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HOMOGENEOUS GAUSS-MARKOV RANDOM FIELDS!

By E. Wone
Unaversity of California, Berkeley

1. Introduction. In this paper we consider real Gaussian random fields which
are: (a) homogeneous with respect to the motions of an n-dimensional space of
constant curvature, and (b) Markovian in the sense of Lévy [1]. The principal
result of this paper is the characterization of such random fields in terms of their
covariance functions. We recall that in one dimension a similar question has the
very simple answer that the covariance function of a stationary Gauss-Markov
process must be an exponential. The answer in the n-dimensional case is nearly
as simple, and will be given in this paper.

Let (2, @, ®) be a fixed probability space, and let {z (v, 2), weQ,2eV,} bea
family of real Gaussian random variables with an n-dimensional parameter space
V.. We shall only consider three cases: (a) V. = R", Euclidean space. (b)
Va. = 8" sphere. (¢) V. = H", hyperbolic space. Let G (V) be the full group of
motions in V, which preserve distances. Suppose that for any finite set
A = {2} C V., {z(-,2),2:¢ A} and {z(-, g2:), 2: ¢ A} have the same distribu-
tion whenever g ¢ G(V.). Then we say {z (-, 2), 2 ¢ V.} is a homogeneous random
field.

Markovian property in higher dimensions was introduced by Lévy [1] in con-
nection with Brownian motion. Let D be a smooth closed surface of dimension
n — 1in V,, separating V, into a bounded part D™, and a possibly unbounded
part D*. A random field {2 (2), z & V.,.} is said to be Markovian of degree < p + 1,
if for any such dD every approximation £(z) to z(z) in a neighborhood of 4D
which satisfies

|£() — ()] = 0(") 8 = distance (z, dD)
also has the property that given £ (- ), z(2) and z(2') are independent whenever
zeD and 2 ¢ D
A random field is Markovian of degree p, if it is Markovian of degree < p,
but not < p — 1. In this paper we are primarily concerned with Markovian fields

of degree 1. For this special case it is more convenient to define the Markovian -

property by: given {x (), 2 £ D}, z(2),z ¢ D™, and z(2), z ¢ D*, are independent.
If z(2) has continuous sample functions, this definition clearly reduces to that
of Lévy. This latter definition is more convenient when we have occasion later to
consider the possibility of defining Markovian property for generalized random
fields.

Since Gaussian distributions are uniquely determined by second order prop-
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erties, whether a Gaussian random field is Markovian or not is completely de-
termined by its covariance function. While it would be nice to give a necessary
and sufficient condition on the covariance function for a Gaussian random field
to be Markovian, we are able to do this only when the random field is homo-
geneous.

2. Second-order properties. There is no essential loss of generality in assuming
that V, has curvature 0, 1, and —1 corresponding to R", 8", H" respectively.

With the assumption we can adopt a coordinate system (o1, * <, @n-1, 7),
e = (1, ,0n1) eS8, rel0, ©)for R", H", and r € [0, m) for S". We express
the Riemannian metric in the form of the differential arc length ds:

(1) ds’ = dr' + ¢ (r) 2= ([1iskasin® or) doi®

where ¢ (r) = r, sin r, sinh r for R", S" and H" respectively. The length of a sec-
tionally smooth (piecewise differentiable in terms of coordinates) curve is found
by integrating ds along the curve. The distance d(z1, 22) between two points
21, 226 V, is the infimum of the lengths of all sectionally smooth curves con-
necting 21 and 2, . It can be shown that for the three cases being considered, we
have

d((e, 1), (¢,, 7‘,))
2)

" + " — 2m" cos 0(p, qo,)]%

cos ™ [cos 7 cos ©' + sin 7 sin 7’ cos O(p, ¢')]

It

= cosh™ [cosh 7 cosh ¥ — sinh 7 sinh " cos 8(p, ¢')]

for R", 8™ and H" respectively, where 0 (¢, ¢’ ) is the spherical distance between
¢ and ¢ on 8"\

Consider the full group G of one-to-one differentiable mappings of ¥, onto itself
which preserve distances. G acts transitively on V,, i.e., taking any point into
any other point. Hence, if we let K be the maximal subgroup leaving (-, 0)
invariant, then V, can be identified with the homogeneous coset space G/K.
For a homogeneous Gaussian random field {z (-, 2), z ¢ V,}, we have Ez(-,2z) =
Ezxz (-, g2) for all g ¢ G. Hence, Ex(-, 2) = constant which we shall assume to be
zero. Similarly, whenever g ¢ G, Ex (-, 2)x(-, 20) = Exz(-, g2)z (-, g2). Since ¢
acts transitively on V., there always exists g taking 2z into (-, 0) and z into
(0, d (2, 20)). Thus, E z(-, 2)x (-, z,) depends only on d (2, z,) and we can write

3) Ex(-,2)z(-, 20) = R(d(z 2)).

Analogous to Bochner’s theorem in one dimension, the class of continuous co-
variance functions of the form of (3) can be put into a one-to-one correspondence
with the class of all bounded non-decreasing functions defined on [0, « ) in the
case of R and H", and the class of all non-negative functions defined on the
integers in the case of S”. This is done via a spectral representation for R (- ).
A function R (r), r £ [0, =), is said to be a positive-definite function on V, , if
for arbitrary complex constants a;, a2, ---, a; and arbitrary elements 2;, 2.,
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-, 2% in V., R(-) satisfies the inequality
“4) 2tiaaR(d G, 2)) 2 0.

As is well-known, R(-) is the covariance function of a homogeneous random
field on V, if and only if it is a positive-definite function on V, . It is also well-
known, that a random field {z (-, z), z ¢ V.} is continuous in quadratic mean if
and only if its covariance function: B (d (z, 2,)) is continuous on V, x V,. Let
Y(r), re[0, =), be a continuous positive-definite function on V.. Suppose
¥(0) = 1 and ¢ is an eigenfunction of the operator

(5) Ao = {g" ()} (—%— [g"_l(r) dir]’

then y is called a spherical function. Let 9 denote the set of all spherical functions.
Let L denote the set of all complex valued functions f which satisfy

®) [S97 0@ dr < .
Suppose I is given the weakest topology for which the Fourier transform
(7) JW) = [Sv@)f )y @) dr, e

is continuous for every f ¢ L. Then it can be shown [2, 3] that every continuous
positive-definite function on V, is of the form

(8) R(r) = [y (r)o(dy),

where ¢ is a finite Borel measure on 91.
For the three cases R", 8", H", the spherical functions can be found explicitly
by solving the differential equation

(9) {gn—1<r) }—-1 (_id; [gn—l(r) d‘/’d(:)

:I = M(r)

for positive-definite functions which satisfy ¥ (0) = 1. The function ¢ (r) is given
by r, sin », sinh r, according as V., = R", 8" and H" respectively. The spherical
functions for these cases are listed below.

(a) R™: = =, 0=rv<
(10) Y(r) = %fg = K,.f exp (ivr cos §) sin™ 0 d.
0
®b) S N= —k(k+n—1), k=012

(11) v(@) = " P(eosr) = K, ff)' (cos r + sin r cos 8)* sin” % df.
() H: —o <N=0, ) =3+ {Bx - DF+N

Puoy ¥ (cosh r)
(sinh r)3(n — 2)

= K, f (cosh + sinh r cos 6)* ™ sin™ %9 do.
0

12) y(r) =
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In each of these cases, K, is fixed by setting K, [ sin” > 6 d§ = 1. It should be
noted that in (12), for the range — o < A < [4(n — 1)I, it makes no difference
whether we take p(\) = —% 4+ ¢\ — A — D or p(A) = —3%
—i{[\| = [ (n — 1)]*}*. This follows from the following property of the Legendre
functions:

P’ = P,..

Using these results, we can reduce (8) to a sum over the non-negative integers
in the case of 8", and to a Stieltjes integral over [0, » ) for R" and H".
Let A be the Laplace-Beltrami operator given by

13) A = 0 20 2]+ e as
where A (8™ ") can be recursively generated as follows:
(14)  A(S™) = {sin" (gn)} ™ 56— [sin"_l(son) —‘Z-] + (sin® .) A" ).
On ¢n
It is well known that A commutes with any ¢ in G, and every differential operator

commuting with G is a polynomial in A with constant coefficients. Let L’ (S™™)
denote the set of all square-integrable functions on S™' (with respect to the

uniform measure ). For eachm (m = 0, 1,2, - - - ), any maximal set of linearly in-
dependent solutions in L*(S*™) of the equation
15) A"k = —m(m +n — 2)h

forms a basis for a subspace Z,, which is invariant under G (8" ™). Denoting the
dimension of Z,, by d., we have

l=di<dh =d £ ---

We choose the basis {hn;, ! £ dn} to be real and orthonormalized so that
(16) f,sn—l mi(@ )i (@) dO = 8mpdez, dO = uniform measure, fs,.—x 0 = 1.

Now, let ¢ (A, r) be a spherical function corresponding to the eigenvalue \. By
definition, we have Aoy = M. Since ¢ does not depend on ¢, we also have Ay = Ay.
Because A commutes with every motion in @, ¥ (\, d (2, 2’ )) as a function of either
z or z is an eigenfunction of A corresponding to eigenvalue \. These considerations
together with the symmetry of ¢ (A, d(z, 2')) in z and 2’ suggest that ¢ can be
written as

A7) Y\, dz 2)) = om0 D171 it (@) mt ( W O\, 7 )m (A, 1)
where ¥ satisfy
(18) [B0 — {m@m 4+ n — 2)Hg" )} " Wm = N

and am; are constants. It turns out that with A,.; normalized as in (16) the con-
stants a1 do not depend on ! and hence can be absorbed into ¥, . Thus, (17) takes
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on the form

(19) ‘/’O‘; d(Z, Z’)) = Z:=0 Z‘;gl hml<¢)hml(¢,)‘pm<)‘7 T)‘Pm()\, 7',)'

Because ¢ is positive-definite, the functions ¥, are necessarily real valued. It
should be noted that for V,, = S™ the sum in (19) is actually a finite sum. For that

case, we have A = —k(k + n — 1), and then ¥, (\, r) is non-zero only for m = 0,
1, -+, k. It should also be noted that because ¢ (A, 0) = 1, D> h%; (¢) = dm
and ¥m (A, 0) = 0 for m = 1, we have

(20) Yo\ ) =¥\ 7).

If we denote by A the set of eigenvalues corresponding to spherical functions,
then (8) can be rewritten in a more convenient form as follows:

(21) R(r) = [a¥(\, 1)F(@dN)
where F is a finite Borel measure on A.

3. Homogeneous Gauss-Markov Fields. Equations (19) and (21) show that a
homogeneous Gaussian field {z (-, ¢, 7), (¢, 7) € Va} has a representation

(22) Z(, 0, 7) = 2 om0 2 1gdn hont (@)Zmi (-, 1)
where {Z.:(-, r)} are independent Gaussian one-dimensional processes, and
(23) Eami (-, )25k (-5 1) = Smgdue [s ¥m N, 1 m (A, 7)F (dN).

LeEmMA 1. Let z(-, r, ¢) be a homogeneous Gauss-Markov random field. Then
{Zmi(+, )} defined by

(24) T (-, 1) = [dh1hm(@)z(-, ¢, 1) dO

is a set of independent Gauss-Markov processes in one dimension, and there exist
functions fm(r), gm(r) such that

(25) Ezmi(M)2mi (') = [a¥m O r)¥m (X, 7')F (@A)
= fm(max (r, 7"))gm (min (r, ")).

Proor. We need only to prove that z,;(r) are Markov, i.e., that whenever
7> 1 > 19, Tm(r) and zm; (ro) are independent given T ("). Since for different
m and [, .;(r) are independent processes, we need only to prove that zm:(r)
and . (ro) are independent given (') for all p, k. But given 2, (r') for all
p, k is the same as given z @, ") forall ¢’ € 8*. Thus, what needs to be proved is
the independence of Zm:(r) and Zm:(ro) given { z(, ), ¢ €8""}. But from the
definition of a Markovian random field, whenever r > # > 79, 2(p, r) and
(g0, 7o) are independent given {z(¢’, '), ¢ & 8*'}. The proof of the Markovian
nature of Z,:(r) is completed by noting (24). Finally, the form given by (25)
is the required form for the covariance function of a one-dimensional Gauss-
Markov process [4].

We are now in a position to state a necessary and sufficient condition on the
covariance function for a homogeneous Gaussian random field to be Markovian.
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TaEOREM 1. Let {2(-, 2), 2 € V,} be a homogeneous Gaussian random field with
a continuous covariance function. Then, for x (-, z) to be Markovian, it is necessary
and sufficient that

(26) Ex(-,2)z(-,2") = O¥(d(z,2))

where ¥ is a spherical function on V, and C = Ex’(-, 2) is a positive constant.
Proor. Necessity. From (25) we have

(27) JavaO, e 7HF @N) = fo()go), 7 > 7.

For a fixed » > r it is easy to show that Ao\, ) (A, 7" )F (dN) is a convergent
integral. Whence

28) (A () = [aMo(\, i\ PIF(AN) = fo(r)Adge ()

whenever r > r’. This means that

(29) (")} A9 (") = {(fo(r)} Adfo(r) = constant
or

(30) Aofo(r) = constant f,(r), r > 0.

From (20), (21) and (27) we have

(31) Bz(-,2)z(-,2') = R(d(, 7)) = 00(0)fo(d(, 2)).
If we set

— fO(d(z; 2,)) — Ex() Z)Il)(, zl)
fO(O) Ex2(" Z)

then ¥ (0) = 1 and ¢ is a continuous positive-definite function on V, . Further-
more, because of (30), ¢ is also an eigenfunction of Ay. Thus, ¢ is a spherical
function, and necessity is proved.

Sufficiency is rather trivial, because a Gaussian random field, whose covariance
function is a spherical function, is degenerate in the following sense: for any
smooth closed surface 6D

(33) z(-,2) = B{z(:,2) |2 (-,2),7 ¢ oD}

with probability 1 for all z ¢ V,,. To prove this, we note that if Ex (-, 2)z (-, ")
= C¥ (N, d(z, 2')) then z (-, 2) has the form

(32) Y(d(z2"))

(34) x(w, (2] T) = Zm,lxml(w)hml(ﬂo)\bm()\o, 7')
which yields
(35) Az (w, 2) = Az (w, 2).

Given a smooth closed n — 1 surface dD, (35) can be treated as an interior or
an exterior Dirichlet problem with boundary data on 8D, which results in (33).
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4, Generalized Markovian fields. In this section we shall show that it is pos-
sible to define the Markovian property for certain generalized random fields,
and give a necessary and sufficient condition for a homogeneous Gaussian gen-
eralized random field on R" to be Markovian. This generalizes Theorem 1 for R".
Non-degenerate examples of homogeneous generalized Gauss-Markov fields do
exist, and represent natural generalizations of the Ornstein-Uhlenbeck process in
one dimension.

Let 8(R™) denote the Schwartz space of real-valued C* functions of rapid
descent. That is, § contains all real-valued functions f on R" for which there exist
finite constants C,.;. such that
(36) Supeers [2|" |D*f(2) | £ Cua,

. ghrte e
2—(21,22,"',zn), k= (ki, -+, kn), D =m

Convergence in § of a sequence {f,} means

(a) f, € 8 for each v

(b) Sup.ers |2|"|D*f,(2)| £ Crm independent of »

(¢) For each k {D*,} converges uniformly on every compact set in R".

Let 3C be a Hilbert space of real Gaussian random variables with zero mean.
We shall define a real zero-mean Gaussian generalized random field X to be a
continuous linear map of § into 3. An isometry g:R" — R" induces a map
T,:8 — 8 by

(Tof) () = f(g72).

The generalized random field X is said to be homogeneous if for all g ¢ G(R™)
and f 1, fz 8

G37) EX (Tf)X (Tofz) = EX(F)X (F2) = B(fi, f2).

We shall call B the covariance bilinear functional of X. A bilinear functional
Bon $ x 8 is the covariance functional of a homogeneous Gaussian generalized
random field X, if and only if

(38) B(fi, f2) = Jo 2omafni \fui (\F (N)
where F' is a non-decreasing function of slow growth on [0, » ), and
(39) fmi) = [sr=1d0 [T drf (o, " hmi (@)™ m (=N, 1), m = 0,1, -, 1< dy

The monotone function F will be called the spectral distribution of X [5]. In
terms of f.i(\) we can write

(40) X(f) = 2oma [0 Fmt(N)Emi (AN)
where {£,,;} is a family of independent 3C-valued Borel measures on [0, « ) with

(41) Efmi(A)2pq(A") = 8mpdicF (A0 A").
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We note that the sequence {X(f,)} converges whenever { f,} converges in
L*(dF d0) norm. Here, f is given by

(42) T, N) = 2mifmt Nhmi ().

Therefore, if we define X by X (f) = X (f), then X can be extended to a continuous
linear map of L’ (dF d0) into 3¢. In particular, if F is bounded, the corresponding
ordinary random field can be recovered by setting

(43) x(§00, TO) = X(Ec’o#o)
’:’«:o,ro (§0) )‘) = val hml (¢0)hml (¢)¢m(_ )‘) TO)'

Let dD be a smooth n» — 1 closed surface in R" and let do be the differential
surface area. For fe L’ (0D, do) define

(44) Tt = oo S OWm (= N 7 () hmi (0 (t)) do
t = (t, -+ ,ts) coordinates for dD,
and let
(45) Fe N) = 2mi b (@)mi(N).
Suppose X is such that f ¢ L’ (dF dO) whenever f ¢ L’ (3D, do), then we can define
(46) Xoo(f) = X(F) = 2om1 Jo Tt ) ma (AN).

Clearly, {X,p(f), fe L*(D, do)} serves to represent the surface data on aD.
Once surface data is defined, Markovian property can again be defined.

Let X be a homogeneous Gaussian generalized random field with spectral
distribution F. Suppose that whenever D is a smooth closed n — 1 surface in
R™ and fe L* (D, do) then f e L’ (dF d0). Let 3¢(dD) C 3¢ denotes the closed
linear manifold generated by {X,p (f), f € L*(dD, do)}. We say X is Markovian if
for any increasing sequence of nested surfaces Dy, 9D, 0D,, 3(dD;) —
P,p3(dD,) is orthogonal to 3¢(dD;), where P,p3C(dD.) denotes the image of
3¢ (dD;) under the projection P,y on 3¢ (3D ). In other words, X is Markovian, if
given the surface data on 4D inside and outside are independent since with
Gaussian law orthogonality and independence are equivalent. The following
result generalizes Theorem 1 for R": .

TuaroreEM 2. Let {X (f), f &8} be a homogeneous Gaussian generalized random
field on R"™ with spectral distribution F. A necessary and sufficient condition for X to
be Markovian s that

A7) [o¥(— N 7)F@\) =R(@F), r>0,

defines a twice-differentiable function on (0, « ) which satisfies
n—-1,-10d n—1 dR(T) _

(48) {r" 7} - [r - :| = aR(r),

where a 1s a positive constant.
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RemARk. We note that R (r) need not be bounded, but when it is, the result
reduces to that of Theorem 1.

Proor. Necessity. Let 9D be an n — 1 sphere with radius r. Since the spherical
functions Aim, € L’ (3D, do), we can define

49) Zmi(r) = Xop(hmi), m 20,1 = dn.

By an argument completely analogous to that of Lemma 1, we can show that
{Zmi(r), 0 = r < oo} is a family of independent one-dimensional Gauss-Markov
processes. Hence, we must have

(50) EXo ()Xo (r0) = fo (max (r, ro))go (min (r, 79)).

From (46) and (44 ), it follows that

(51) Xoa@) = Xop(ha) = "7 [T ¥e(— N, 7)o (dN).

Therefore, from (41) and (50)

(52) EXo(r)Xot(ro) = (r, 7)™ [3 %o (—= N\, 7)o (=X, 70)F (dN)
= ' (max (r, r0))go (min (r, 7))

or

Jowe(—= N, rio(— N, 1)F(\) = fo(max (r, 70))go(min (r, 7))

which is identical to (27). Hence, (29) holds once more and

(53) ofi(r) = oy [ 4 |

constant fo(7r).

Because Yo (A, 0) = 1, fo(r) = R(r) and (48) follows.
Sufficiency. Assume R (r) = [ yo(— \, 7)F (d\) satisfies (48). Then,
(54) AR(z — 20|) = aR (]2 — 2|), 2z # 2.

For any smooth closed n — 1 surface D separating z and 2o, (54) can be treated
as an exterior Dirichlet problem with boundary data on dD. Let G'(z, 2’) be the.
Green’s function for this Dirichlet problem, then

(55) Rz —2|) = forH(z 2)R(Z —2|), 2eD*,20eD” uaD

where H (2, 2) = an'G(z, 2') is the outward normal derivative of G(z, 2) with
respect to 2’ on aD. Let {dD; , dD, dD,} be an increasing family of nested surfaces.
Then

(56) fo@) = [, H (e 2)f () do

maps L*(dD;, do) into L}(dD, do), so that X,p(fo)is well-defined whenever
fe L} (8D, , do). Now, X,p(fp)is the projection of X,p,(f) on 3¢ (D) because
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XaD (fp) & GC(GD) and
E[Xop,(f) — Xop(fn)]1Xon(9)
= faDa faDR(lz - z'|)f(z)g(z')dada'

(7) — Jon fan Rz — 2 )fn(2)g (') do do’
= Jonado [0 do'T@)G R (2 — &) — [opHG, 2 )R (" — #]) do”]
= 0.

Similarly, we can show .

(58) EXa0,(f) — Xoo(fp)1Xan,(9) = 0, geL’(dD1, do).

Therefore, [Xap,(f) — PspXsn,(f)] is orthogonal to X,p,(g9) for every
g e L’ (dDy, do). This proves that X is Markovian. This proof for sufficiency
parallels closely the arguments of McKean [6).

Equation (48) can be readily solved. Corresponding to a non-negative F' meas-
ure in (47), there are only two possible forms for R. These are

J'n 2—-1 (VO )
(a) R(r) = 4 W
Kn 2—1 (V )

Case (a) corresponds to an F (\) which has a single jump at A = »/’, and was
already covered by Theorem 1. Case (b) corresponds to an unbounded ¥

zi V" dy
w1+ (v/w)?
It is interesting to note that n = 1, which has been excluded from our discussion

so far, corresponds to a bounded spectral distribution. One readily recognizes
that in that case

R(r) = Aw ' [gcosvr{l + (v/m)}dv = ixde™"

which is the well-known covariance function for the Ornstein-Uhlenbeck process.
Theorem 3 can be readily generalized to include S". It is probably also true for
H", although we have no proof of that.
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