The Annals of Mathematical Statistics
1969, Vol. 40, No. 6, 1908-1921

ON THE PROBABILITY OF LARGE DEVIATIONS AND EXACT SLOPES!

By Gerawp L. SievERs
Western Michigan University
1. Summary. The purpose of this paper is to investigate a certain probability
of a large deviation for a sequence of random variables { W,} which have moment-
generating functions. We will assume that the mean of W, is given by nu, and
the variance by no,’, where {u,} and {s,’} are covergent sequences. We seek the
limit, as » — «, of the expression

nIn P[W, > na,

where {a,} is a convergent sequence with lim a, > lim u, . It is shown that, if
the moment-generating function of W, satisfies certain limiting conditions, the
above expression has a limit which depends on certain limits of this moment-
generating function and its derivative. This result can be used in the computation
of exact slopes for test statistics whose moment-generating function is known
under the null hypothesis. Some applications are given.

2. Introduction. Let W1, Wz, --- be a sequence of nondegenerate random
variables. We denote the edf of W, by H,(w) = P[W, =< w], the moment-

0

generating function of W, by m, (t) = [Z, e dH,(w), and let ¥, (t) = Inm, (t).
We assume the following conditions:

(i) m.(t) < = for some interval of ¢ values, —A < { < B, A, B > 0.

(ii) Forte [0, B), n W, (t) has a finite limit as n — o, which we shall denote
by

co(t) = liMpew n W, (¢).

@iii) For¢e [0, B), n W, (¢) has a finite limit as n — oo, which weshall denote
by

a(t) = limu., n W, (),

and moreover, for fixed ¢,
7 @) — @) = 0(™).
@iv) Forte [0, B), n™¥,” (t) has a finite limit as n — «, which we shall de-

note by

e (t) = limg,e n ¥,”" (t)
and

a() > 0.
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LARGE DEVIATIONS AND EXACT SLOPES 1909

(v) For ¢te[0, B) and {¢,} an arbitrary sequence of numbers in (—4, B)
converging to ¢, we have

N () = 0(1) as n— .

For 0 < h < B, we define a cdf which is a function of 2 and H,(w) by the
equation

How) = (1/ma(h)) [ com € dHa(y).

We shall denote a random variable having the edf H,(w) by W, . The moment-
generating function of W, is

Mo (8) = ma(t + h)/mn(h)

and it is clear from condition (i) that 7, ({) < « for =4 — 2 <1 < B — h. Let
¥, (t) = Inm, ().
The importance of H,(w) lies in the relation

1) H,(w) = ma(h) fww € dHa(y),

which enables us to express the c¢df of W, in terms of the cdf of W..
TuEOREM 1. Assume that the sequence { W} satisfies conditions (i)—(v). Assume
thatael = {ci1(¢):0 < t < B} and that {a,} ts a sequence such that

a, = a + (e,‘n_%),
where lim, ¢, = ¢, — < e < . Then
2) lim, {—n"" In P[W, > na,]} = ha — co(h),

where h e (0, B) is the unique solution to the equation a = c1(h).

The result in (2) also holds for the same expression with > replaced by =

The following special case has been treated in [6], but is included here for com-
pleteness. Suppose W, = X; + -+ + X, , where X1, X;, - - - is a sequence of
independent, identically distributed random variables with common moment-
generatlng function m(t) < « for —4 < ¢t < B, A, B > 0. Further, suppose
ae{m (t)/m(t):0 < ¢t < B} and {a,} is a sequence such that a, = @ + (e ?),
where lim, ¢, = ¢, —© < e < . Then

3) lim, { (=n") In P[W, > na,]} = ha — Inm(h),

where 4 e (0, B) is the unique solution to the equation a = m' (h)/m (k). The
result (3) follows from (2) since n ¥, (t) = Inm(¢) is independent of n and, as
a consequence, conditions (i)-(v) are satisfied with c(!) = Inm(¢) and
a(t) =m @) (m@)”

As another useful special case, suppose W, = K(X1) + -+ + K(X,), where
X1, Xz, - -+ is a sequence of independent, identically distributed random vari-
ables with common exponential density function

f(z;0) = exp [6K (x) + S(z) + q0)]; a <z <B, vy <8<
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Assume ¢” (8) exists, v < 8 < 6. Assume that a e {—q (0 + 1):0 < t < 6§ — 6}
and that {a.} is a sequence such that a, = a + (enn_*), where lim, e, = ¢,
—0 < €< ©,

Then

4) lim, {—n'In P[W, > na,]} = ha — q(8) 4 q(6 + h)

where h & (0, 5 — ) is the unique solution to the equation @ = —gq' (6 + h). The
result (4) follows from (2) since (1/2)¥,() = q(@) — ¢(@ + ¢) is independent
of » and, as a consequence, conditions (i)-(v) are satisfied with ¢ (¢) =
q(6) —q@+ ) and aa(t) = —q'0 + ¢).

3. Proof of Theorem 1. We begin with some asymptotic properties of W,
and shall then use equation (1) to establish equation (2).
LemMA 1. Under the assumptions of the theorem,

b) lim, n'E[W,] = a
and
(6) [n"E[W,] — a| = 0(n™).

Proor. Since E[W,] = ¥, (0) = ¥,/ (1) and ¢; (h) = a, the lemma is immediate
from condition (iii).
LemMa 2. Under the assumptions of the theorem,

(7) Var (W,) = nc,,
where ¢, > 0 for all n and
8) lim, ¢, = ¢2(h) > 0.
Proor. We have Var (W,) = ¥,” (0) = ¥,” (k) = nc, , where
9) ¢ = 0, (h).

Since nc, is the variance of a nondegenerate random variable, ¢, > 0, and equa-
tion (8) follows from condition (iv).
LemmA 3. Under the assumptions of the theorem,

U, = W, — na)n?

has a limiting normal distribution with mean 0 and variance c; (h).
Proor. The moment-generating function of U, is

E[e""] = ¢ ™m, (b + tn Hm. " (B)

and In E[e‘""] = —tnla + ¥, *h + tn_i) — ¥, (h). Using Taylor’s expansion of
the function ¥, (s) about the point A, we have for s = h + m‘*,

(10) In E[e'” = —tnla + v/ () + E/20)8," (B) + [/ B! 2" ()
= wlln™ (h) — a] + E/20)8,” () + [/ B! 0¥ (ta),
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1

where £, is between % and & + tn*. From equation (6), since ¥,/ (1) = E[W.],
the first term of equation (10) is O (n™*). From equation (9), we have ’c,/2 for
the second term of equation (10) and for the last term we observe that lim, £, =
and by condition (v), (1/n)¥,” (¢£.) is O(1) as n — . Hence the last term of
equation (10) is O (n™?). Then
In E[e"™] = fe./2 + O(n™?),

and using equation (8), the limit of this expression as n — o is t’c;(h)/2. The
lemma then follows from a continuity theorem for moment-generating functions

([7], page 432).
Proor or TaeoreEM 1. Using equation (1), we can write

PIW, > naa] = ma(h) [ape € " Al (w).

If we let ¢,° = Var (Wn) = nc, and change the‘variable of integration to
2 = (w — na)/o, , we have

PIW, > na.] = m,(h)e™™ [ G, € " dH, (o2 + na)
where @, = exc, *. Thus
(11) —n ' In PIW, > na.] = ha — n ¥, (h) — n Inf(n)
where we have let
f@) = [Gpo e "™ dH, (02 + na).

Since the lower limit of integration, d, , has a finite limit as n — o, there exists
finite N, o’ and o” such that for all n > N, o’ < @, < a”. Then forn > N,

f®) £ [wwe ™ dl.(0.2 + na) < ¢"™Pld < V. = ¢"d,,

where V, = (W, — na)o, *and d, = Pla’ < V.],
and further,

f(n)

v

_h <.
[ @ arrry €77 Al (002 + na)
— " — ” *
g e hop, (@ +1)P[a” < Vn < a” l 1] = ¢ hay, (a”+1) dn ,

where d,* = Pla” < V. < d” + 1].
Using Lemma 3, we have

(12) ‘ lim,d, =1 — &) >0
and
(13) lim, d,* = ®@” + 1) — &@@") > 0,

where ® (z) is the standard normal cdf. There exists finite N° > N such that for
alln > N, d, > 0 and d,* > 0. Then for n > N,
— k(@ + 1)op +Ind,* <In f(n) £ —ha'o, + Ind,

hein? —n*Ind, £ —n'Inf(n) £ h(d" + l)cfn_§ —n ' Ind,*
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From equations (8), (12) and (13), the extremes of the above inequality are
O ™). Then —n " Inf(n) is O (n™*) and hence o(1) as n — . Applying this to
equation (11) we have

lim, {—n"" In Pr (W, > na,)} = ha — lim,n ¥, (k) = ha — co(h).

Finally, to show that the equation a = ¢; (&) has a unique solution 4 for given
a, we shall show that ¢, (f) is a strictly increasing function of ¢, 0 < ¢ < B. For
arbitrary &, L¢e[0, B), h < t, we have,

) (k) — W () = [, () dt

for each n. If we multiply by n ™", pass to the limit as # — o and apply Fatou’s
lemma, we have

a(t) — a(th) = lim, [0, @) dt = [2e@)dt > 0.
Hence, ¢1(2) is a strictly increasing function. )

4. Rate of convergence to 0 of the significance level of a test. For each n,
let W, be a statistic with a distribution determined by a real valued parameter 6
taking values in an interval @ = [6,, © ), —0 < 6y < ». Let H,(w; ) =
Py[W,, < w] denote the cdf of W, . When 6, obtains, let m, (¢) = [Z, €™ dH, (w;8)
denote the moment-generating function of W, , and let ¥,,(¢) = Inm, (¢).

Assume that m, (¢) and ¥, (¢) satisfy conditions (i)-(v). Further, assume that
the sequence {W,} satisfies the following conditions when other 8 values obtain:

(vi) E(W,) = nu(@) foroeQ,
and u(#) is a strictly increasing function of § which does not depend on n;
(vii) Vary (W,) = nb,(0) for 0 ¢ Q,
and lim, b, () = b(0),0 < b < «; and
(viii) (Wa — nu(6))/ (nba (9))*

has a limiting normal distribution with mean 0 and variance 1 for all 6 ¢ Q.
Suppose we wish to test the hypothesis Ho:0 = 6, against H1:0 > 6,. For each
n, consider the test which rejects Hy if W, is observed to be greater than some
critical value, say w, . Let the power functions of these tests be denoted P, () =
Po[Wn > wn].
Fix an alternative 8 > 6, and let {w,} be any sequence of critical values satisfy-
ing
(14) wo > nu(0),  (wn — nu@))n = ¢ > ¢

as n — o, where 0 < ¢ < . For such a sequence of critical values, P, (#) is
asymptotically bounded away from 0 or 1 since lim, P,(8) = 1 — ®(e/ (b (6))"),
and the rate of convergence to 0 of the significance levels can be specified. To
see this, note that from (14) we can write w, = nfu (@) + e . I p(@) eI =
fe1(t):0 < ¢ < B}, then the sequence satisfies the hypothesis of the theorem and
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as a result we have
(15) lim, {—n"" In Pe[Wo > wa]} = h(8)r(0) — co(h(0)) = e(8) say,

where h(8) € (0, B) is the solution to the equation ¢;(R(6)) = u(8).

In typical examples, I = {u(6):0 € Q}.

The function e(f) defined in equation (15) provides a measure of the rate of
convergence to 0 of the significance levels of the tests. Bahadur refers to 2e ()
as the exact slope of {W.,}.

Let a, () = Pg[W, > w,] and for d & (0, 1), define N (5, ) to be the least
integer m such that

(16) an(@) < 6.
Then
17) lims,o (—In 8)/N (5, 0) = e(9).

The result (17) is essentially the same as a result in [5], Section 5; it follows from
(15) and the inequalities

ane,e (@) = 6 < anen-100).

Suppose that two sequences of test statistics, {W, @ 4 = 1, 2, have been
proposed to test the hypothesis Ho against H; . Let e (), = 1, 2, denote their
respective limits in (15). Then Bahadur [3] has defined the asymptotic relative
efficiency (A.R.E.) of {W,®} to {W,®}, when 6 > 6, obtains, as

61,2(0) = 61(0)/62(0).

If for each sequence {W,®} and 8¢ (0, 1) we consider the integer N 9, 0)
as defined in (16), ¢ = 1, 2, then

limsao N @ (5,0)/N © (5, 0) = e1,2(6).
This is immediate from (17).

5. Applications.

ExampLe 1. Sign Test. Let m denote the median of a probability distribution
with a continuous cdf F (z). Let X1, X,, --- denote a sequence of independent
random variables which have common edf F (z). Consider testing Ho:m = mo
against Hyi:m > m, for some number mo . If we let 6 = 1 — F (my), the above is
equivalent to the test of Ho:0 = } against Hi:0 > 3. Let @ = [3, 1) denote the
parameter space.

For each n, let W, = #X: > mo:1 < © < n; where “4” reads ‘“the number of.”
It is clear that W, has a binomial (n, 8) distribution and if 6 = %, the moment-
generating function of W, is

ma(t) = (L + )"

Conditions (i)-(viii) are satisfied with u(@) = 6, b(8) = 6(1 — 8), c(t) =
In[21 + ¢)] and e (¢) = €'/ (1 + ¢'). Note {c:(¢):t = 0} = Q.
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Using (15), a simple calculation gives
e0) =6In (20) + 1 —6)In[2(1 — 6)],

a result which was obtained earlier by Bahadur [2] by other means.

ExamrrLE 2. Sample Median Test. Let F (x) be a cdf which admits a continuous
density f (x) such that f(z) is symmetric about 0 and f(0) > 0. Let X3, X5, - -+
denote a sequence of independent random variables which have common cdf
F(xz — 6). For each n, let W, = nU,, where U, = median {X;, ---, X,}.
(To avoid trivial complications, assume in what follows that n takes odd integer
values.)

To test the hypothesis Ho:0 = 6, against H1:0 > 6y, — © < 8y < o, consider
for each n, the test based on W, ; large values of which are significant. The
sequence { W} satisfies conditions (vi)—(viii) withu(0) = 6 andb @) = L[f(0)]".
However, the moment-generating function of W, is not available and the theorem
is not directly applicable to determine (15). Instead, we relate the distribution of
U, to the binomial distribution.

For a > 6, such that ¥ (a — 6,) < 1, consider

Py [Un > a] = Py [Z, = 3(n + 1)],
where Z, = #X; > a:1 = 7 < n. When 6, obtains, Z, has a binomial (n, p)
distribution with p = p(a) = 1 — F(a — 6,). Note, 0 < p < %. Further, the
moment-generating function of Z, is given by m, (t) = [1 — p + pe‘]" and con-
ditions (i)—(v) are satisfied with
co() =In[l —p + pe'] and ci(t) = pe'll — p + pe']™.
Since € {¢1 ():0 <t < o} = (p, 1), we can apply the theorem to give
lim, {—n"" In Py,[U, > a]} = lim,{—n"" In Py[Z, = i(n + 1)}}

= $h — co(h)

= e¢(a) say,
where 2 = h(a) is the solution to 3 = ¢; (k). A calculation shows

e(@) = —3Infdp(l — p)l.

Consider the tests based on {W,}. As in Section 4, for a fixed alternative
6 > 0o, let {w,} be a sequence of critical values satisfying (14). Then the sig-
nificance levels of the tests are Py [W, > w,] = Py [Un > 0 + en . Asn — o,
the significance levels converge to 0 at the same rate as Py,[U, > 6]. (The sig-
nificance levels are asymptotically bounded above and below by sequences of the
form Py, [U, > a] for suitable a and e(a) is a continuous function of «.) Hence,
for the sample median test, the limit in (15) is given by

ev(@) = e(@) = —3In[4p(1 — p)]

where p = p(0) =1 — F(6 — 6,).
It is interesting to compare the sign test to the median test in this example.
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For the sign test we have (from Example 1 with a change of notation)
es() = ¢ln 2¢) + 1 — ¢) In [2(1 — g)]

where ¢ = ¢(8) = 1 — F (6 — 6). Note ¢(8) = 1 — p(8). An algebraic argu-
ment shows that es(8) < ey (f) for all § > 6,. Hence, the A.R.E. of the sign test
to the median test, esy(0) = es(6)/ev(8), is strictly less than unity for all
0 > 6. Also, es,y(8) — 1 as § — 6 (which agrees with the Pitman efficiency ) and
es,y(@) >0asf — o,

ExampLE 3. Sample Variance Test. Let X;, X,, --- denote a sequence of
independent random variables which have a common normal distribution with
mean u and variance 6. Consider testing the hypothesis Ho:0 = 6, against
Hi:6 > 6,, for some number 6, > 0.

Let @ = [6,, = ) denote the parameter space and for each =, let

W= (n/(n — 1)) 2w (Xi — X)".

It is clear that W, is of the form n8Y/(n — 1), where Y has a chi-square distribu-
tion with n — 1 degrees of freedom and if 6§ = 6y, the moment-generating func-
tion of W, is given by

ma(t) = {1 — @2n8t/(n — 1))}, t < (n — 1)/(2n8).

Conditions (i)-(viii) are satisfied with p(8) = 6, b() = 26°, () =
—3In[1 — 260u] and ¢ (t) = 6o/ (1 — 28¢¢) for ¢ < 1/(26y). Note that

fa@):t = 0} = Q.
From (15), with a simple calculation, we have
e(0) = 3[(8/60) — 1 + In (60/9)].

ExaMPLE 4. One- and two-sample tests of location for normal populations. Con-
sider the problem of testing the hypothesis Hy:60 = 0 against H;:0 > 0 for a
random variable X having a normal distribution with mean 6 and variance o2
and the related two-sample problem of testing the same hypothesis for a pair of
independent, normally distributed random variables, X and Y, with respective
rr21eans u and u + 0 and equal variances ¢°. Without loss of generality, assume
o = 1.

Consider the tests based on the sample mean X, the one-sample ¢ statistic 7'
and the one-sample Wilcoxon W for the one-sample problem and the tests based
on the difference of the sample means ¥ — X, the two-sample ¢ statistic 7 ®
and the Mann-Whitney 2/ for the two-sample problem. (Assume equal sample
sizes. )

For the one-sample tests, we have

ex(0) = 6%,
ern (@) = tIn[l 4 6°, and
ew (@) = 2h'py — In [cosh (1)],

LSl
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where py’ = Po[X1 + X» > 0] — 4, and &’ = %' (9) satisfies the equation
f s tanh (A'z) de = pq.

Further, we have the following relations between the one- and two-sample tests:

(18) ex(30) = 3er-x(0),
(19) erw (30) = 3er» (0),
and

(20) ew(39) = %exn (9).

(In the computation of (15) for the two-sample statistics, the combined sample

size is 2n.)
From (18), (19) and (20), it readily follows that

ew,i(%o) = eM.f'—f(o), and ew,r(1) (%0) = epM,r(2) (9)

That is to say, for corresponding pairs of tests, the efficiency at 8 in the two-sample
case is the same as the efficiency at 36 in the one-sample case. (This relation was
suggested by Hoadley in [8], Section 8.)

To verify these relations, we must establish (18), (19) and (20).

The formulas for ex and er«1y have been given in [2] and ew is from [10]. More-
over, ez (8) = In [1 + 16°] (see [11] or [8], line (8.6)) and er_z(8) = 26” (see
[11] or [1], lemma 3). Hence (18) and (19) are clear.

For the Mann-Whitney M, we have from [11]

ex(0) = 2hpy + In 4) — 21n [¢* + 1]
where ps = Po[X < Y] and k& = h(6) is the solution to
[ize/ (€ — 1)dx — [(2€"/ (" — 1) da = ps.
This is a new form of the formula given in [8].

One can check that py = <I:(2_%0) and py = ®(2'6) — %, where ®(z) is the

standard normal edf. Hence pys = py — 3.

It can also be verified that if 2" = A’ (%) is the solution to the equation
[ox tanh (W) de = py,
then 2" = k. To see this, write
po— % = py = [oz(* — ™)/ (@ + ) de
[x(@® — 1)/ + 1) da
=[x — 2" + 1)/ — 1) da
= [§2x (™" — Y/ (€ — 1)de — [Gxdx,
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or
po = [02x (" — &)/ (" — 1) dw
= [{202")/ ("7 = 1)] — [20(™ + &)/ ("7 — )]} da
= [327/ (" — 1)dzx — 2 [32e"7/ (" — 1) da
= [12™7/ (" — 1)dx — [s2e™/ " — 1) da.
Hence 21" = h. Then

ew(30) = 2W'pi — In [F(" + &)
= 2h/ps + In (2) — In [ & 1]
= }[2hpe + In (4) — 2In (¢" + 1)]
= ey (0), which is (20).
ExampLE 5. A nonparametric test of independence. Let Z,, Z,, - -+ denote a
sequence of independent random variables Z, = (X,, Y,) which have a com-

mon bivariate distribution with continuous cdf F (x, ) and continuous marginal
cdf’s G(xr) and H (y). Suppose we wish to test the hypothesis Ho:F (z, y) =
G(x)H (y).

For each n, if the ranks of Yy, ---, Y, are arranged in the natural order 1, 2,
-«+, m, then the ranks of the corresponding X’s will be a permutation of 1, 2,
-++, n and one way to measure the disarray of the ranks of the X’s from the
natural order is by counting the number of inversions of order among the ranks
of the X’s, say @, . If welet V;; = sgn (X: — X;) sgn (¥Y; — Y;), where sgn (a)
= +1(—1)ifa > 0(a < 0), then

Qn = Dicicisn 3 (L = V).
Under H, , the statistic

Tow=1— [4Qu/n(n — 1)]

is symmetrically distributed on [—1, 1] and hence has expectation 0. Under

H,,Var (T,) = 2(2n + 5)/9n(n — 1). In general,
E(T,) = E[Vy] = 7 say,

and

Var (T,) = 2/n(n — 1))[Var (Vi) + 2(n — 2) Cov (Viz, Vis)].

Kendall [9] has discussed using 7', as a nonparametric test of the hypothesis H, .
Consider W, = nT,. Under Hy, since the moment-generating function of @,
ig given by .
1/nl) ITim 1 = 1)/ ¢ = 1)),
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the moment-generating function of W, is
ma(t) = (¢"/n!) [T [ — 1)/ - 1)].
Then
¥, (t) = Inm,(t)
=nt—Inn!)+ D iunl —e*™ ] —pIn[l — ")
=nt — 2 ialn(/n) + 2ialn [l — "] — pln [n(1 — "))
Thus we have
co(t) = limn.e n 7, (t)
=t— [tln @)de + [(In[l — e*?]dzx — In (4t)
= (¢+1)—In @4)+ [In[l — ¢**]da.
Also
L) = n 4+ 2@/ — 1)/ — 1)
- @n/(m — 1))/ " — 1)
and
a@) = imp,en W, (¢) =1 — ¢ + [o4z/ (¢ — 1) da.

Note that {c1(¢):¢ > 0} = (0, 1).

In a similar manner, it can be checked that ¥,” () and ¥,” (¢) satisfy condi-
tions (iv) and (v). Conditions (vi) and (vii) hold with E[W,] = nr and

Var (W.) = (2n/(n — 1))[Var (Vi) + 2(n — 2) Cov (Vi, Vi)].
Condition (viii) is verified in [9]. Thus from (15), we have
ew = hr — Co(h)

where & = h(7) is the solution to 7 = ¢ (h).

ExampLE 6. Tests of location for double exponential distributions. Let X, X,

-+ - denote a sequence of independent random variables which have a common
double exponential distribution with density function

f(x’ 0) = %e—lx—(’l; —n <z < ®,0 = 6.
Suppose we wish to test the hypothesis Ho:0 = 6, against Hq.:0 > 6. Let
A= 0 — 00.
For each n, consider the sign test based on W, ® = #X; > 60:1 < 7 < n.
Then from Example 1 we have

e(0) =¢ln (2¢9) + 1 —¢) In[2(1 — ¢)],
where ¢ = 1 — 1e™2. This can be written as

e(0) =1 — %¢4]In [2¢2 — 1] — A.
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For each n, consider the test based on the sample median W, ®. Then from
Example 2 we have
@) = —3n[4p(1 — p)],
where p = %¢74. This can be written as
() = 3A — 1 In[2 — e4].

For each n, consider the test based on W, ® = X; + --- + X, . Under the
null hypothesis, the moment-generating function of W, ® is

ma(t) = [/ 1 — &) [¢] < L.

Conditions (i)-(viii) are satisfied with u(0) = 0, b(8) = 2, c(t) = 6o
—In (1 —¢)ande(t) = 6o+ [2¢/ (1 — £)]. Further, {¢: (£):0 < t < 1} = (8, )
and using (15) we have

es(0) = (0 — 60)h + In (1 — AP)
where h satisfies the equation 8, + [2h/ (1 — A*)] = 6. This can be written as
e(0) = =1+ 1+ A +In[2{—1 4+ 1+ A%)}}/AY.

Bahadur [4], [5] has shown, under certain general conditions, that the likelihood
ratio test of Neyman and Pearson has an optimal exact slope given by 2J (6)

(90+l, .955)

/(90+l.5, .994)

€,,3(9)

1,209
e1,3(®

) ) o+l 90+3 90+5

Fia. 1. €,2(0), e1,3(0) and e5,3(0)
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1.0
3,4(8)
e (9)
o5 2,4
e1,4(9)
0 6 +1 6 +3 * 0 +5
(o] [e] (o] o)

F1a. 2. €1,4(0), e€2,4(0) and es,4(9)

(see [5], page 310). In the double exponential case of this example the required
conditions (given in [4]) are met and

J©0) = Eilog {f(z, 0)/f(z, 0)}] = A — 1 + €.

Hence, for the sequence of likelihood ratio statistics, the limit in (15) is
J () = es(0) say.

Certain values of the A.R.E. curves e;;(0) = e;(0)/e;(0), 1 =72 < j £ 4,
were determined on a computer and the results are plotted in Figures 1 and 2.
The limits as § — 6, were checked analytically and agree with the Pitman
efficiencies for these cases. Also e;4(0) = 0, e4(0) = % e4(0) = 1,
e12(0) = 0,e3(0) = 0and e;3(0) = 1.

From Figure 1, we can conclude that W, ® and W, ® are locally more efficient
than W, ©, but the reverse is true for alternatives farther away from the null
hypothesis. As indicated in example 2, W, @ is less efficient than W, ®. From
Figure 2, we can conclude that the likelihood ratio test is uniformly (in ) more
efficient than the other tests. It is interesting to note that W,® and W, ®
become fully efficient as § — 6, and that W, © becomes fully efficient asf — .
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