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CONTRIBUTIONS TO THE k-SAMPLE PROBLEM: A SYMMETRIC
STATISTIC!

By M. SCHULZER

Utrecht Unaversity

0. Summary. The k-sample problem is studied. Given a set of independent ob-
servations from k populations, the pooled sample is ordered, and certain prede-
termined order statistics are chosen to form the endpoints of random intervals.
A random vector is formed, whose components represent the number of obser-
vations from each sample in each of these intervals. The exact and limiting dis-
tributions of this vector are derived, both under the null-hypothesis of a single
underlying distribution and under the alternative of unequal distributions for
the k populations. This leads to the definition of a test-statistic for the null-
hypothesis, and its limiting null-distribution and limiting distribution under a
suitable sequence of alternative hypotheses are obtained. Hence a consistent test
of the null-hypothesis is determined and shown to be an extension of the Mood-
Brown test. Asymptotic efficiencies are calculated for this test relative to a
family of common tests for the k-sample problem. To this end, a method is sug-
gested for comparing efficiencies of tests whose limiting distributions under an
alternative sequence are non-central chi-square, with unequal degrees of freedom.
Some consideration is given to the problem of design for high relative efficiency.

1. Introduction. The context of the k-sample problem is that of testing the
hypothesis that & samples have been independently drawn from the same dis-
tribution. This arises as a generalization of the well-studied two-sample problem,
for which numerous techniques based mostly on ranks or on spacings have been
proposed, for example by Dixon [3], Mood [7], Wallis and Kruskal [19], Weiss
[21], and Blumenthal [2].

Weiss [20] suggests an extension of his two-sample spacings technique to the
k-sample problem, according to which one picks a particular sample and measures
the number of observations from this sample in successive intervals whose end-
points are made up of the pooled order statistics from all other samples. The
asymmetry involved in deciding which samples should form the random intervals
and which should fall within them renders this extension to the k-sample problem
somewhat arbitrary.

Mood [7] proposes a two-sample test based on the number of those observa-
tions from each sample which are smaller than the median of the pooled sample.
Massey [6] indicates how the test might be extended to k-samples, while retaining
its attractive feature of symmetry.
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In the present paper, such an extension is made. The choice of the pooled
median as reference point is replaced by a set of random points, the selection of
which is at the discretion of the experimenter. These reference points are based
on the pooled order statistics from all k£ samples. It is shown that when these
points are chosen appropriately, higher power and better asymptotic relative
efficiency can be gained.

Thus, suppose Xa, Xa, -+, Xum;, ¢ = 1,2---, kis a set of independent
random variables, with Y _.1n; = N. Let F” be the probability distribution
function of X4, h = 1,2, -+, n;, for each 7. Since density functions are used

heavily in the sequel, we suppose that each F is an element of the class of
absolutely continuous distribution functions. We wish to test the hypothesis

(1'1) H():F(l) — F(2) — ... = F(k),
against the class of alternatives consisting of the sets {F°, F®, ... F®}
which violate (1.1). Let the X ;; be arranged in increasing order and relabelled, to
giveZy < Zy < -+ < Zy.Suppose Zy = — o, Zyy = + .

Let
(1.2) O0=ro<n<rn< - <rnpa<r,=N+4+1

be a preassigned set of non-negative integers. Further, let
(13) tp =1 — T, j=172:"'ap'—17

tP=Tp—Tp_1—1=N—'TP_.1.

Consider the p random intervals 1Z,;_, , Z,;],j = 1,2, - -, p, and define
(]-4-) Mij= :LIWZ'J'(T)’ 1= 1727"':k’ j= 1727"'ap7
where

(1.5) Wyutr) =1 if the rth observation in the jth interval comes
from the <th population,
=0 otherwise,

forr =1,2,---,1¢.

Thus M ;; represents the number of X’s from the 7th population which fall in
the random interval 1Z,,_, , Z,,].

Let M be the pk-dimensional random vector

M= My, Mg, -, Myp, Mo, Mu, -, My, -, M, Mag, -+, Myp).
2. Exact null and alternative distributions of M. Define the vector m by
m= (Mu, -, Mp, Mo, -, Map, =, Max, ", Mip),
where the m;; are non-negative integers with
(21) P imi = na, i=1,2,--,k,

’;=lmii=tir J=12--,p.
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An expression for Pr[M = m] was given by Massey [6], who obtained first
the joint distribution of the M ; and Z,; , and then integrated the Z,, over their
entire range. The distribution can also be derived as follows:

TurEOREM 2.1. Under the null-hypothesis, subject to restrictions (2.1)

(2.2) PrM = m] = [[]% ¢! [Timnatl/IN! [T20 I 15w mastl.

Proor. We note that, under H,, all ordered arrangements of the X, are
equally likely. It follows that, for any j,

Pr(My = my, -, My =my| 2iciMa,i=1,2,--,k
_ (N — Z]:i tl>_l k (’l’bi = mil)
h ( tj zI—"‘—Il M )
The joint distribution over all p intervals is, therefore,
» N1\ k R Y
Pr(M = m] = H [(N Zl=1 tz) H (m Zz=1 mzl)] ,
=1 & =1 Mij
which is just (2.2), thus completing the proof.
It may be noted that, forany ¢z = 1,2, --- , k,andj = 1,2, --- , p, M;; has
a marginal hypergeometric distribution under H, , with E (M) = N 't;n;, and
Var (M) = [N°(N — 1) tn:(N — t;)(N — n;). Moreover, from (1.4) and
(1.5) it follows that
Cov (Mi;, Ms;) = —[N*(N — D)t (N — t;)ns,,
Cov (Miil ) Mifz) = _[N2 (N - 1)]_1tf1nitf2 (N - ni))
and
Cov (Miljl ,Mi2j2) = [N2 (N — 1)]_1tj1niltj2ni2 ,

where ’il # ’iz ,jl # jz .
In order to find the exact distribution of M under the alternative, we suppose

F'? is absolutely continuous, fors = 1,2, - - - , k, with density f . Let H be the
mixed distribution function
(2.3) H =% N'nF®

of the N random variables Xy, -+, Xiny, - 5, Xu, -+, Xin,, and let & be
the corresponding density function. Both H and 4 depend on N.
In analogy with Hoeffding [5], we consider the Euclidean N-space of points

T = (xllaxma"')xlnl""axkla"'axk"k)'

Since all distribution functions are continuous, we lose no generality by as-
suming all components of z to be distinet. Let 2, = (21, 22, -+, 2») be the
vector which corresponds to x with its coordinates arranged in increasingorder.

W Let

R = (7'11,7'12,"',Tlnl,""rkly"',rknk)
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be an N-vector representing the permutation which must be applied to x to ob-
tain z, . Thus,

Tp = 2, Zrin = Tin s t=1,2 -k, h=1,2,--+,n;.
Define
24) S(R) = {x:2p = 2,}.

Thus S(R) is the set of all N-tuples with distinct entries, whose components
24 have ranks rs when they are ordered.

Let o be a permutation defined on R, which in terms of the coordinates of R,
is characterized by o (ra,) = ra,, for any <, by, he, with ¢ = 1, 2, --- | k,
=12 - ,n;,hg =12 - m;.

Let 7 be a permutation on R, such that, for any 4, h, (1 = 1, 2, --- , k, h =
1,2, -+, ng), 7 < ra = 7; implies 7,y < 7(ra) = 7;, and for no value
of 7 from 1 to k is 7(ra,) equal to ra,, where by = 1,2, -+ [ m;, he = 1, 2,

, mi, With by 5% hy . Let (r0)’ (4, k) denote the first subseript of (7o) (ra).
Let the symbol E,(,,) denote the sum over all possible composed permutations
7(c) on R, thus giving rise to ([ %1 n:! 12~ 1)/ (1121 I %=1 mi!) terms. We
can now prove
THEOREM 2.2. Under the alternative hypothests,

25) Pr[M = m]
= ZT(V) fZN——OO e fzz_—oo zl——oo H1,=1 Hnt f(W), @m (zwrth) dey - -+ dey

whenever 21 < 22 < +++ < 2y, and 0 otherwise.
Alternatively,

ng plre)’(i,h)
PrM = m] = ZT(V) N' [HHM]

=1h= h(Zr,;.)

where the Z’s are N order statistics from h.
Proor. With S(R) defined in (2.4), we have forz; < 2, < -+ < 2y,

(26) P[S<R>1=f;w L I g e

=— =1 h=

Y
ZN=—® Z2g=—0 Vz1=—0

k ng p(2)
Hf (znh) h( ”h).N! dzl . dZN

=121 h(2y,,)
1 k ng f(z)(Z”h)
=m? [LI I=I h(Z,;,) :I

where f % (2)/h(2) is defined to be zero whenever A(z) (and so also f @) is
Zero.
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Now, to each point z in S (R) there corresponds the same vector
m = (Mu, Mz, "+, Mp, " **, Ma, **° , Mip).

Moreover, for any ¢ and 7 described above, the subsets of N-space S(s(R)),
S (R)), S(re(R)) still correspond to the same vector m. Thus, to obtain
Pr[M = m], we must sum together volumes of the form (2.6) over all permuta-
tions 7 (¢ ). Hence,
1 k  ng j-('ra-)’('i.h)(Z ) )]
2.7 P M = = o) == E J o \HTarih. K
(27) M = m) = T 2| I s
ReMARK. Introducing the integral transformation H to the pooled data, we
can express (2.7) in slightly different form. Define H™* to be left-continuous.
Then (2.7) becomes,

k  ng plra)’(¢,h) —1
PrM = m] = 3y EI:H Hf (H (Um,;.))]’

ONT L R (U)
where the U’s are uniform variables on [0, 1], and
U = H(Zy,,) = H(Xa).
3. Limiting normality of M under the alternative. We assume, for the re-

mainder of this paper, that as N — ©, one hasforz=1,2,--- [k, j= 1,2,
-, p, with ¢; as in (1.3),

(81) N'ni— 7= ON™?), limy.oN7% = oy, >0, a; >0,

Zz 17 = Z:—l a; =

Define

(3.2) Bo=0, Bj= Diaau, F=1,2--,p.
Thus

(3.3) Bo = limysw N1, B = limysw N5, j=1,2--,p,

with r;asin (1.2). Let F ff;.) denote the empirical distribution function for the 7th
sample and Hy the empirical distribution function for the pooled sample. Let
H be as in (2.3), and define

(3.4) Hy = YianF®, K, =F°H,
where inverse functions are taken to be left-continuous. Assume K, has a con-
tinuous derivative a, in a neighborhood of each 8;,7 = 1,2,---,p — 1, and

that a. has a left limit at 8, = 1. We then have,

TuroreM 3.1. Under the alternative hypothesis and the above assumptions, the
vector N*M has a limiting multivariate normal distribution as N — o.

Proor. Let {WS) (t):0 < t < 1} be the empirical process of the ith sample.
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Thus,
Wi @) = nd EDFCT @] - o).

It is well known that this process converges weakly to a separable, tied-down

Wiener process {W, @ (£):0 < ¢ < 1}, with
EW,“@) =0, EW,W?@) =s0—¢)

for0 = s = t £ 1. (Donsker [4], Prokhorov [10].)

For purposes of this proof we consider especially constructed processes, de-
fined on a single probability space, which converge almost surely in the uniform

metric p defined on the sample function space (Skorokhod, [18]). A direct con-
struction is given by Root [14]. Thus,

(3.5) p(W3, Wo®) =45, 0.

Now, from Lemma 2.3 in Pyke and Shorack [13] we have

(3.6) p(Fu‘)HN—l’ F(z‘)H—l) —as. 0.

Then, (3.3) and (3.6) give

(3.7) FOHY™ (ri/N)] —as. FOHT 85)].
Hence, by (3.5), we have

(3.8) Wi FOHY™ (r/N)]) -1 Wo® FOH (85)]),

where the symbol —; denotes convergence in law, and where
Wi FECHYT V)] = ad @0 HT (N )] — FOH (N ).
Then, for any 7, j,

(el Q- [0
o[ Q- # [ ()]
PG )
) e G- o[ @)

where H, , K, are defined by (3.4).
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From Lemma 5.2 in [13], the differentiability assumption on K, , (3.3) and the
fact that all convergences are in the uniform metric, we conclude that

(3.10) - (H« I:HN_I <%):I — K (H [H_l< ) ])
o[ ()] - e ()

}
ol ()] = e ()]
i (@))- [ ()]

Further, the process
W(t) = N'(HxH )] — t)

converges in law to the Wiener process W, (¢), and, as in (3.8),

—a.s. aw(ﬁf),

and

(3.11)

(3.12) Wy (H[Hy ™ (N7'r3)]) =1 Wo(8;).
Moreover, since
(3.13) < Hy[Hy ' (N7'r)] — HIH (N7'rj)] <

it follows from (3.9)-(3.13) that

(3.14) nd (Fi»'}’ [HN_I (11\?)] - [ ) (13)])

) -1
%f [H (B])]
L2 5w (),
WG] )
where f /h is defined to be zero whenever h = f? = 0.
Since

N7My; = N7 i 0 Hy ™ (N 7'r)] — ndf S HY ™ (N i),

it follows from (3.14) that N~ M is asymptotically normally distributed. This

completes the proof.

Theorem 3.1 implies, in particular, the asymptotic normality of the vector
NM under the null-hypothesis. The limiting distribution is singular, due to re-
strictions (2.1). However, for the subvector

(B15) My = (Mu, My, -+, Miypa, -+, Min, Mo, -+, Myap)

— W (FOH,T(B)]) —

we have
CoROLLARY 3.1. Under Hy and assumptions (3.1), N v — w1) has a limiting

N (0, A) distribution, where

(316) w = N(mou, -+, mapa, ", Maon, "+, Tr1@p1),
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and A is the non-singular (p — 1)(k — 1) X (p — 1)(k — 1) matrix
I-al m(l—a)l —m), —aama(l —m), -+, —arm(l — a)m, a1 m azma, +-
A=l -—amal —m),amnl —a)l —m), -

Qp_1 Thy 01 M1, 0py Ty 2 Ty, =+, ap1 Tha(l — apa)(1 — mi_a)

This follows from Theorem 3.1, or may be proved directly, [17], by an argu-
ment similar to de Moivre-Laplace’s multinomial approximation model.

4. The C-test. Define the random variable Cx by
Z i (M — Nm: o)’

1 = Nmi a;

(41) Cy =

J

Suppose that {Ky} is a sequence of alternative hypotheses, and let the sub-
seripts N, 0, denote integration under Ky and H, respectively. Assume that, for
1=1,2,--,k,j=12 ---,p, the following two conditions are fulfilled:

(4.2) Ex(M/N) — limyow Bo(My/N) = AN+ o(N7TH),
(4.3) on (Mille_%, MizizN—%) — limy..« 00 (Mille_§7 Mizij_%) =o(1)

where the 4,/’s are constants, 9, = 1,2, -+ , ke =1,2,--- ,k,n=1,2, .-+, p,
j2 =1, 2, Y Let A; = (All: 7A11’—1, v 7Ak—117 e ,Ak—lp—l)'

Suppose My 1 represents the (p — 1) (k — 1) dimensional vector M, (3.15),
based on sample size N. Let uxy ; be the mean vector for My ; and Ay the dispersion
matrix of N "My ; under Ky . Finally, let wo; = w , where w; is defined in (3.16).
Then we have,

TaeoreM 4.1. Under conditions (4.2) and (4.3), assuming Ky to be true for
each N, the limiting distribution of Cy as N — o is non-ceniral x°, with
(p — 1) (k — 1) degrees of freedom, and non-centrality parameter

A= AATIA

The proof follows at once from Theorem 3.1 and conditions (4.2) and (4.3).

Since Theorem 4.1 implies in particular that under Hy, Cx has a limiting central
x distribution with (p — 1)(k — 1) degrees of freedom, we can define, for large
N, a size a “C-test” of the null-hypothesis (1.1), by

(4.4) “Reject Hoif Cy > ¢’

where ¢, is the 100(1 — a)th percentile point of the x° distribution with
(p — 1)(k — 1) degrees of freedom. This test may be seen to be consistent
against any alternative satisfying the condition that, for some ¢ = 1, 2, --- | k,
and somej = 1,2, -+, p, one has 8; # FVH,™(8;).

CororLARY 4.1. Suppose that, for each N,

4.5) Ky:FP(x) = F(z + 0N,  Oireal,s=1,2, -,k
where F has a finite second derivative, and F~* has a finite derivative. Then Cy has a
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limiting nom-central chi-square distribution, with (p — 1)(k — 1) degrees of
freedom, and non-centrality parameter

46) A =20 mi(0: — ) 2o f a (FIFT (8] — SIF (Bi-)]),

where § = D iy mi8;.

The corollary is proved by verifying that conditions (4.2) and (4.3) hold, so
that Theorem 4.1 applies. The verification may be carried out through a number
of Taylor series expansions [17]. A similar argument yields

CoroLLARY 4.2. Suppose that, for each N,

4.7) Ky:F® (@) = F(1 + 0.N Yz), 6ireal,i=1,2,--,k,

where F satisfies the assumptions of Corollary 4.1. Then, as N — o, Cy has a
limiting non-central chi-square distribution, with (p — 1)(k — 1) degrees of
freedom, and non-centrality parameter

(48) )\c = ,,c;=1 1l',;(0,; —_ 9)2 ZJI"=1 aj_.l (F_l (ﬂ])f[F_l (/31)]
— F7 @i )fIF (Bi-1)])".

5. Asymptotic relative efficiency of the C-test when two random intervals are
used (p = 2). Since most common rank tests for the £-sample problem are con-
sistent, a useful criterion for comparison of these tests is the asymptotic relative
efficiency (A.R.E.) in Pitman’s sense [8].

Let M denote the Mood-Brown statistic, [7], given by

(5.1) M=N®N—1DbBWN =)™ 2t ni™ (mi — N'bns),
where b = 1 (N — 1) for N odd, b = 1N for N even, and m,; denotes the number

of observations in the 7th sample which are less than the median of all observa-

tions.
Let H be the Kruskal-Wallis statistic [19],

H=12NN + D)7 X naBi — 2V + 1)),

where R; is the average rank of the ith sample in the pooled ordering of all N

observations.
Let F represent the classical analysis of variance statistic. Finally, let £ denote

the test-statistic proposed by Puri, [11],

£ =D kand(Twi — wn.s)/AxT,
where uy,; and Ay are normalizing constants and
(5.2) Ty = ni D0 Ex 290,

with Ey,; constants, and Z$) = 1if the ith smallest observation in the combined
sample comes from the sth sample, while Z§), = 0 otherwise.
It is shown by Andrews [1] and Puri [11] that, under certain regularity condi-

' tions on the distribution F, and under the translation sequence (4.5), the above
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statistics have a limiting non-central x* distribution, with (k — 1) degrees of
freedom, and non-centrality parameters which are, respectively,

(5.3) N = 4[fIF 7 OI 2k mi(6: — 8),

(5.4) N = 12[[2, f(x) dF ()] 2%y m:i(6: — 8)°,
(5.5) N o= D i mi(6: — 6)°,

(5.6) A\ = ; mi(8; — 8)* [ f_ w-‘il-J[F(x)] dF(m):r / A%

where f = F' ,op = f..w x dF (x) — [f_,, z dF(x)] J(x) on [0, 1] is defined by
JH) = hmM Jv(H), for H = iy N7'nF®, with Jy(0) = JN(O+)
and Jy(t) = Exy, forl/N <t < (I 4+ 1)/N; Ey,:is glven in (5.2); and 4°
foJ (z) de — [foJ(x) dal.

Now suppose that Cy is calculated on the basis of two random intervals
(i.e. p = 2). It is easy to verify that, in this event, the choice in (1.2) of 7, = 0,
ry = iN,r, = N 4+ 1 (for N even), yields

M = Cy(1 — 1/N),

where M is givenin (5.1.) (A similar argument holds for N odd. ) Thus the Mood-
Brown test becomes a special case of the C-test, for large N; indeed, it can be
seen at once that, under the sequence of alternatives (4.5), both Cx and M have
the same limiting non-central x* distribution.

REMARK More generally, under the conditions of Corollary 4.1, assuming that

2ot dF (x) — [[Zo dF’(x)] = g¢ exists, we have, forp = 2 and for T = M,
H, S or £, that ec,r = \°/\", where e¢,r denotes the asymptotic efficiency of the
C-test relative to the T-test, )\ is given in (4.6) and \” in (5.3)—(5.6). This fol-
lows from Theorem 5.1 in Andrews [1].

Since \° and thus ec,r, depend on the choice of ; in (1.2), optimal values of
the A.R.E. may be attained through appropriate selection of 8; = limy,o N 7y .
Table I gives the optimal values of ec,x, €c,5, and ec,x for different densities,
under B; values suggested in Table III, section 7.

To evaluate ec,¢ , it is necessary to assume a specific form for J (z) in (5.6).

Itis shown by Puri [11] that, if J (z) = zfor0 < z < 1, £ becomes the Kruskal-

TaBLe 1
(p = 2) (Location)

Density Suposssiec,m Supespmsiec,s Supesssiéc.m
@2r)ytexp (—322), —w <z < 1 2/ 2/3
exp (—z) [1 4+ exp (—=z)]72, 1 =2/12 3/4
—n <z < o
texp (—lz]), —» <z < 1 2 4/3
drexp (—3z), z = 0, (x2with4d.f.) 5.10 4 8/3

exp (—z),z =0 + o 4+ 4+
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Wallis H statistic, and thus
€c,e = €¢c,m = €c,M'éM,gF = €0,5°€F,H.

Again, Puri proves that, when J = &, where & is the standard normal distri-
bution function, with density ¢, then

ees = or'[[Ze £ @)/${®[F ()]} da]’.

Then, since ece = ecg - €g5, c.e can be computed. In particular, when
F =& ec5 = 1sothatece = €c,g = 2/m, asin Table 1.

The C-test may also be used for the k-sample scale problem under the alterna-
tive sequence (4.7). Puri [12] proves that, under this sequence, the k-sample
generalizations of the Ansari-Bradley, Mood and normal scores statistics have
limiting non-central chi-square distributions with & — 1 degrees of freedom. In
particular, the Ansari-Bradley test is based on the statistic

£(B) = 48 Z'$=1 n:;(By,; — (BN,i)2,
where
miBN g Zl=1 2 N—1 - I% N_1 N—ll]Zzs;)l )

Z$) are defined as in (5.2) and ®w,: are normalizing constants. The limiting
non-centrality parameter for this statistic is then given by

= 48([2u zf’ () dx — [T zf* (z) da)* D ey wi (0 — 8)%

Optimal A.R.E. values of the C-test (with p = 2) against £ (B) are given in
Table II for different densities and for suitably chosen B8, values. Efficiencies
relative to the other scale tests may be evaluated from the corresponding non-
centrality parameters. (Puri [12].)

6. Asymptotic relative efficiency when more than two intervals are used
(p > 2). When the C-test is based on three or more random intervals, the prob-
lem of measuring its asymptotic efficiency under the location sequence (4.5) in
relation to the tests above becomes more complicated. This is due to the discrep-

TasLe II
(p = 2) (Scale)

Density Supo<s; <1 €c,B Optimal 8

@2r)texp (—3x?), —w <z < ® 0.500 .9463
(or .0537)

exp (—z) [1 + exp (—2)]™2, —o <z < x 0.419 .9168
(or .0832)

texp (—lzl), —w <z < ® 0.389 .9206
(or .0794)

txzexp (—3x), =0 0.190 .'7000

exp (—z), z 20 0.216 7961
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ancy in the degrees of freedom of the limiting distributions of the corresponding
statistics, which renders the method described in Section 5 invalid. On the other
hand, we shall see in Section 7 that increasing the numbers of intervals results in
increasing \°, the non-centrality parameter, thus possibly improving the effi-
ciency of the C-test. It is therefore of particular interest to have some means of
caleulating the efficiency for larger values of p.

TuroreM 6.1. Let the assumptions of the Remark in Section 5 hold, with p > 2
and k large, and let T = M, H, § or £. Then, in testing the null-hypothesis against
the sequence of alternatives (4.5), we have,

(6.1) ecr™ (\")2a(22)! + 2RS £ 2Rc(RS + 24(207)* + Bvr)l]

where \" is given by (5.3)—(5.6), 2« is the 100(1 — a)th percentile point of the
N (0, 1) distribution, vr = k — 1, R is a function of p, k and \°, defined by

Re= (za(2vc) — \°) @b + 227,
withve = (p — 1) (k — 1), and the sign to be chosen tn (6.1) is that which satisfies
Ro = (2a(2v1)! — Nec,z) @lvr + 2\"ec,0]) .

Proor. Since k is large, both »7 and v¢ are large, so that (Cy — v¢) (21/0)_* and
(T — vz)(2vz)™} have, approximately, a N (0, 1) distribution under the null-
hypothesis. We require both tests to have size a. Thus, under Ho,

Pl (Cxy — v¢)@v6) > 2a]l = @ = Po[(T — vz) (202) 7 > zal.

Now, suppose that when Cy is computed on the basis of N observations, the
power 8 is achieved against the alternative Ky . Thus, under Ky,

(6.2) Pul(Cx — v¢) (2ve) ™ > 2a] = B = Pa[(Cx — ve — \°) @b + 227
> Ga(2e) — A @e + 22D 7.

Since k is assumed to be large, we have from Corollary 4.1 and the normal ap-
proximation to the non-central x* distribution that

(6.3) J7e @) Fexp (—=£/2) dt = B,
where
Re = (2a(2ve)! — \) @2lve + 227

Suppose the test based on T requires N, observations to attain power 8 (at
size o) against the alternative Ky, . Applying once again the normal approxima-
tion,

6.4) [2e @m)Fexp (—£/2) dt = B,
where
Rr = (2a(2vr)! — NT) @lve + 227
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From (6.3) and (6.4) it follows that
6.5) R¢ = Rr.
When the alternatives Ky and Ky, are identified, we have from (6.5),
6.6) (a(@c) =\ @e+ 2D = (2 (@vr)} — Neo,r) @z + 2\Tec,1]) 7,

and (6.1) is obtained by solving (6.6) as a quadratic in e¢,r . Thus the theorem is

established.
TuEOREM 6.2. Under the assumptions of Theorem 6.1 but with k small, p > 2,

one has, for large values of ve or \°, and \*, that
6.7)  ecr > () [ear + 2R — vr % 2Re(RS — $vr + carr)],

where ca,r is the 100 (1 — a)th percentile point of the central x° distribution with
ve = k — 1 degrees of freedom, R¢ vs defined by

Re = (cac — e + A1) @lve + 27,
withve = (p — 1) (k — 1) and ca,c the 100 (1 — a)th percentile point of the central

x> distribution with ve degrees of freedom, and the sign to be chosen in (6.7) is that
which satisfies

Rc = (Ca,T it [VT + )\Tec,T])(Z[vT + 2)\TGO,T] )_%.

The proof is analogous to that of Theorem 6.1, except that, due to the smaller
number of degrees of freedom, the tests are made to have size @ on the basis of
the central x° distribution, with parameters »o and »r respectively. (Recall

Theorem 4.1.)
THEOREM 6.3. Suppose the assumptions of Theorem 6.1 hold, with k small,

p > 2, and v or \° large. Then,
(68) er,c = ec 7= ()\ )—1 Ca ¢+ 2RT —ve =k 2RT(RT - "VC + Ce, C’)I])
where Rr s defined by

O V))% _ (zw A 1>%
! vp + AT vr + 2\T ’
With ¢a.c, Car, ve, vr, Aoy T as in Theorem 6.2. The sign to be picked in (6.8) is
that which satisfies

RT = (Ca'a b [Vc + )\CCT,CJ)(2[VC + 2)\081-,0])_%.

Proor. Since k is small, and \” is not assumed sufficiently large to warrant the
normal approximation to (T — [vr + A1) (2lvr + 27\7])™, a better normal ap-
proximation under the alternative sequence is to be desired. Patnaik [9] proposes
a faster normal approximation to the non-central X (denoted by x7), with
pa,rameters » and \, by showing that the random variable [2x (u + N/ @+ 20}
converges in law quite rapidly to a N ([2( 4 \)?*/ (v + 2\) — 1] 1) variable. Our
proof incorporates this approximation to 7' under the alternative sequence, with
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the standard approximation to Cy . In other respects, the proof is analogous to
that of Theorem 6.2.

ReMARK. The efficiency can be obtained from Theorem 6.1 when p and & are
both large, or when at least & is large, since this guarantees that v» = £ — 1 and
ve = (p — 1)(k — 1) are sufficiently large for the approximations introduced
under H, and under Ky . When % is smaller, but p is large, one may choose to ap-
ply Theorem 6.3, unless the non-centrality parameter \” is large, in which case
one may compute instead the simpler form of e¢,r given by Theorem 6.2. Again,
if p is smaller, with k£ small, one would apply Theorem 6.2 when both non-central-
ity parameters are large, or Theorem 6.3 when \” is smaller. Finally, if p and &
are fairly small, and \” is large while \° is smaller, Theorem 6.3 can be used with
T and C interchanged.

ExampLE. Suppose k = 4,p = 4, and let F = &, the standard normal distribu-
tion. Further, let

ooleo

= —60, =5, O3=—0, =10, m =m =13%, m =m =
and pick
a = .16, a = .34, a = .34, a = .16,
in accordance with the optimal choice, to be specified later (Table III). Thus
F7'B1) = —.994, F7'(B) =0, F'(8) = .99,
so that
ro =10, rn =.16N, r, =N, r;=.84N, ro=N + 1.

To compute ec,» we use Theorem 6.2, since k is small while A\° and A are both
large (\° = 71.687,\" = 51.713). Hence we have, ec,» = 1.445 > 1 = supg, ec.u ,
where the right side of the inequality was obtained for p = 2 (Table I).

Similarly, ec.s = ec,men,s = 0.920.

7. Design for high relative efficiency. The asymptotic relative efliciency
ec,r increases with \°. This follows at once from Remark (Section 5) when p = 2,
and from Theorems 6.1-6.3 and the identity ec,r = er.c, when p > 2.

We recall (4.6) that, under the location sequence (4.5),

A= K(0)-I,,
where
K(O) = Zl::=1 7"'5(07' - 9)2: b = ZI:=1 Ty,

and

I, = ]i (7~ (6;-2:)23[5: (8-

» To maximize \° for a fixed \* (T = M, H, §, £), we hold K (8) fixed and at-
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tempt to maximize I, in the design. To this end, we show first that I, is an in-
creasing function of p.
TaEOREM 7.1. Fora < 2 < b, F(a) < F(z) < F(b), one has

[f(b) — f(a)* _ [f(b) — f(2))° 4 ) - f(a)P
F) — F(a) = FO) — F@) ' F@ — F(@) ’

where f = F'.
Proor. Let

) _ F(b) — F(a) _
1) = f@) = w, J(&) = fla) = o Fay—Tpgy =6

and note that
W1 —B8)+ 08— (u+ )81 —B) =l —8)—v"=0.

This completes the proof.

Consider next the problem of finding an optimal set 81, B2, - -+, B, Which
maximizes I, for a fixed p and for a given distribution F. Table III lists a few
such optimal designs for different values of p.

Conditions for the existence of optimal designs for each p, as well as other
examples, are given in Sacks and Ylvisaker [15], Sérndal [16], and others, in the
unrelated context of regression problems. In more difficult cases, an ‘“‘approxi-
mately-optimum” design method is put forward in [15], whereby, under suitable
regularity conditions on the function g (s) = fIF™(s)],0 < s < 1 the 8, are chosen

TasrLe III
(Location)
Density Optimal design I,
(2r)7t exp (—32%), p=2 p=3% 2/w
—w <z <o p=3 B =.2709, B = .7291 .8098
p=4 B = .16, p= .50, Bs = .84 .8823
exp (—z) [1 + exp (—=z)]2, p=2 pBi=1% 1/4
—0o <g<w p=3 Pi=14% f=3 8/27
p=4 Pi=14% B=13, Bs=1 5/16
jexp(—l2)), —0<z<w p=2 B=4} 1
: p=3 no improvement
p=4
fzexp (—3z), 220 p=2 pB=0+ 1/2
p=3 F-1 () = 6.1 X 1075 .9900
F1 () = 1.36 X 1072
p=4 F1 (B) =1.5 X 1075 1.3919
F-1(8;) = 6.8 X 103
F1 (8;) = 1.46 X 107!
Br=0+4 ©

no improvement

RIS
[T
B W N
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to satisfy
T3 ") ds = p75 [3 19" ()1} ds,
i.e., the 8’s determine equal areas under the curve [¢” (s)]!. This method is asymp-
totically optimal in the following sense: if the optimal design for size p gives the
value I,*, and if limp.. I,* = I'™* exists, and I, is the value attained by the “ap-
proximate’ design for size p, then
I,-I*

—p =
==L

limc

ReEMARK. We can write

I, = Z”: [(F'(xj) - F'(:r:j—l)>2 . M] (@ — 20).

=1 Tj — Tj-1 Tj — Xj

Thus, if F has two continuous derivatives, it follows that, as p — « with
maxi<j<p (&j — Tj—1) — 0, then

4 2
Ip — Ep I:d—‘-_lndﬁ);(X)] = I:

the well-known “information integral”. It is of interest to note that in the re-
gression context of maximizing I, the quantity I » | is a measure of the variance
of the regression coefficient estimate. Thus, the best estimate will have variance
at least as large as I, the Cramér-Rao lower bound.

Exampres. (i) For the standard normal distribution, lim,.. I, = 1.

We note that the optimal designs picked in Table III for p = 2, 3, 4, gave
I, = 2/ = .6365, I; = .8098, I, = .8823, approaching this limit.

(ii) For the logistic distribution, lim,,., I, = 1/3, and the optimal values
were I, = 1/4, I; = 8/27, I, = 5/16, approaching 1/3.

(iii) For the bilateral exponential, limy. I, = 1, and this limit can be at-
tained with p = 2.

(iv) For x* with 4 d.f., limp. I, = o. Here the pth interval may contribute
at most 1/2 to I,—1, as B8, — 0. Table ITI shows that, for the F~'(8) values
given, I; = .9900, I, = 1.3919. Computations suggest that larger F7(8) values
still give favorable results. Thus, with F ' (8,) = 1.56 X 1072 F'(8,) = 2.25
X 107%, one has I; = .8657. Adding the point F'(8;) = 9.48 X 107" gives
I, = 1.0105.

(v) For the exponential distribution, Is may be made arbitrarily large by
letting i — 0+, thus leaving the choice of other B’s arbitrary.
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