yields a larger mean also has a larger standard deviation.
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2. A test of equality of two population means under the assumption of homoge-
neous coefficients of variation and normal populations. The testing procedure
to be used in this paper will be the likelihood ratio test procedure.

TurorEM 2.1. Let X; be independently distributed N (us, Bud), ¢ = 1, 2, and
7=1,2 .- J, where B = o;/ui1s the coefficient of variation. Let the non-restrictive
parameter spacebe 2: {0 < 1 < 0,0 < pp < 0,0 < g < o},

Then the maximum likelihood estimators are

@1) o= X/2 + /20 (X + 28/ (X + 28)]
(2.2) fis = Xo/2 + [Xu/2[ (X" + 282°)/ (X + 28],
and

[2[()‘(12 + 28:°) (X3 + 28,1 o ]*
8 IS + 280 (X + 28] — XX}
Xi[X? + 287 + Xe[X2 + 282
where X is the average of the ith sample and S is the maximum likelihood esti-

mate of the 7th sample variance.
Proor. The likelihood function is

L@) = 2] (I3 (Bud ™} exp {—3 200 [Doim Xy — )1/ (Bra)™}.

Taking derivatives of log L (2) with respect to the parameters and setting them
equal to zero gives the following set of equations:

(23)

(2~4) ﬂ = (1/2J) Zz—l J—l (Xu - ﬂz)/#z] .
and
(2.5) Bui + X — (X +87) =0, k=12

Thus, in (2.4) and (2.5) we have three equations and three unknowns which
do not yield simple solutions due to the relationship between 8 and the ux’s. (2.5)
has two real roots, one positive and one negative, thus ux may always be chosen
positive (Peterson, 1947).

To solve this set of equations, let us start by solving (2.5) for 8% thus

(2.6) = (Xé+ 8¢ — Xwe)/we’s,  k=1,2.
The two equations in (2.6) are added together to give
@7) B =[&+8"— Xum)/2u’] + X+ 8" — Xow)/2u’.
Therefore, subtracting (2.7) from (2.4) gives
[(u" — Xum)/2m"] + (" — Xows)/20" = 0.

Solving for w1 in terms of ps gives w1 = Xius/ (2ue — Xz). The two equations in
(2.6) are set equal, giving

(2.8) &+ 8" — X))/’ = X+ S — Xowe) /s
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The value of u; in terms of u; is substituted into (2.8), giving an equation in us
of the form

wt — X + (X7 — X°8)/2(X" 4 28/°) = 0.
The quadratic formula gives a solution which simplifies to
2.9) fe = Xo/2 % [X/21X5 + 282°)/ (X + 280)]

Using the root with the minus sign one gets L(Q2) = 0 under the null hypothesis,
and this gives a nonsense result for the likelihood ratio test of Theorem 2.3. The
root using the plus sign may give a negative estimator for u, although under the
assumptions of Theorem 2.1 the probability of u, < 0 tends to zero asJ tends to

infinity.
Due to symmetry of the likelihood equations in the p’s, the estimate of u is
(2.10) = X1/2 + [Xo/2I (X + 280)/ (X7 + 28]

The estimate of 8 is found by using the values for fi; and . in (2.9) and (2.10)
and substituting them into (2.4), giving (2.3).

This set of estimators solves the set of likelihood equations. Now a check must
be made to see if the joint estimators fi1, fiz , and B define a maximum.

If the matrix

(2.11) an Gz O3
4 = [a log (Q)

=] Qa Q2 Qo3
90,00, :Io ’
Q31 Q32 A3y

where 6; = 1,0, = p2, and 6; = B, is negative definite, then the joint estimators
fa, fiz, and B define a maximum (Kendall and Stuart, 1961), where

[~ J
B’ + 27 Xfn — 32 X35

J
27Xt — 22 X5,
j=1 0 j=1

J
JBZﬁ2 + 2JX2ﬁ2 —3 Zngj
=

5343
B

J
2 Xofis — 2 D, X35
=1

524 4
B he

A3A 3
B’lis

2

J J J
2 Xfy — 2 2‘{ X3 2J Xofeo — 2 Zl X3, 20— 32> fi (X — f)?
7= i= i=1j=1

A3A 3 A3A 3 A4
Bl Bhs B

To show A negative definite involves a theorem in Hohn (1965, page 349) on
negative definiteness and considerable manipulation of inequalities. The details
are contained in Lohrding (1969). This completes the proof of Theorem 2.1.

We have shown that the estimators /1 , fiz , and 8 are joint maximum likelihood
estimators in the non-restricted parameter space; now the estimators will be found
for the restricted parameter space.
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THEOREM 2.2. Let X be independently distributed, N (u, i’8°), i = 1,2, and
J=12,---,J, where 8 = o/u s the coefficient of variation. Let the restricted para-
meler space be w: {0 < u < o, 0 < B8 < «}. Then the maximum likelihood
estimators are

(2.12) p=X
and
(2.13) B=8/X

where X is the grand average over the two samples and S s the maximum likelthood
estimate of the standard deviation over both samples.
Proor. The likelihood function is

L(w) = [20]"[8u]™ exp [— (26%") ™ Doics Djma (Xij — w)’].

Taking the derivative of log L (w) with respect to 8 and setting the derivative
to zero, we have

(2.14) B = (1) 2 25a (X — w)/ul’

Taking the derivative with respect to u and setting the derivative equal to zero
gives the following solution for 8°, where

(2.15) B = ") 2 D (X — Xuw).
If we subtract (2.14) from (2.15), we have
=1 2 (XG — 2X g + 4" — X3+ Xyp) = 0,

which implies i = X. The value for £ is inserted into (2.14), giving 8 = S/X.
It is easily shown that the estimators of u and 8 do actually maximize the
likelihood funetion. To do this the matrix

_ 9’ log L(w)
4= [ 36,90,

:Ié’ where r,s = 1,2; and 6, = u, 6 = B,

must be shown to be negative definite as was explained in the proof of Theorem
2.1. This completes the proof.

THaEOREM 2.3. Let X i; be independently distributed, N (u:, ui8*),i = 1, 2, and
j=1,2, ---,J. Assume homogeneous coefficients of variation 8 = o1/um = o2/us .
If the hypothesis Ho(u = ue) 18 tested against the alternative Ho (uy 5% p2), then the
likelihood ratio is .

(216) N = L(6)/L(®) = [{[(X® + 287) (X’ + 28°)) — XuXo}/ @81,

where X; and Si are defined in Theorem 2.1 and S* is defined in Theorem 2.2.

Proor. The estimators f1 , fiz , and 8 from Theorem 2.1 are inserted into L (Q),
and the estmators /i and 8 from Theorem 2.2 are inserted into L (). The result
is (2.16). This completes the proof of Theorem 2.3.

3. Determining the large sample distribution of the likelihood ratio. The next
problem is to determine the distribution of A ; however, this is a very difficult
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task. The difficulty arises from the fact that the distribution of a product of
functions of random variables is generally difficult to find, and these particular
functions are quite complicated. Therefore, the approach will be to investigate
the asymptotic distribution of \; for sample sizes larger than 40 and to simulate
the distribution for samples less than or equal to 40.

A theorem will now be stated concerning the large sample distribution of the
likelihood ratio.

Lt Xi,2=1,2,---, I andj = 1,2, ---,J be a random sample from the
cumulative distribution function F;(x; 0), where 0 ¢s r-dimensional and F;(x; 0) is
regular in all of its second partial 6-derivatives, for 8 in the non-restricted parameter
space. Then if the hypothesis Ho(u1 = pe2) s true, —2 log X converges tn probability
{0 a random variable having the chi-square distribution with r — v’ degrees of freedom,
where r is the number of parameters tn the Q and r’ s the number of parameters in o
(Wilks, 1963).

The cumulative distribution function, F;(x; 6), is regular in all of its first and
second partial -derivatives in the non-restrictive parameter space.

This implies that —2log A converges in probability to a random variable
having a chi-square distribution with one degree of freedom, where

—2logh = 2/ log (28%) — 2Jlog ([(X:2 + 28 (X* + 285 — XiX,).

The fact that F;(x; 6) is regular in all its second partial derivatives implies
that the likelihood ratio test A; is consistent; that is,

limy.e P(—21log N > xazlﬂeﬂ —w) =1, »

where x.’ is the (1 — a)th percentile of the chi-square distribution with one
degree of freedom (Wilks, 1963).

4, Determining the small sample distribution of the likelihood ratio. We have
shown that —2log N converges in probability to a random variable having a
chi-square distribution with one degree of freedom, (x*(1)), but how good is this
asymptotic result for small sample sizes?

To investigate small sample sizes, 10,000 test statistics were computed from
random samples, assuming the null hypothesis, Hy (u1 = p2), to be true. Each of
the 10,000 test statistics was computed by generating the desired sample size
using the Randu random number generator from I.B.M. scientific subroutines.
Randu generates random rectangular (0, 1) variates, which are then transformed
into N (u, o°) variates. These sample values are used to compute the test statistics.

The Kolmogorov test, explained in Conover (1956b), has a critical value of
0122 at & = .10, n = 10,000, so that the distribution function we obtained is
everywhere within .0122 of the true unknown distribution function, with prob-
ability .90.

Now we order the 10,000 values of —2 log M\ and graph the cumulative fre-
quency curve. We see in Figure 1, for a sample size of 20, that —2 log \; is closely
approximated by the chi-square distribution with one degree of freedom. The
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distribution of —2 log \; for a sample of size 6 has the same general shape as the
chi-square distribution with one degree of freedom; but by looking at Figure 1,
we can see that the value 2.7, which corresponds to the 90th quantile of the chi-
square distribution with one degree of freedom, would correspond to approxi-
mately the 87th quantile of the —2 log N\ graph with a sample size of 6 and the
89th quantile for sample size of 20, so the approximation is not conservative.
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04 I l | | | |
l 2 3 4 5 6

COMPARISONS OF CUMULATIVE FREQUENCIES OF A
Xx2() To -2 106 A = xf WITH J=6 AND 20
Fic. 1

Although the distribution of —2 log A; for a sample size of 20 is closely approxi-
mated by the chi-square distribution with one degree of freedom, it was decided
to simulate 10,000 test statistics to give the rejection regions for a = .10, .05,
.025, and .01, for selected sample sizes less than or equal to 40. The results are
presented in Table 1. .

We can see that due to sampling error, not all the values of Table 1 are mono-
tonic (see a-level .01 and sample sizes 10, 14, and 20). Thus, we shall construct
confidence intervals on some of these values in order to have some feel for the
amount of sampling error to be expected.

The procedure for constructing confidence intervals for quantiles is explained
in Conover’s notes (1965b). For example, the 95 per cent confidence interval for
the 90th quantile for sample size 20 can be written in a probability statement as

P[2.7527 < z.q < 2.9329] = .95,
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and for a sample size of 30 it is
P[2.6333 < x40 =< 2.8479] = .95,

where x4 represents the 90th quantile. The 95 per cent confidence interval

TABLE 1

Raw values for the approxzimate critical values of the test statistic —2 log N\ computed
from 10,000 simulations assuming the null hypothesis to be true

. a-Level
Sample Size
.10 .05 .025 .01
2 5.5840 7.9238 10.5834 13.7958
4 3.6086 5.1035 6.8053 9.0439
6 3.2181 4.5613 6.1457 8.2337
8 3.1655 4.4783 5.9372 7.9485
10 3.0233 4.2754 5.5516 7.1822
14 2.9674 4.1498 5.4429 7.2077
20 2.8519 3.9535 5.2697 7.0768
30 2.7357 3.9614 5.0946 6.4878
40 2.7377 3.8036 5.0252 6.4295
o 2.7055 3.8415 5.0239 6.6349
TABLE 2
Smoothed approximate critical values for the test statistic —2 log A\,
a-Level
Sample Size
.10 .05 .025 .01
2 5.58 7.9 10.6 13.8
4 3.60 5.1 6.8 9.1
6 3.21 4.6 6.2 8.2
8 3.17 4.5 6.0 7.9
10 3.02 4.3 5.6 7.4
14 2.96 4.2 5.4 7.2
20 2.85 4.0 5.2 7.0
30 2.73 3.9 5.1 6.7
40 2.71 3.85 5.03 6.64
© 2.70 3.841 5.024 6.635

‘

on the 99th quantile for a sample size of 20 can be written in a probability state-
ment as

P[6.7353 = w9 = 7.4599] = .95;

and for a sample size of 30 we have
P[6.2830 = w9 = 6.9312] = .95.
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Thus, we can see that there could be enough sampling error to cause a loss of
monotonicity in some of the a-levels. With this in mind, an intuitive smoothing of
Table 1 will give a more usable table.

Thus, we have looked at the distribution of —2 log A; under the null hypothesis.
We shall now look at the power of the test statistic —2 log M in Table 3.

5. Power studies of the likelihood ratio test statistic. In Table 3 we shall let \,*
= —2 log A\ . Bartlett’s test is the well-known test for homogeneity of variances
(Bartlett, 1937). Con. Slip. is Conover’s distribution-free slippage test, which
uses as a test statistic the number of observations in the sample with the largest
extreme value that exceeds the largest value in the other sample (Conover, 1968 ).

Conover’s slippage test was used in the comparisons of power because it should
have good power if the coefficients of variation are homogeneous and also because
it does not assume homogeneous variances. The standard two-sample ¢-test is
represented by ¢, and ¢’ is the unequal variance t-test (Fryer, 1966 ). The coefficient
of variation for population ¢ is cv;.

In Table 3, all of the sections are computed from 100 random samples; there-
fore, these can be used only as indicators of what the power may be for the stated
populations.

Sections 1 through 5 have homogeneous coefficients of variation. In section 1,
with a .25 coefficient of variation, we see that there is little difference in the power
of the tests Mv*, ¢, and ¢, But as the coefficient of variation increases to .50 in
section 2, the test ™ appears to be the most powerful. As the coefficient of varia-
tion increases, the power of \* also increases; also, it can be observed that the'
power of Bartlett’s test is increasing. In section 5, where the coefficients of varia-
tion are 2, we can see that Bartlett’s test and N have approximately the same
power.

Sections 1 through 5 seem to indicate that if the coefficients of variation are
homogeneous and between the values of .15 and 1.0, the most powerful test of
mean differences is \,*. For coefficients of variation larger than 1.0 we run into
some danger of rejecting the null hypothesis Ho(u1 = u2) due to variance dif-
ferences, when indeed Ho(u = p2) is true as in section 6. For these cases of co-
efficients of variation greater than 1, we must be certain of our assumption of
homogeneous coefficients of variation, because if the assumption is true, section 5
indicates that ™ is the most powerful test for detecting mean differences.

Section 6 emphasizes the danger when the coefficients of variation are greater
than one, by rejecting far too many samples when the null hypothesis is true,
although the assumption of homogeneous coefficients of variation is violated.
Section 6 supports Box’s (1954 ) position on the robustness of the t-test.

Section 7 indicates that, with two samples with small heterogeneous coefficients
of variation and homogeneous standard deviations, there is little difference in
the powers of ANt and ¢

In section 8 we have py < ps with o1 > g». This violates the assumptions of
M and causes an extreme loss in the power of A*.



TABLE 3

Total number of rejection out of 100 random samples simulated with the given
population parameters for 2 samples of size 10

2 3
pr=8.0 pu =10.0 =20 pe=06.0 =267 p=4.67
g1=2.0 o2=25 =10 0,=3.0 o¢1=2.00 o;=3.5
cvy = .26 cve = .25 = .50 cvo = .50 cvi= .75 vz = .75
a-Level a-Level a-Level
Test statistic
01 .05 .10 .01 .05 .10 .01 .05 .10
Bartlett’s 4 15 22 6 13 25 12 35 47
A 24 43 57 28 49 63 39 70 82
¢ 22 48 55 16 36 46 22 41 57
t’ 26 49 58 20 38 50 25 46 59
Con. slip. 13 35 44 9 31 48 10 43 64
5 6
wr=2.0 u=4.0 pr=10 w=30 wm=10 =10
oy = 20 g2 = 40 o]y = 2.0 gy = 6.0 o = 2.0 oy = 4.0
ey = 1.0 cve=1.0 w1 = 2.0 cve =2.0 ¢cvy=2.0 cv:=4.0
a-Level a-Level a-Level
Test statistic
.01 .05 .10 .01 .05 .10 .01 .05 .10
Barlettt’s 20 47 65 71 83 89 31 56 66
aM* 42 72 83 78 91 93 26 46 64
t 10 31 42 3 14 29 1 5 10
t 11 33 45 6 16 34 1 6 13
Con. slip. 6 35 61 8 41 64 0 12 26
7 8 9
pr=8.0 u =10.0 pr=10 wpw=20 pwm=10 w =3.0
=20 o3=2.0 61=20 o02=10 01=2.0 o0:2=2.5
ey = .26 cvp = .20 cvy = 2.0 cve = .5 cny = 2.0 cvp = .833
a-Level a-Level a-Level
Test statistic
.01 .05 .10 .01 .05 .10 .01 .05 .10
Bartlett’s 2 4 13 24 53 63 3 9 20
A* 24 49 70 0 5 7 8 29 41
¢ 29 57 73 16 32 37 9 39 55
t’ 35 61 75 21 34 40 6 45 58
Con. slip. 9 28 46 4 7 12 3 17 38
10 11
pi=4.0 p=6.0 m=1.0 mw=23.0
g = 2.0 g = 2.5 o1 =20 o2 =4.0
cy = .5 cve = .416 cwy = 2.0 cv, = 1.33
a-Level a-Level
Test statistic
.01 .05 .10 .01 .05 .10
Bartlett’s 2 15 24 46 60
PV 27 60 67 39 58 71
¢ 2 48 60 9 24 36
t’ 27 53 67 11 26 36
Con. slip. 8 34 54 6 36 51

1382
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Section 9 indicates that, for small differences in standard deviation and larger
differences in coefficients of variation with 3 < ws and o1 < 03, the ¢-test and the
t’-test are the most powerful.

In section 10 we see little difference in the procedures that test mean differences.
If welet o = w1 + 1 and op = o1 + 2, where o3°/o1> = 4.0 as in section 11, \,*

100
I I I I I I I

NO. OF REJECTIONS IN 100 SIMULATIONS

~NJ . —.—.—= BART.

I I I I I I I
6 20 24 28 33 38 42 46 50

B, =30 p,=50 o0 =20

Fia. 2
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is the most powerful test for this simulation with this particular choice of param-
eters.

In Figure 2 the values are fixed for wi, u2, and o1, with o varying with an
a-level of .10. At the point o3 = 2.0, t’ is the most powerful test. As o, increases
to 3.3, the assumptions of M are satisfied; we see that M is the most powerful at
this point and remains best as o2 increases for the simulations presented in
Figure 2.

6. Conclusions and acknowledgments. If an experimenter feels that the
assumption of homogeneous coefficients of variation is a more valid assumption
than the assumption of homogeneous variances when testing mean differences of
two populations, then the \;* test will generally be more powerful than the ¢-test.
This is especially true if the coefficient of variation is between .25 and 1.0.

I am very much indebted to my major professor, Dr. W. J. Conover, for his
excellent advice and suggestions in the preparation of this paper. I also wish to
acknowledge Dr. R. N. Carr, Mr. Walter Knowles, Mr. Richard Beckman, and
Dr. R. K. Zeigler for their helpful suggestions.
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