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0. Summary. This paper shows that the epsilon entropy of any mean-continu-
ous Gaussian process on L,[0, 1] is finite for all positive e. The epsilon entropy of
such a process is defined as the infimum of the entropies of all partitions of L[0, 1]
by measurable sets of diameter at most ¢, where the probability measure on Lj is
the one induced by the process. Fairly tight upper and lower bounds are found as
e — 0 for the epsilon entropy in terms of the eigenvalues of the process.

1. Introduction. Let z (¢{) be a mean-continuous Gaussian process with mean
zero on the unit interval. Then its covariance function R (s, t) is a continuous
function on the unit square and its eigenfunction expansion

R(s, t) = 2201 Magn(8)en (t)

converges uniformly [1, p. 478]. The eigenvalues \, = o, are non-negative
numbers with Y, A, < . The eigenfunctions {¢, (t)} form an orthonormal sys-
tem in L,[0, 1], and are continuous.

If we assume the process is measurable [1, p. 502], then the paths are functions
in Lp[0, 1], and we take Ls[0, 1] as the probability space. This gives a measure on
the Borel sets of L]0, 1], which is uniquely determined by the covariance func-
tion. *

One way of determing this measure is to take our process to be the sum of the
Karkunen-Loeve series

z(t) = Z:;l Tapn (1),

where the {x.} are independent Gaussian random variables, with Ez, = 0,
Ez.” = \.. If we take Q to be the product space of the x, , this series converges
in L,[[0, 1] x ). The subset @ of @, on which Z z,” < o has probability 1, and
is a Hilbert space under the norm ||{z.}||* = D 2,". The map {.} — () is an
isometry of Q onto the subspace Q* of Ls[0, 1] generated by the eigenfunctions.
Tiﬁs mapping induces a measure in L, which is concentrated on the subspace
Q.

For ¢ > 0, we define an e-partition of X = L»[0, 1] (with the given probability
measure) to be a finite or denumerable collection of disjoint e-sets (Borel sets of
diameter = ¢) which cover a subset of L of measure 1. More generally, an ¢;
8-partition is such a collection of sets which omits a subset of L, with measure no
greater than 8. Let such a partition U consists of sets U; of measures p; = u(U;),
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> pi = 1. Then the entropy of U is defined as the entropy of the discrete distri-
bution p1, pe, - - ¢

H(U) = 3 pilog (1/ps).

(we use logarithms with base e for convenience).

The e-entropy of X, H.(X),is the infimum of H (U) over all e-partitions U of X.
The ¢; 6-entropy H..; (X ) is defined similarly as the infimum over all ¢; 8-partitions.
(If U = {U4} is an ¢; 8-partition with u(U;) = ps, 2 pi=m = 1 — §,

H(U) = 2 pi/mlog (m/p:).

These concepts were introduced in a more general setting in [2]. It was shown
there that H..; (X) is finite for § > 0.

Note that any partition U can be restricted to the subspace @ of L,[0,1]on which
the measure is concentrated. This subspace can be identified with the Hilbert space
Q of sequences {z.}, where the coordinates are independent Gaussian random
variables. Thus the e-entropy of the process depends only on the measure on £,
and not on how  is embedded in L[0, 1]. It is a function only of the eigenvalues
{\a.

The purpose of these definitions is to make precise the notion of “Data Com-
pression”. Thus, H.(X) is, in a sense made precise in [3], the channel capacity
needed to describe sample functions of X to within e in L,-norm with prob-
ability 1.

Reference [2] showed that for mean-continuous, but notnecessarily Gaussian
processes X on the unit interval, the following holds:

(1) H.(X) is finite for every ¢ > 0 provided the eigenvalues N\, of X (writtef
as usual in non-increasing order) satisfy

Zn)\n < o)

anﬂ = °°,

then there exists a mean-continuous process X on the unit interval such that, for
every € > 0 no matter how large, H.(X) is infinite.

One of the main results of this paper is that, if X is a Gaussian process, H. (X )
is finite for every positive ¢ no matter how small, and no matter how slowly the
eigenvalues . approach 0 (as long, of course, as > M\ < ). Another is that
H.(X) is a continuous function of e for a fixed mean-continuous Gaussian
process X on the unit interval. We also find upper and lower bounds for H.(X)
which are reasonably tight as e — 0. These bounds are given in terms of the eigen-
values of the process.

In [4], it is shown that if the only partitions of L0, 1] that are allowed are
products of partitions of each eigenfunction axis, then the resulting entropy, called
product epstlon entropy need not be finite. In fact, a necessary and sufficient con-
dition that product epsilon entropy be finite for one (or all) positive epsilon is
that the “entropy of the eigenvalues”

(2) If, on the other hand,
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> Mlog 1/

be finite. The reason that H.(X) is always finite for a Gaussian process when
e > 0 is that the partitions that are used to show finiteness of H(X) involve
finite-dimensional subspaces of L,[0, 1] generated by an arbitrarily large finite
number of eigenfunctions. The partitions used on these subspaces differ in an
essential way from products of one-dimensional partitions, as we shall see.

We shall also need the concept of epsilon entropy for spaces other than mean-
continuous Gaussian processes. The definition readily suggests itself: the epsilon
entropy of a separable metric space under a probability distribution under which
every open set is measurable is the infimum of the entropies of all epsilon par-
titions of the space, where the entropy is defined using the given probability
measure.

2. Continuity of He(X). In this section, we show that if X is a mean-con-
tinuous Gaussian process and e > 0, then H.(X) is continuous in ¢; we shall as-
sume the result, to be proved later in the paper, that H.(X) is finite for every
positive e. Since the continuity of H. in € is not used subsequently, there is no
loss in the assumption.

In [2], it was shown that if the measure u on X has no atoms, then

H(X)— o, as e—0.

Since X has at least one positive eigenvalue (because we assumed that B (s, t)is
not identically 0), u is non-atomic. Thus, if Ho(X) is interpreted as + «, H (X )
is continuous even at 0.

Continuity from above in ¢ was proved in [2]. Thus the only thing which remains
to be shown here is that H.(X) is continuous from below, for ¢ > 0. This is proved
in Theorem 1, in a more general context: the e; 6-entropy H,;(X) is continuous
from below in ¢, for 8 = 0. The following necessary lemma is of interest in its
own right.

Lemma 1. If X s the Hilbert space of a mean continuous Gaussian process on the
unit interval, and C a closed convex set in X, any measurable subset of the set E of
extreme points of C has measure zero. (That ts, E has inner measure zero. Actually,
1t can be shown that the set E is itself measurable, but this will not be needed. )

Proor. Let S be a measurable subset of E, and x (x) the characteristic function
of 8. The space X is the product of the one-dimensional space of its first coordi-
nate with a Hilbert space ¥, with produgt measure. If »; , », denote the measures
in these spaces, then by Fubini’s theorem

p(8) = [z x(@)du(@) = [z[fZax (@, y) dn(@)] dun(y).

The distribution of z; is continuous, and for fixed y the function x (z; , y) is non-
zero for at most two values of x; . Hence the inner integral is zero, and u (S) = 0.
We can now state and prove Theorem 1.

TarEOREM 1. The €; & entropy of a Gaussian process on Ly[0, 1] ¢s conttnuous from
below in e.
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Proor. Let X be the Hilbert space of the process. It is sufficient to show that
for any o > 0 there is an € < e with
He';&(X) é He;&(X) + a.
More directly, let U be an ¢; 6-partition with entropy He,;(X ) which exists by [2].
Then it is sufficient to show that there is an ¢ ; 8-partition U’ with
HU)<HU) + a.

The set covered by U has measure 1 — §. The partition U’ will be constructed S0
that it also has this property. To construct U’, we will first form an ¢’ ; 8'-partition
V (8’ > 5) by reducing the sets of U. This pa,rtltlon will then be augmented by
intersecting the part of X covered by U but not by V with an ¢ -partition of X.

Let n be a number between 0 and ¢, and W = {W,} be an n-partition of X of
finite entropy. We claim that there is a number 8 > 0 such that if ¥ is any set of
measure less than g,

(1) 2 w(YnW,)/(1 = 8)log (1 —8)/u(Y nW,)) < a/2.
To see this, consider

e; = 1/{(1 — 6) min [u(Y), u(W;)]}.
If u(Y) is sufficiently small,

ejlog (1/e;) = w(W;)/ (1 — 8)log (1 — 8)/ (uw(W;)),

hence,

2o eilog (1/(es)) >0  as u(¥)—0,
by dominated convergence. On the other hand,

/A =¥ nW;) < e

from which the result follows. For the given 8, the partition V will be made to
have measure greater than 1 — § — B.
Let U = {U,}. Pick J so that

(2) 2mnr(U;) >1 -6 — g/2.
Let C; be the closed convex hull of U;, and
Si={z|zeCj, SUpye; d(z, y) = €.

8S; is clearly a closed, hence measurablé, set. Furthermore, it follows easily from
the parallelogram law for the metric in Hilbert space that S; C E;, the set of
extreme points of C; . Hence, by Lemma 1, x(S;) = 0.

For p > 0, define

ij = {x ' re CJ' ) infjssj d(x: y) = P};
also a closed set; C;” = C;if S;is empty. As p decreases to zero, C; increases, and
lim,,_,o+ ij = Cj - Sj .
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Hence,
lim,,ot u(C") = u(C, — 8;) = u(C)).

There is a family {Kp} of compact sets with measure approaching 1 asp — 0
([6], page 64). If we take

D =Cfnk,,
then
limgso p (D) = u(Cy).

Since C;” € C; — 8;, every point pair in C;* has separation less than ¢, and D;”,
a compact subset, has diameter strictly less than e. Define

Uf =U;nD}.
Then U,” has diameter less than ¢, and since U; — U/ < C; — D/,
limpso w(U) = w(U;).
Choose p > 0 so that forj =1, ---,J
w(UF) > u(U;) — 2778,
and
3) wU)/ (A —8)log ((1 — 8)/u(US))
< w(U;)/A = 8)log (1 — 8)/u(U;)) + 27 e
Then if we define
¢ = max [y, diam (Uy"), --- , diam (U,")],

¢ islessthaneand V = {Uf,j = 1, ---, J} is an ¢-partition of a part of X of
probability

Dmn(UL) > 2ianU;) —8/2>1 -5 — B,

by (2). Let Y be the set covered by U but not by V. It has measure less than 3.
Hence (1) applies, and if we take

U = Vu{Y nWj,
U'is an e'; d-partition covering the same set as U, with
HU') = 2j-u(US)/ (1 = 8)log (1 — 8)/u(US))
+ 2w aW;)/(1 — 8)log (1 — 8)/u(Y n W)
< 25 u(Us)/ (A = ) log (1 — 8)/u(Uy)) + }a + }a
=SHU) + o
by (1) and (3). This completes the proof of Theorem 1.
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3. Lower bounds for He(X). In this section, we derive some lower bounds for
the e-entropy of a mean-continuous Gaussian process on the unit interval.
First, note that for any e-partition U = {U;} of X, if U () denotes the set U;
which contains z, we have
4) H(U) = Elog {1/u[U (@)1}

This expression is decreased if we replace U (z) by the sphere of radius e about .
It follows that

G H (X) z Eylog [1/ufz|d(z, y) < €],

where d denotes the metric in X, and E, indicates that the expectation is to be
taken with respect to y. The first lower bound to be derived is a lower bound for
the right side of (5).

First, we need an upper bound for u{x|d(z, y) < ¢}. We obtain this upper
bound from the following lemma.:

Lemma 2. If Z is a non-negative random variable with characteristic function f,
then for a and b = 0,

Pr{Z < a} < /().

Proor. Let F () be the distribution function of Z, and let W be a random
variable with the distribution function

Pr{W s a} = [te™dF (y)/[5 ™ dF (y)
= 1/f(b) [t e dF (y). ’

If E is an exponential random variable independent of W, with distribution
function 1 — ¢, then

Pr{W+E <a} = [i[1 — " 211/f(ib)e™ dF (z)
= Pr{W = a} — ¢/f(ib)F (a).

Hence,

F(a) = &f@)Pr{W £ a} — Pr{W + E < a}]

< & (),
which proves the lemma.
The next lemma gives an upper bound for the probability of the e-sphere about
a fixed point y.
LemMa 3. Let a mean-continuous Gaussian process X have eigenvalues {\,}.
Then in the Ly norm d, for any fizxed y ¢ X, we have

prld(z, y) S ¢ = infazo /(T 1 + 260)) exp [— 20 bya’/ (1 + 2671,
Proor. We apply Lemma 2 with Z = d(z, y)?, @ = €. This gives
Pr {z|d(z, y) < €} < infy0&“f (),
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where
f(s) = Eexplisd(x,y)’] = Eexplis 2 (zn — yn)]
= 1 Eexplis@. — )"l = I] {1 — 2is\,)"F exp (isy’/ (1 — 2isha))}.

The lemma follows by putting s = 4b in this expression.
Using the estimate of Lemma 3 in (5), we arrive at the lower bound

(6) H.(X) Z E, supszo{—be’ + 4 2 log (1 + 2bM:) + 2 bya’/ (1 +2bNa)3.

The disadvantage of this estimate is that a set of diameter e containing y has been
replaced by asphere of diameter 2e. Another lower bound will be derived which does
not have this disadvantage. We first prove that the sphere of radius ¢/2 about the
origin has at least as much probability as any set of diameter ¢ in X, a resultJof
independent interest. Actually, strict inequality can be proved but is not needed.

LemMa 4. Let X be the Hilbert space of a Gaussian process, and V any measurable
set tn X with diam (V) < e. Then p (V) < u[Se2(0)], where Se2(0) 4s the sphere lof
radius /2 about the origin.

Proor. We construct a sequence of sets Vo = V, Vi, V,, --- by symmetriza-
tion as follows: given V1, we consider X as the product of the one dimensional
space of the coordinate z; and the space ¥ = {y} of the other coordinates. The
measure on this product space is product measure. For given y, let »(y) be the
one-dimensional Lebesgue measure of {z;| (z;, y) &€ V;}. Define

Vi={(, y)ll=l < @)}
Tt is easily shown that diam (V;) < diam (V;—1). Furthermore, if we write u (V)"
as an iterated integral, integrating over z; first, it is clear that
e (Vi) 2 (V).
Thus for all j we have
diam (V;) ¢  p(V;) 2 (V).
The set V;,j = 1, is symmetric in @y, -+, ; :if @1, -+, &5, Tjp1, *++) €
V;,then sz, -+, =&, Tjgz, *++) e V.
Let W; and Z; be the cylinder sets
W= {zlzs =1y, ---,x =y; forsome yeVj,
Z; = {x|a’ 4+ - +af £ &/4).

For any z ¢ W;, there is a point of the form (1, * - , &, Yit1, Yire, *++)in V;.
By the symmetry of V;,

(=1, o0y =&, Yixt, Yy, -0 ) Vi
Since diam (V;) < ¢, the distance between these two points is at most ¢, which
implies
o+ 4zl £ /4
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Hence W; C Z; . Also, we have V; C W, . Hence
p(Zi) z w(V;) z p(V).

On the other hand, u[S.2(0)] = limj.. u(Z;). Thus the conclusion of the lemma,
follows.
Applying Lemma, 4 to (4), we get

@) H (X) z log {1/ulSe2(0)]}.

The following theorem presents two lower bounds: L.(X), derived from (6),
and M. (X), derived from (7). Note that L.(X) is always weaker. It is of in-
terest mainly because of Theorem 4 of the next section, which bounds H.(X)
from above in terms of L¢(X).

TureoreM 2. Let X be a mean-continuous Gaussian process wth eigenvalues {\,}.
Defineb = b(e) = 0 by

(8) 2hM/A+b)=¢, 2D hm>E,
b=0, PP Fr

Put

9) L(X) = $ 22 log [1 + Mb(e)]

and

(10) M(X) =32 log[1 + Mb(e/2)] — #€b(e/2).
Then

H.(X) z M.(X) z L(X).
Proor. From (6), we have
H (X) = B,{—b + % 2" log (1 + 2bM) + 2 bya’/ (1 + 2b\a)},
for any b = 0. Replacing b by b/2,
(11)  H.(X) = —3b + 1> log (HON) + 3 3 A/ (1 + bA,).

Take b = b (e). Then this inequality reduces to He (X) = L¢(X). This inequality
also follows from the remainder of the proof.

To obtain the inequality H,(X) = M.(X), we have by Lemma 3 (with b re-
placed by 8/2) ‘

w82 (0)] = infpzoexp (8¢)/ (IT (1 + M)

Hence by (7) )
H(X) = supszo [—48¢" + % 2_ log (1 + )],

This expression is maximized by setting 8 = b(e/2), which proves H(X) =
M.(X)=z0.
Finally, to show M.(X) = L.(X), it is sufficient to treat the case D Ao > €,
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since L. (X) = 0 £ M.(X) otherwise. Then the difference is
D =M.(X)— L(X)
322 1og [(1 + b (e/2)I/I1 + Mb(e)] — € (e/2).
If we define f(f) = D A/(1 + t\,), and 8 = b(e/2), b = b(e), then
D =3 [15@) dt — 36/ (8)
—3 [ tdf(t) — 3bf ()
3 Jau s ) du — 3bf(b),

by integration by parts. From the form of f (¢), ¢f (¢) is a non-decreasing function.
Thus for u < ¢,

) 2 &7/ u = b1 0)/u,
and
D 2 3 ) du/u — 1] = 3bf(b) log (4/¢) > .

This completes the proof of Theorem 2.

It can also be shown that M. (X) is greater than the right side of (11), for all
b > 0, not merely for b = b(e).

Next we give an improvement on the lower bound M. (X), which is difficult
to use in general, but will be evaluated for special processes in Section 4. This is
based on the following lemma:

LemMA 5. Let 21, -+, o be independent Gaussian random variables wilh
Ex; = 0,Ex = \; > 0,7 = 1, -+, n. Consider the n-dimensional probability
space X of @1, -+, @ under the Euclidian metric d. Let a = (a1, -+ -, aa) bea

fized point of X with d(a, 0) > ¢ and S.(a) the set of points x with d(z, a) = .
There is a translation  — &' = x + b such that for any  in S.(a) the probability
density p (x) satisfies the inequality

(12) p@')/p(@) = exp (3 2 Nai'd’/ (e + Mg)'l,
where q is the unique positive solution of
(13) 2 e’/ (e + o)’ = L.

Proor. The density p (z) has the ff)rm
p(x) = exp [—3Q ()],
where
Q@) = 2k o/ .
We need to show that
(14) Q@) — Q@) = =i Ma’d’/ (¢ + M)’
for all points of S(a), when b is suitably chosen.
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Putting z = a + e, ||o]| = 1, we have
Q@) — Q) = QO) + 2 biv" (s + eo).
Taking the maximum over all ¢ with |lo]| = 1
M®) = max, Q') — Q@) = Q) + 23X buaw/Me + 2,

where ¢ = (2 bi’/M).}
To obtain (14), choose the value of b which minimizes M (b). Setting the partial
derivatives of M (b) equal to zero, we get
bi = _q)‘fa:i/(e + q>\j), .7 =1---,n,
where ¢ satisfies (13). For this choice of b,
M®) = =2 Malq/ (e + Mg),

which verifies (14) and proves Lemma 5.

The improvement to the lower bound M. (X) can now be given.

TueoreM 3. Let X be the Hilbert space of a mean-continuous Gaussian process on
[0, 1]. Define the non-negative random variable g = q(x) by

¢=0, |zl =¢

and for ||z|| > € by

(15) S @l e+ ng) = 1

where {\i} are the eigenvalues of the process. Then

16)  H.(X) 2 M(X) + 3 X Bna’e/ (e + M) '
Proor. Let n be a positive integer, and for

17) Dt > €

define ¢. = ¢ (x) as the positive solution of

(18) i’/ (e + Nga)' = 1,

while ¢, = 0if (17) is violated. Consider any set U of diameter =< e containing

the point #®. Its projection into the space of coordinates @1, -, @, lies in

Se@ @, -+, 2. ). It follows that if we translate U by applying the translation
b of Lemma 5 to the first » coordinates, we get a new set V with

p(V) Z p(U) exp {3 251 Mg @)/l 4+ Mg @)1}
By Lemma 4, u (V) < u[S¢2(0)]. Hence
(19) p(U) = plSe2(0)] exp{—3 2otms Nt ’gn (2)/[e + Mg (2T}

Now we shall show that g, — qasn — . If ||z]| < e, there is nothing to show,
since ¢g» = ¢ = 0. Suppose ||z|| > ¢, and let &, be the first non-zero component of
z. For any positive integer n, we have

(20) S/ e+ Mg =1 — Do/ (e + M)’ =1 — 55,
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where 8, = 0, limy.. 8, = 0. For n sufficiently large, > p1 2i° > €. Then (18)
holds. Comparing with (20), we see that ¢, < ¢, and

0= 2/(e+ Mgn) — /(e +Mg)’ S0, k=1,---,m
In particular, if n > m,
T’ (¢ + Mngn) ™ = (€ 4+ M) ”| < 0.

Taking the limit as n — o, we see that ¢. — ¢. An equation similar to (20) shows
that if n’ > 7, gu = ¢n, 50 the convergence is monotone.

For any fixed integer n,, if n > n; we can terminate the series in (19) at n;
(increasing the right side of the inequality ):

w(U) = uiSu2(0)] expf—3 it Na®’gn (@ )/ le 4 Nga (=)}
Applying this inequality to (4),
H(X) 2 log {1/u[Ser )]} + # 28k BN’/ (¢ + Mga)’.
Let n — . By monotone convergence,
H.(X) z log {1/ulSex O} + 3 2002 BN’/ (¢ + Nag)™

Now let 73 — . As shown in the proof of Theorem 2, the first term is bounded
below by M. (X). This completes the proof of Theorem 3.

A result of Kolmogorov’s [5, equation 12] implies that the e-entropy has a lower
bound

H(X)z Y.(X) = 3 X lalog M, ’
where N and 6 are defined (for € < Y_\,) by the equation & = Y min (6,
M) = N6 + D aswi1 M. A simple, but lengthy, variational argument shows
that

LX)z Y.(X)

with equality only in the case where \y = A = --- My and A, = 0 forn > N.
(Kolmogorov’s bound is actually a bound for the problem of communicating X
holding the expected square error to within €.) In the finite-dimensional case, a
result in [3] gives an even more precise lower bound for H, (X ). Hence we do not
have to use Kolmogorov’s bound.

4. An upper bound for H.(X). In Theorem 4 below, we bound the e-entropy
of a Gaussian process from above asymptotically in terms of the quantity L. (X)
introduced in Theorem 2. The method of proof uses a special partition of X. To
estimate its entropy, we need some preliminary lemmas which give bounds on the
entropy of a finite dimensional Gaussian distribution. The first of these lemmas
bounds the probability of being outside a spherical shell centered on the sphere of
radius n?, for the joint distribution of n independent unit normal variables.

LemMma 6. Let X be the n-dimensional Euclidian space of n independent normal
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random variables of mean zero, variance 1. Let S be the spherical shell
' — (X 2) | < d,
where 0 < d < n*, and
v(n,d) =1 — u(S).
Then there vs a universal constant C1 such that
‘ v(n, d) < Cie®/d.
Proor. The probability density of r = (3 x7 )t is
p(r) = 27"/T (n/2)r" e,
Put r = n! + s. Applying Stirling’s formula to the Gamma function shows that
p(r) = 7t exp (=3¢ — sn') (L + sn™)"[L + 0 (7).
Now use the inequality 1 + =z < ¢€°.
We have
exp (—sn))(1 + sn )" < exp [—sn! + snt(n — ] e
since s = —+/n. Thus p(r) < 1C; ¢ for some constant C; , and
y(n, d) = [laiza p(r) dr < [1>a 3Cie ™ ds < Cie?'/d.

This proves Lemma 6.
The next lemma bounds the e-entropy of the unit (n — 1)-sphere with the uni-
form probability distribution. *
LemMma 7. Let X be the unit sphere in n-dimensional Euclidian space, with a
uniform probability distribution. If 8 and v are posttive numbers, then for ¢ > 0

H(X) < 1+ B)nlog [(2 + v)/d + Cu(B,v),

where Cy depends only on B and ~.

Proor. Fore = 2, H.(X) = 0. Hence we can assume e < 2. First consider the
measure p, = px(¢) of a cap of diameter ¢ on the sphere. By a suitable choice of
coordinates, if o, is the area of the unit sphere in n-space,

Dn = On_1/0n fﬁm (1 — H)7
Set &0 = 2/(1 4+ 3v). Then, using Stirling’s formula to estimate
on1/on = 7 T (n/2)/T ((n — 1)/2),
we have
Cn ™ (e/2)"" < pa < G (e/2)"7/ (1 — €/4),}
or, fore < ¢,

(21) Ci'nH(e/2)" " < pa < Cin(e/2)" 7,

where C; depends on v.
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To get a fairly efficient partition of X we can proceed as follows: Take a maxi-
mal set of points with distances =e/2. Let there be N of these points. If we take
the neighborhood of radius ¢/2 about each point, we have an e-covering of X,
from which an e-partition can be extracted. To estimate N, the number of sets,
note that the caps of diameter ¢/2 centered at the N points have disjoint interiors,
so that Np.(e/2) < 1. Using the estimate (21) with ¢/2 for ¢, we find

(22) N < C/n*@a/e)"™
Unfortunately, the inequality

is too weak for the conclusion of the lemma. This partition will be used in com-
bination with another partition of part of the space.

The other partition is obtained from probabilistic considerations. If £ points
are independently chosen at random on the sphere, and the cap of diameter e is
taken about each, the measure of the set omitted by each cap is 1 — p., and by
the independence, ¢ = (1 — p,)* is the expected value of the measure of the set
not covered by any of the caps. The k caps cover a set whose measure depends
continuously on the positions of the & points, hence thereis a way to pick these
caps so that they cover a set of measure exactly 1 — q.

Now take

k = log pa/log (1 — pa) + 6,

with 0 < 8 < 1. Then ¢ = pa(1 — p.)’. Consider the partition of the sphere inte
two parts Y and Z, where Y is the part of the sphere covered by the k e-caps and
Z the complement of Y. The part ¥ has an e-partition consisting of & sets, while
the whole sphere, hence also Z, has an e-partition with N sets, where N satisfies
(22). Hence, considering Z and Y as metric spaces in their own right, we have

H.(Z) < log N,
H(Y) < logk,
and
(23) Ho(X)=qlogqg'+ QA —qlog (1 —¢q) " + 1 — @H(Y) + qH(Z)
< log2 + logk + p.log N.
Fore < o = 2/(1 4+ 3v), the term.
palog N < Cs'n*(e/2)" {n log (4/¢) + % log n + log C4'}

has a bound depending only on v. To estimate the term log &, note that p, has a
bound B(y) < 1for e < €, hence

—log (]. - pn) > C5,p'n.y
and

k< Cipn "log pn ' 4 8 < Cdpa ' log pa ™
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Thus

(24) log k < log pn " + log log p. " + log C7'.
For 8 > 0 and p, < B(y), the inequality

(25) log log p» " < 38 log p " + Cs' (8, 7)

is satisfied. Furthermore,
log pa* < (n — 1) log (2/¢) + % logn — log CY
< nlog (2/e) + B/(2 + B)nlog 1 + v/2) + C4'.
Combining this inequality with (24) and (25),
log k < (1 + 8/2) log pa* + Cio
< (14 6/2)nlog (2/e) + 3Bnlog (1 + v/2) + Ch.
For e < e, 2/¢ > 1 + v/2. Hence
log k < (1 + B)nlog (2/¢) + Cu,
and using this inequality in (23),
(26) H (X) < (1 + B)nlog (2/e) + Ci(B, 7).

The inequality (26) is only valid for e < 2/(1 4 v/2). To get an inequality
which holds for e < 2, put
€ =¢/(1+7/2) .
and apply (26) to He (X). Then

H (X) £ Ho(X) < (1 4+ B)nlog[(2+ v)/¢] + Cu(B, 7).

This completes the proof of Lemma 7.

The next lemma bounds the e-entropy of Euclidian n-space under the joint
distribution of n independent Gaussian random variables.

LemMma 8. Let X be the n-dimensional Euclidean space of n independent normal
random variables of mean zero, and variance My, - -+ , \n . Let a be a number between
Oand 1, and for 0 < (1 — a)e < 2(n)\),§ set

v =, (1 — a)/(2\)),
where \ 18 the maxtmum of M, -+ , M« Then there 18 a universal constant Cs such
that
Ho(X) < (1 + 8)nlog[(2 + v) (N)/ (ae)] + nv log" [(n))'/e]
+ Ci(B,v) + C:(1 + ),

if B, v are any positive numbers, and Cs(B, v) s the constant of Lemma 7.

Proor. Replacing i, - -+, A by \ can only increase H.(X). Hence we can
assume \; = -+ = A\, = A. Next, we can assume A = 1, for the result is invariant
under the change of scale A — A, € — té. Let S be the shell of Lemma 6 with
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d= (1 —-a)/2,andY = X — 8. Thenu(Y) = »(n, d) = v, by definition, and

27) H(X) S vlogy™ + (1 =»)log (1 — »)™ + vH.(Y) + (1 — »)H.(S)
= H.(S) + »vH.(Y) + log 2.

First we estimate H. (Y). If Ev[), 2;'] = ng, then each coordinate has Elzf] = 9

by symmetry, and if we partition ¥ with a product partition formed from en *-
partitions of each coordinate, we see [2, Theorem 8] that

(28) . H.(Y) < nflog [(ng)*/e + CI,
where C is a universal constant. Now we need to estimate
g =Ey(Q_ zi/n).

First, if all the points of ¥ within a certain distance of the origin 0 are removed
the value of this expectation is 1ncrea,sed Leaving out all points within distance
2n? of 0, ¥ becomes the region )z > 4n in X. Hence

q < 1/n [ou e dr/ g " dr.
Replacing r by tn'
(29) ¢ < [T1@)tdy/[3 @) dt,

where
f@) = .

Since f (¢) is a decreasing function on (2, « ), the ratio in (29) is a decreasing func-*
tion of n, hence bounded by its value when n = 1. Thus ¢ has a bound inde-
pendent of n, and (28) implies

(30) H (Y) < nflog (n*/e) + C'].

Next we estimate H.(S). Let &, (1) be the n-entropy of a uniform distribution
on the unit sphere in n-dimensions. Then there is an 5-partition of the sphere
which has thlS entropy. If each set of the partltlon is extended radially between
spheres 1 — 7 <r<1+4 7 , We obtain an n + 25’ -partltlon of the shell between
these spheres. It follows that A, (1) bounds the n + 25"-entropy of any spherically
symmetric distribution in the shell. Set 3 = aen™ 7" = 1(1 — a)en™*. After a
change of scale, we get

H.(8) < hy(aen™).
Now h,(n) was estimated in Lemma, 7, according to which

He(S) < (1 + B)nlog[(2 + v)n'/ (ae)] 4+ Ci(8, 7).

Combining this inequality with (30) and (27) completes the proof of Lemma, S.
An alternate upper bound is obtained in Lemma 9. The bounds of both Lemma,
8 and Lemma 9 are needed in Theorem 4.
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Lemma 9. Let X be the n-dimensional Euclidian space of n independent normal
random variables of mean zero with variances N, ---,\,, and \ =
max (A, - -+, Ma). There is a universal constant Cy such that if ¢ > 2(n\)?,

Ho(X) < Candlge™,

where g = ¢/ (2(n\)}).
Proor. As in the proof of the preceding lemma, we can assume Ny = -+ =
M = A= 1Thenr = (3 z)! has density

p(r) = 27T /2y,
and the probability that » > ¢/2 is
p = 2T (n/2) [Gr" e dr.
Put
e=2(n)

and assume g > 1. After the substitution r = tn*, the coeflicient of the integral
can be estimated by Stirling’s formula, and we have

p < Cnfe"® [7 "1 gy
Since the function t** is decreasing for ¢ > ¢,
31) p < Cnle"?(ge"y! [7 e at
< C'nle g, »

Now we proceed as in the proof of Lemma 7, letting Z be the set » < ¢/2 and
Y the set 7 > ¢/2. The diameter of Z is e. Hence its e-entropy is zero, and

(32) H.(X) =plogp '+ (1 —p)log (1 — p)™" + pH.(Y).

To estimate H.(Y') we again need to bound ng = Ey (+*). This ¢ is given by a
formula similar to (29), in which we can replace n by 1 to get an upper bound:

g < [P e a/f7 e dt
< Cg.
Thus as in (28)
H.(Y) < nllog[(ng)/d + C] < nC”.
Combining this bound with (31) and (32),
H.(X) < p[1 + log (1/p) + nC"]
< '’ [ing® — (n — 2)logg — }logn + nC”]
< Cyigle™ i’

Lemma 9 is proved.
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We are at last ready to state and prove the upper bound of Theorem 4.
TaEOREM 4. Let m be any positive number less than %. Then

HG(X) = Lme(X)[]- + 0o(1)]

as e — 0. In particular, H.(X) is finite for X a mean-continuous Gaussian process
on the unit interval and ¢ > 0.

Proor. The idea of the proof is as follows: For any 6§ > 0, X will be broken up as
the product of a sequence of finite-dimensional spaces {X;} in a way which de-
pends on § as well as on €, so that, for the optimum product partition U,

HU) = 0+ 8)Lue(X)[1 + o).

The meshes {e} of the component partitions are suggested by the series (8). The
most natural product partitions to try are one-dimensional product partitions,
where we take

(33) e = AN/ (1 + b))

for the partition of the kth coordinate. It turns out that this does not always work.
In fact, if the eigenvalues decrease slowly enough, there are no one-dimensional
product e-partitions with finite entropy [4], even if Y N is finite. However, for
small ¢, this is the best way to handle the large eigenvalues, and there is a first
range of k in which one-dimensional subspaces are used. Beyond this point, the
dimensions of the subspaces are consecutive integers beginning with 1. This
sequence of subspaces is also split up into two ranges; up to a certain point, the
entropy of the subspace is estimated by Lemma 8. Beyond this point, Lemma 9
is applied.

The e-entropy of a 1-dimensional Gaussian distribution of variance A is a func-
tion % (e\™') with the property that

h(e) ~ log (1/e)
as e — 0 ([4], Lemma 7). Thus, there is a number 8 < 1 such that
h(eN™h) < (1 + ) log (N/e)
if e < 6o\
Let A be a constant with
(34) 2< A< 1/m,
and define M by ‘
(35) A+ M) =8
Then for k such that
(36) b > M,

if we define ¢, by (33), the e-entropy A of the kth coordinate satisfies the in-
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equality

e < (1 4+ 8)log (\/e) = (1 + 8)[log (1 + b)) — 2log 4],
SO
B7) M < (14 8)%log (1 + b\).

_ Let (36) be true for k = k; . Group the coordinates @, 41 , Xr,42 , * * + into spaces

X1y Xiype, -+, where for j > ki, X; is the space of coordinates x; with

430 —k)G—l—1)<k=kh+3{—lt+1)§— k).

The space X; has dimension n; = j — k; .
Forj > ki, let \; be the maximum eigenvalue of the coordinates in X; . Define
€; by

(38) e = A,/ (1 + bX;).
Next, pick K, o, and v with ¥ > 0,0 < a < 1, such that
(39) 2<2K< 24+ 7)/a < A.
Define j» to be the last value of j (>k;) for which
(40) 2 + ) (0};)/ (ae) > K,
if such values exist. By (38) and (39),
limje (2 + 7) (0%)"/ (ae)) = (2 +7)/(ed) < 1 < K,

so that (40) is eventually violated. If (40) is never satisfied, put 7o = k; . Since
the left side of (40) is monotonic in j, (40) is satisfied whenever k1 < j < 7,.
First we treat the subspaces X; with 7 > j. . Here

& = 20(A;)},
where
9= 2+ 7)/(2K) > 1,
by (39). Applying Lemma, 9,
hi = he;(X;) < Cinjt (get ™" )™,
We have ‘
S = E:=1 n%(geé_%gz)" < o,

since get ¥* < 1. The n; are distinet positive integers. Hence
(41) D =it hy < Cs81.

For ky < j = j», we apply Lemma 8 with 8 = §/2. For this we require that
(42) (1—-a)@2+v) <akK.
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This inequality, together with (40), ensures that (1 — a)e; < (nX;)! in this

range. Then ‘

43) h; < (1 + 8/2)n;log" [(2 + 7) ()Y (ae;)] + nw;log [(niX;)}/e)]
+ 04(5/2, v) + 02(1 —+ njv,-),

where
(44) vi = v(ng, (L — a)e/ (2N))
< 2087/ ((1 — a)ej) exp [— (1 — a)'e/ 4X))],
by Lemma 6.
The eigenvalues in this range violate (36). Hence b\; < M, and by (38)
45) M%)/ = AT+ 08 £ AT+ M) = M.
Applying this inequality in (44 ),
(46) np; < 20.M7/ (1 — a)nf.

From (45) and (46), the terms after the first on the right side of (43) have a
bound of the form Cen,}, where Cs depends on the constants which have been
introduced. Choose C7 so that

Cm? < 27°Cr + tonlog K, n = 1.
By (40), the first logarithm on the right in (43) is greater than log K. Hence
hi < (14 8)n;log" [(2 + 7) (nX;)/ (ae)] + 27%Cy .
= (1 + d)nlzlog 1 + bX;) + log ((2 + v)/(@d))] + 27¥C;
< (14 8)in;log (1 + bXN;) + 277C,
by (39). Summing,
(47) Dy < 1+ 8) Xikia dnilog (1 + bX)) + Cr.
Ift® = > 7e’ Ho(X) < D74 by . Combining (37), (41), and (47),
48) Ho(X) = (14 8){3 2Zitalog (14 M) + 3 2411 nslog (1 + bX,)}
+ 038 + Cy.

It remains to determine the relation between ¢ and e, and to compare the ex-
pression in braces in (48) with L. (X). In this it is crucial that bX; is bounded for
j > k.

First we consider

L =3 20 (1 + b\ + 3 2 anslog (1 + BX;).
Since (36) is violated for j > ki , if r is any positive integer
49) 2 iwamglog (1 + bX;)
Srlog 1+ M)+ ¢+ 1)/r 25 (n; — 1) log (1 + bX;).
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Here }; is the first eigenvalue in X, hence it is no larger than any eigenvalue in

Xj1.Forj = ki + 2, X,;_; has dimension n; — 1, hence
(n; — 1) log (1 + b%;) = 2 log (1 + bM),
where the summation is taken over @ in X;_; . Applying this inequality in (49),
L' = ¢4+ 1)/rL(X) +rlog 1 + M),
and (48) reduces to
Ho(X) = (1 + 8)0r 4+ 1)/r[Le(X) + rlog (1 + M)] + Cs8 + €
I+ 8)@ + 1)/rL(X)[1 + o(1)].

Letting r — o,
(50) He(X) = (14 8)L (X[ + o(1)].
Now we consider the value of ¢. We have
€ = ATH N/ A+ ) + D/ (1 + bX,)].
This is to be compared with the series (8) for ¢’. For any positive integer 7,
be" < AR 0N/ (L4 M) + 7+ (4 1)/r s (n; — DB (/1 + B,)),

since bA;/ (1 + bX;) < 1. Comparing the jth term in the second series with the
terms for X; 1 in (8), we see as above that

be" < A’[(r + 1)/rb + 1] = A*(r 4+ 1)/rbél[1 + 0(1)],
since b’ — ® as e — 0. Letting r — o, we have
€ £ Al + o(1)].

The constant A was selected to satisfy (34). Hence if € is sufficiently small
€ < ¢/m, and by (50)

Hym(X) £ Ho(X) £ A1+ 8)L(X)[1 +o(1)].
Here ¢ can be any positive number less than (O A )%. Replacing ¢ by me, we have
H(X) = 1+ 8)Lne(X)[1 4+ o(1)).

Letting 6 — 0 completes the proof of desired inequality. In particular, we conclude
that H¢(X) is finite. Theorem 4 is proved.

6. Entropy of special processes; the Wiener process. By the Wiener process,
we mean that Gaussian process on [0, 1] which has covariance function
R(s,t) = min (s, ¢), and

(51) M= -3 =12 .

This can be treated as a special case of a more general process, such as the solu-
tions of finite-order stochastic differential equations, with

(52) Mm~AR?,  p > 1.

’2
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We first estimate L. (X ) and M. (X) for such processes, to get the upper and lower
bounds of Theorem 2 and 4. Then the lower bound of Theorem 3 will be treated
to obtain the best bounds we know of for this class of processes.

We need to find the asymptotic behavior of b as a function of ¢, given (52) and

Z M/ (L4 bN,) = €

Note that b — o as e— 0. If 4;is any number greater than 4, A, < A~ ? except
for a ﬁnite number of values of n. Hence

€< Dmat Am /(1 + bAm™®) + 0 (™).
It is easily shown that as b — o,
Domt Am /(1 + bAm ™) ~ [¢ AP dt/ (1 + bAE?)
= AP 6" 7w/ (p sin (x/p)).
Hence
€ < AP i/ (psin (x/p))[1 + o(1)].
Similarly, if A; < A the reverse inequality holds. It follows that
¢~ A7V M/ (psin (x/p)),
or
(53) b(e) ~ AP/ (p sin (w/p))P'T0EHE, .
The same type of reasoning applies to the series for L. (X). We have by (9)
L(X) = § X log (1 + b\)
~ 1 [Tlog (1 4 bAL™) dt
= (b4)""r/(2sin (x/p)).

Using (53),
L(X) ~ B ™,
where
(54) By = $pA” ™ (x/ (psin (x/p)))" ",

In applying Theorem 4, the rate of growth of L. (X) is sufficiently small that we
can put m = %. Thus Theorem 4 gives us

(55) H(X) Z 217 PB, ™D,
Now M. (X) can be quickly evaluated. From (9), (10), and (53),
Md(X) = Ly (X) — €' (¢/2)
~ Las (X) — 1/p2¥@ 0 gD
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and
(56) H(X) = M (X)~ (p — 1)/p2@ VB0,

In examining the lower bound of Theorem 3, we first prove a general lemma
which applies to any Gaussian process for which the eigenvalues do not decrease
too rapidly. It says that in some sense the random variable ¢ behaves like the
deterministic function r = r (e) which is the positive solution of

(57) S M/ (e+ Mr) =1

when € < Y A, . This can be made precise when the eigenvalues satisfy (52).

LemMa 10. Let the eigenvalues {\.} (in mon-increasing order) of a mean-con-
tinuous Gaussian process X have the following property: There is a sequence
n < ng < .-+ such that

(58) (i1 — mi)/log kb —
and
(59) Mipr/ My — 1

as k — . Let 8 be given with 0 < & < 1. Then for e sufficiently small, and q as de-
fined in Theorem 3, equation (15), we have

(60) 120 2%/ (e + M)’/ 20 M/ (e + Mg)* — 1] < 8
and
(61) |20 Naid/ (e + Ng)’/ 20 MG/ (e + Mg) — 1] < 6

except on a set of x of probability less than o.
Proor. Consider

Sk = Donkl . 2./ (e + Mag)’
Let » = yahs'. Then
(62) Sp = D_nElaa Mg’/ (€ + M)’ = M/ (€ 4 My @)° 2onEhia Yn™

Set ng41 — M, = my, , and let d be a positive number less than m’, to be deter-
mined later. By Lemma, 6, the last sum in (62) is less than (mi* + di)?, except on
a set of probability less than Cie™®" /dj, . Then

Sk = M/ (€ + My @)’ (1 + demy?)?
= /M) (@ A+ dem™)? 200 M/ (e + Mag)’.

If 6, is any positive number, then, by (58) and (59), if j is a sufficiently large
integer, we have
log kb < 38" my
and also
)\nk < (1 + 61))\1;,,_“
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forallk = j. Make & < landj = 2. Fork = j, put dy = (2logk)’. Then
S 1+ &) Z:Ehlk+1 M/ (e 4+ Mag)’

except on a set of probability less than Cie %' /d;, and, summing for k = j, we
have

(63) i1 @'/ (¢ M)’ = (L + 8)° Deniia M/ (€ + Mag)’,
except on a set of probability less than
' pi = Ci 2imi € /dy = €1 Xmi K(2 log k)2
Similarly,
64) D/ (e 4+ Mg) = L+ 8)7° (1 — &) Lt M/ (e + Mag)?

except on the same set of probability less than p; .
From (64) and (15),

(65) mniti M/ (e + Mg) £ (1 + 8)°(1 — &),

which shows that as e— 0, ¢ —  uniformly, off the exceptional set. For the terms
with » < n;, we have

So = 22nL12a"/ (e 4+ Nag)’ S M/ (N2i0") Donn ya'.
Applying Lemma 6 with d = j,

(66) 8o < M/ (\ayd’) (v + 5P,
except on a set of probability less than ¢; = Cie " /j. For the other series,
(67) 8o = 2onia M/ (e + Mng)* < mih/ (ny).

Now we can show (60). Take & so small that
1+ &)° < 1+ 8/4,
A4+6)7°A — &) >1— /4.
Next, make j sufficiently large that p; 4 ¢; < 8/2. Off the exceptional set of prob-

ability <p; + ¢j, ¢ — « uniformly as e — 0. By (66) and (67), if ¢ is sufficiently
small

Se < 8/4,

8o < 8/4.
By (65),

2 M/ (et Mg)’ < L+8/2< (1—8)
By (63) and (15),
2onmt M/ (e + Mag)* > (14 8/4)7 20 i1 27/ (e + Mag)’
> (1—8/4)/Q +6/4) > (1 +8)™

Hence, (60) is true except on a set of probability less than &/2.
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Similarly we can prove (61). The difference in the treatment of the initial terms
in the two series is that here we know the series become infinite as ¢ — 0, while
the sum of the first n; terms is bounded (off an exceptional set of probability less
than §/2). Lemma 10 is proved.

Now we shall apply this lemma and Theorem 3 to processes satisfying (52).

TuEOREM 5. If a mean-continuous Gaussian process X has eigenvalues \, ~ An”?,
p > 1, then

68) H.(X) 2 A" ' (a/(psin (v/p)))" " — 1)/2

2/ (p—1 —p/(p—1)7 —2/(p—1
-[2 b2 )+p vl (p )]e ! (p ).

Proor. First we use Lemma 10 to estimate the last term of (16). On a set of
measure 1 — § we have, for e sufficiently small

2on/ e+ Ng)’ < 1 —8)7
This sum is asymptotically equal to an integral as ¢/e — o
2N/ (e 4 Ng)' ~ [T ACT b/ (e + Agt?)’
= A7 i/ @ sin (n/p)).
Hence
¢ > AT (1 — 5)/ (p? sin (x/p))P/ @O @HI@D

Also, we have
NG/ (e + M)’ ~ [§ AT (e + Agt?) " dt
(Ag/e)"" (@ — 1)x/ @ sin (v/p))

A0 =" @ — D/ @ sin (n/p))P'T 0N,
off the exceptional set. Then by (61),
>0 nlg/ (e 4+ Mg) > (1 —8) 20 N/ (e + Mg)’

> (1 - 6)10/(17—1) B26—2/(p—1)
where
By = A" (p — D)/ (0" sin (x/p))P'7.

This asymptotic inequality holds uniformly on a set of measure at least 1 — 8.
Hence

B Z )\kxk2q2/ (é + )\kq)2 2 (1 _ 6)1+p/(p——1)B2€—2/(p_1)’
and letting § — 0,
1E 3 v’/ (e + Mg ) 2 2 By 27D

Using this estimate for the last term of (16), together with the asymptotic
form (56) of M.(X), we obtain (68), and prove Theorem 5.
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CoroLLARY. For the Wiener process,
17/(32¢) S H.(X) S €2

Proor. The lower bound results from puttingp = 2, A = = in (68). The up-
per bound is (55) for this special case. This proves the corollary.

We close the paper with the remark that there is no Gaussian process X for
which we know that L (X) is not asymptotie to H.(X) as e — 0. Resolution of
this question would be extremely interesting,.
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