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USE OF MAXIMUM LIKELIHOOD FOR ESTIMATING ERROR
VARIANCE FROM A COLLECTION OF ANALYSIS OF
VARIANCE MEAN SQUARES

BY R. GNANADESIKAN AND M. B. WiLk

Bell Telephone Laboratories, Incorporated

0. Summary. Given a collection of analysis of variance mean squares, not all of
which necessarily have the same degrees of freedom, the present paper describes a
method of “mapping” them so as to facilitate the statistical structuring of the
mean squares. Even under a null model of no real effects, the mean squares do not
have the same distribution because their degrees of freedom may differ, and the
ordered mean squares cannot be regarded as the usual order statistics of a sample
from a single common distribution. .

If the ordered mean squares in a general orthogonal analysis of variance are
0< S, =8, = £ Sk with corresponding degrees of freedom, v,,v,," -, vk, then
the inferential reference set in the present approach is one obtained by so-called
complete conditioning, i.e., repeated sampling from a set of K populations such that
the ith ordered mean square will be considered to have come from the population
associated with v; degrees of freedom, fori = 1,2, -, K.

The approach consists of obtaining from each of the ordered mean squares, in
turn, a maximum likelihood estimate of a presumed common error variance based
on an order statistics formulation which employs complete conditioning of the
mean squares. Methods of obtaining the sequence of maximum likelihood estimates
as well as two graphical modes of displaying them are described. Illustrative
examples are included.

1. Introduction. The present paper describes procedures to aid in developing an
appropriate estimate of error variance from a collection of analysis of variance
mean squares. The textbook approach to analysis of variance is to designate an
error term on some prior basis (often just assumption) and proceed with formal
analyses and comparisons. The error variance is usually obtained from replication,
or from block-treatment interactions, or from selected interactions (usually the
higher order ones) of treatments. Clearly, the error term plays a very important role
in the analysis of variance and its determination should not be left entirely to pre-
experimental judgment.

Many of the probability plotting procedures used for internal comparisons in the
context of the analysis of variance (cf. Daniel [2], Wilk and Gnanadesikan [4], [5],
[6]) do not require a pre-specification of an error term, and the probability plots
provide data-determined error configurations against which departures may be
sensitively delineated.

Another internal comparisons approach to the problem of bootstrapping an
error variance from a collection of mean squares would be to use the background
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null statistical model that each mean square in the collection reflects just error
variance and then to employ an order statistics formulation for estimating the
presumed common error variance from each of the ordered mean squares in turn.
The sequence of estimates of the error variance thus generated can then be internally
studied, preferably graphically, for grouping those mean squares which yield
cohesive estimates as belonging to the error configuration. For the case when all the
mean squares in the collection have equal degrees of freedom, order statistics formu-
lations for estimating the error variance have been used by Wilk, Gnanadesikan
and Freeny [7] and by Wilk, Gnanadesikan and Huyett [8].

The difficulty in the general analysis of variance circumstance involving mean
squares with different degrees of freedom is that, even under null assumptions of
scaled central y2-distributions, the ordered mean squares cannot be regarded as the
usual order statistics of a sample from a single common distribution. In the case of
unequal components, several alternate conceptions are possible of how to formulate
the joint distribution of the ordered observations.

One formulation, called group conditioning, has been considered by Wilk et al.
[9], for the order statistics from unequal components, having gamma distributions
with possibly different known shape parameters but with the same unknown scale
parameter. In the present work, the concept used in associating the ordered observa-
tions with the parent population is one of complete conditioning, which is described
in Section 2 and whose cogency for the analysis-of-variance application is discussed
elsewhere. (cf. Section 6.)

For reasons of convenience and generality, the development in the subsequent
sections is in terms of gamma distributions instead of x* distributions which are
special cases of gamma distributions. Section 2 introduces some notation and states
the problem, while the method used to determine the maximum likelihood estimate
of the presumed common scale parameter from the observed value of an ordered
shape-scaled gamma variate is described in Section 3. The use of the estimation
procedure for obtaining a sequence of estimates of error variance from ordered
analysis of variance mean squares and the utilization of the sequence for statistically
structuring the collection of mean squares are discussed in Section 4. Section 5
contains two illustrative numerical examples and Section 6 consists of concluding
remarks and discussion. An appendix provides recurrence relations for evaluating
the likelihood function.

2. Problem and notation. Let X, X,, -+, Xy be a sample of mutually indepen-
dent random variables, with X; having a gamma distribution with known shape
parameter, 1,;*, and unknown scale parameter, A, i = 1,2, -+, K. The shape-scaled
random variable, S;* = X;/n;*, would have the probability density,

f(si*; A, ’1.'*) = [(lm*)""/l“(m*)] exp(—,{m*si*)si*"(‘—l’

n
5;*>0,1>0,n%>0.

If S, £ 5, £+ < Skdenote the ordered shape-scaled quantities and n,,%,,**, g
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are the shape parameters associated with the ordered S;’s, then the general joint
density of Sy, -, Sk is

(2) Cl_[iK=1f(Si;l9ni)’ 0<81§82§"'§sx<oo,
where
O C™'=[ods, [ dsy [ dse [T f (55 2, my).

The general statistical problem considered here is the estimation of A from the
observed value of S}, for i = 1,2, -+, K, in turn, using the concept of complete con-
ditioning for the collection of ordered shape-scaled quantities. That is, at each stage
although one employs the observed value of a single shape-scaled quantity, yet the
sample space is constrained so that the smallest observation corresponds to the popu-
lation whose shape parameter is #,, the next smallest Observation corresponds to
one whose shape parameter is 7,, etc., and the largest observation corresponds to the
population with shape parameter ;. Geometrically, suppose one visualizes a K-
dimensional sample space with coordinates, Cy,, Cn,, " * -, Cn,, having shape-scaled
gamma distributions with respective shape parameters #,, #,, - -, §x (which
correspond to the ordered shape-scaled S, -, Sx as observed). By completely
conditioned sampling is meant constraining the sample to the conical region,
0=SCp2Chy =+ 2 Cny < 00.

Under such a complete conditioning, the marginal density of S; would be

@ Cf(si; 4, ’7.')5%’ ot %Zns;llf(sj;}w n;)ds;
J.saf ses’ " 3{-1H5§=i+1f(sj;i-a 'Ij)dsj-

Equation (4) is obtained by the familiar multinomial argument for the marginal
density of the ith order statistic, involving the probabilities of observing (i—1)
observations less than the observed ith value, one “‘near” it, and (K—i) larger than
it. The complexity in the formulae for these probabilities, especially for the (i—1)
being less and the (K — i) being larger than s;, is due, in the present case, to both the
complete conditioning and the inherent problem of unequal statistical components
in the order statistics formulation.

The present approach uses the marginal density of S;, fori=1,2, -, K, as the
likelihood function of 4, given the observed value s; of S;, and the known values of
N1, s Nk, and obtains a sequence of estimates, A1y Ay oy Ag, of A where 1;
corresponds to s;.

3. Evaluation of the likelihood function. Since the constant, C, does not involve
A, the likelihood function provided by (4) may be rewritten as

®)
i XL (Ti41, Prsqs o5 Tg, P,
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where
fi(w) = (T)P* (P +1)] 'uPi exp (=T u), u>0,T,>0,P,> —1;

=jgdui—l_[l(‘)i-'d“i—z"'jgzdulI—[;;llfj(uj)=Jx(i"l), say,
I Ty, Pigys oo Tx, Py)
=I;Odui-flI;?+ldui+2'“jﬁ_lduKH;(=i+lfj(uj)=Ix(K_i)a say;

T,=Mn, Pi=n;—1,and i =1,2, -+, K. Thus, for i=1,2,---, K in turn, 1; is
the value of 4 which maximizes .#; or, equivalently, the value that maximizes

(6) L(A)=In%;=Inf(s)+InJ (i—1)+I I, (K—-1i).
For each i, the likelihood equation, dL;/dA = 0, may be shown to reduce to
A = s+ Y E(Uf Uy S U S0 Ui £59)
+ it MEU s S Uy £ S UYY,

where n = Zfz 1M, U, is a shape-scaled gamma random variable with density as in
Equation (1) having parameter values A and 5, and where E(UJ-| U sU,s- =
U,_1<s;) and E(U,|si S Uiy £ £ Uy denote, respectively, conditional
expectations of U; and U, under the complete conditioning. These expected values
are themselves functions of A and hence iterative methods would be necessary for
solving Equation (7).

However, since L; involves a single parameter and since Sy~ and S, ™! directly
provide lower and upper bounds for 1, for all i, the present authors, rather than
solving the likelihood equation iteratively, adopted an approach of directly com-
puting and plotting L; with a consequent determination of the maximum likelihood
estimate itself. For this purpose, at the ith stage (i=1,2,--, K), methods are
needed for computing the (i—1)-dimensional integral, J (i—1), and the (K—1i)-
dimensional integral, I, (K—1i). The recurrence relations given in the appendix pro-
vide an inductive scheme, valid when the shape parameters are all integer valued,
whereby the integral J of any specified dimension can be computed from a linear
combination of J’s of one less dimension and with suitably adjusted arguments.
Results are given in the appendix which provide a similar inductive scheme for
evaluating the integrals, I, again when all the »;’s are integers. The appendix also
proposes a method for approximate evaluation of 7 and J when some of the shape
parameters involved are such that twice their values are integers while the others
are integer valued. In the analysis of variance framework, wherein the S;’s would
correspond to ordered mean squares, the situation when the 5,’s are all integers
corresponds to the special case when the degree of freedom of every mean square is
, even. The situation when some #;’s are integers while others are such that twice
their values are integers corresponds to the general case when the degrees of freedom
of the different mean squares are either even or odd.

(7
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Thus, given the observed values of S; and 7, * * -, n¢, one can compute and graph
the log likelihood function, L(4), and determine 1; as that value of A for which L (1)
is a maximum. For explicitly determining the value of A;, one can use the fact that
it lies in the interval, [Sx ™!, S; ~'], and successively halve the intervals in which 1,
is verified to lie, until 1, is determined with the desired accuracy.

A measure of the sharpness of the ith likelihood function in the neighborhood of
its maximum, which may also be thought of as an estimate of the asymptotic
variance! of the maximum likelihood estimate, is provided by —1/(d>L;/d1?);,.
Using second-order differences to approximate second-order derivatives, the sharp-
ness of the likelihood is measured by

(8) Aiz — hil/[zii_Li(l)_Li(z)]’

where

h; = distance from 1; to A" where A" is that observed value S;™*,
j=1,---,K, whichis closest to 4;,

L, = L(4,) = maximum value of L,(1),
LY = L(A™"),
L® = L(®), 2® =2],— Y.

4. Sequenced estimation of scale parameter as a basis for statistically structuring a
collection of mean squares. The maximum likelihood estimation procedure described
in the last section may be used with a collection of analysis of variance mean
squares to generate a sequence of estimates of a presumed common error variance,
a2. Thus, suppose 0 < S; < S, £ -+ < Sk < o denote the ordered mean squares
with corresponding degrees of freedom, v, v,, -, vx. Under the null statistical
model, which is used merely to develop the methodology that can be employed for
studying the departures from the assumptions, the sums of squares corresponding
to the unordered mean squares are considered to be distributed as o2y2 variables
with specified degrees of freedom. In this null view, what ties the mean squares
together statistically is that each of them is considered to be an estimate of a2.
What is sought here is a transformation of the ordered mean squares which
will make allowance for the order relationships amongst, and for the statistical
conditioning of, the mean squares and will provide a basis for appreciation of
departures from the null model.

In the viewpoint of the present paper, the observed order relationship amongst the
mean squares is considered to be relevant information in determining the appro-
priate reference set for statistical inference. This implies inferential considerations
relative to repeated sampling from a set of K populations such that the ith ordered
mean square will be constrained to have come from the population associated with

! The theory of maximum likelihood estimation based on unequal statistical components, such
as in the present application, is yet to be developed and this statement is a suggestive and interpre-
tive one and not a mathematically formal one.
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v, degrees of freedom, for i = 1,2, -, K. In other words, complete conditioning is
imposed.

Correspondence of this problem involving analysis of variance mean squares
with the one considered in Sections 2 and 3 can be achieved by considering the X;’s
of Section 2 to be the sums of squares divided by 2, 4 to be ¢~ 2 and n; = v;/2, for
i=1,2,- -, K. The log likelihood function, which is now considered as a function
of 62, may be obtained from Equation (6) with s; now denoting the observed value
of the ith ordered mean square S;, and with the arguments of the integrals J and /
being defined by T; = v;/2¢% and P; = (v;/2)—1, for i =1,2,---, K. Equation (7)
reduces to

=v s+ Y EU U £ S U S5)
+ZIK=.'+1V1E(U1|5.'§ i1 S 2 URY

where v = Z:‘K=1 v;. This form of the likelihood equation is intuitively reasonable in
that it provides a ‘‘pooled estimate”, in which the mean square in focus (namely the
ith one) is used explicitly while the other mean squares are replaced in the pooling
by their expected values under complete conditioning. As before, however the
conditional expected values in Equation (9) are themselves functions of o2, and the
approach to be adopted is not iterative solution but evaluation and graphmg of
L(c?) and thence a determination of 6, fori = 1,2, -+, Kin turn.

The approximate measure, provided by Equation (8), of the estimated asymptotic
variance of ;% is,

(10) A7 = h2 20— LV = L],

®

where

h, = distance from &> to the nearest observed ordered mean square,

say S,
i:i = Li(aiz )s
Li“) = L:(S)9

L{® = L(267 -9).

Corresponding to the ordered mean squares S; < S, < -+ < Sk, one can thus
obtain a sequence of estimates, &2, ,2, - -, 6, with respective statistical allowances,
Ay, Ay, ", Ag. Although the mean squares are ordered the estimates need not and,
in general, will not be. If, however, the smaller mean squares reflect only error
variance while the larger ones reflect additional real variation, then one expects that
the o2 estimates obtained from the smaller mean squares would be relatively
cohesive while those derived from the larger mean squares would be distinctly
bigger. Intuitively, one might expect that the “break’ in the sequence of estimates,
say at S,,, would persist in the estimates obtained from each S forj > m.

One graphical presentation of the results of the sequenced estimation is to plot,
in a single figure, all the ratios of the log likelihood functions, L (DL,
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Ly(0%)/Lk(6¢?), each in the neighborhood of the corresponding maximum likeli-
hood estimate of ¢?. In such a picture one could see both jumps in the sequence of
estimates and the differing sharpness of the various likelihood functions. The shifts
in the location of the likelihood function would be caused by the mean square in
question reflecting a possibly real effect, and the sharpness of the likelihood
function depends both on the ordering of the mean square and on its degrees of
freedom.

Another graphical display would be provided by plotting the estimate of
o? against the mean square in focus, i.e., a plot of the K points, (S;, ;%) for
i=1,2,---, K. Insuch a plot one could also indicate statistical allowances for each
estimate by a band of +24, for 4,2 (i = 1, -, K). Examples of both types plots are
given in the next section.

5. Examples. Two sets of data are used to illustrate the methods described
heretofore. The first example is based on a set of eight computer-generated mean
squares: two with 2 degrees of freedom, two with 4, two with 6 and two with 8
degrees of freedom. The value of 62 used in the process was unity. Table I shows the
ordered mean squares with the corresponding degrees of freedom, the maximum
likelihood estimates obtained from each ordered mean square in turn using the
completely conditioned formulation described earlier, and the values of the
statistical allowances, 4,’s.

TABLE 1
Augmented analysis of variance table
(Monte Carlo Example; K = 8,62 = 1)

Ordered

i mean squares (S;) d.f. 6,2 A;

1 0.1233 2 0.5847 0.4353
2 0.4514 6 1.1421 0.5096
3 0.5386 2 1.0036 0.3816
4 0.5759 4 0.8298 0.2572
5 1.0378 4 1.2024 0.3487
6 1.1018 8 1.0459 0.2761
7 1.3208 6 1.0186 0.2643
8 1.6340 8 0.9784 0.2669

In this null example, except for &,2 being noticeably small, the different estimates
of o2 are seen to be reasonably concordant and are all within + 24 of the true value
of 6% = 1, as well as of each other. Figure 1 shows on a single graph plots of the
ratios, Li(6?)/Ly(8?), for a representative choice of values of i =1,3,5 and 7. A
reasonable concordance of the estimates is evident. Also, as one might expect, the
plots corresponding to the mean squares with larger degrees of freedom tend to be
sharper than those for smaller degrees of freedom.

Another presentation of the information is given in Figure 2, which shows a plot
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of the estimates, &;2, against the ordered mean squares, S;, with bands about the
estimates corresponding to + twice the allowances, 4;.% In this configuration one
can see that ¢, is low but not unduly so in terms of its allowance for variation and
also that, in spite of noticeable breaks between certain of the observed ordered
null mean squares (e.g., between S, and Sjs), the estimates themselves are quite
concordant.

The second example, taken from Bennett and Franklin ([1] pages 542-545), deals
with six analysis of variance mean squares from the analysis of a 3x 5 factorial
experiment for studying the effects of 3 types of oil on the wear of 5 piston rings and
involving 5 replicate observations.

Table IT shows the ordered mean squares identified by source and by the degrees
of freedom. Also given in Table II are the maximum likelihood estimates, &,%, and
the corresponding statistical allowances, 4;, fori = 1,2, -+, 6.

TABLE II
Augmented analysis of variance table
for a 3 x S factorial experiment
(Bennett & Franklin, 1954, pp. 542-545)

Ordered mean

i Source squares (S}) d.f. 8,2 A,

1 Oils x rings .005606 8 .00836 .0022
2 Residual .006061 48 .00684 .0012
3 Tests (wn. oils) .024932 8 .0239 .0048
4 Replications .035151 4 .0278 .0065
5 OQils .069123 2 .0431 .0120
6 Rings 1.213747 4 .559 .0180

The last estimate, &4, corresponding to the largest mean square, is clearly much
larger than the rest of the estimates and, in fact, it corresponds to a real effect as
claimed by Bennett and Franklin [1] who use an F-test for establishing statistical
significance at the 0.1 9/ level.

Figure 3 shows plots of Ly(c?)/L(&?), for i=1,2,:--,6, for this example. In
order to show L(a?)/Ls(66%) on the same graph as, but without loss of information
concerning, the others, the abscissa scale for it is indicated separately by the
horizontal scale at the top of the figure.

Figure 4 provides a graphical summary by plotting the estimates, with bands
based on the corresponding allowances, against the ordered mean squares. The
“largest” point, (S, 6¢2), which is clearly separable from the remaining ones, is
omitted in Figure 4 so that the configuration of the ‘“smaller” points may be
studied more easily.

Both plots suggest a further possible partitioning of the mean squares into two

B4

2 Since 0,2—2A4, < 0, the lower limit for the first estimate is shown as zero in Figure 2.
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groups, one consisting of S; and S, and the other consisting of S;, S, and S,
although the internal cohesiveness of the corresponding estimates of 62 is not very
stably inferrable because of the small numbers of mean squares involved.

6. Discussion. The procedure described in this paper is intended as a method for
augmenting the usual analysis of variance table. Primarily the concern is with
exhibiting the information to facilitate comparisons rather than with providing
formal probabilistic inferences. As an informal internal comparisons procedure, the
method is based on the unifying statistical notion of a common error variance
underlying each of the related mean squares. This statistical strawman, the null
hypothesis or viewpoint, is deliberately set up to provide a basis for developing
techniques to lead to its critical evaluation.

Clearly, the particular estimates, the &%, depend upon the number, K, included
in the supposed “null” collection of mean squares. When*one or more of these are
“tagged” as definitely not being solely associated with error, the remaining mean
squares need to be reanalyzed. This is similar to the need to replot after omission of
‘“discrepant” points in probability plotting. Also, based on the indications of a first-
cut analysis of a collection of mean squares employing the method described in
Section 4, one may be able to infer a relatively homogeneous group of “‘error”
mean squares, and subsequent analyses might then be directed towards improving
the statistical properties of the estimate of error variance by appropriate pooling,
etc.

The argument for using the concept of complete conditioning as the appropriate
one for the present application is the same as that for the method of generalized
probability plotting described by Gnanadesikan and Wilk [3]. A drawback of the
present method is the heavy computation involved in the recursion scheme whose
use is predicated on the availability of modern high-speed computers. The group
conditioning approach (see Wilk, et al. [9]) involves substantially less computing
load and seems often to give somewhat comparable results.

Acknowledgments. The authors are grateful to Miss Elizabeth Lauh for pro-
gramming the computational scheme for evaluating the log likelihood function and
for plotting the ratios, L;(6?)/L(4;?). They also wish to thank T. L. DeChaine for
his help in obtaining the computer plots of the points, (S;, #;?), with the bands of
+24;.

APPENDIX ON EVALUATION OF THE INTEGRALS / AND J

Recall the definitions,

= [sdu;_, [o- du_y - [8r duy TTZ0 fu)),
and

= Iio d“i+1_‘::+,d“i+2 ’ "faff(-l duKl—[jK=i+1fj(uj)’
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where
f{w) = (TP TP+ 1] 'uliexp(—T;u), u>0,T,>0,P;,> —1.

Assume, in addition, that P;, for all j, is a nonnegative integer. Then, repeated
integrations by parts, yield the following results for special cases:

(1a) J.(1)=J(Ty, P)) = Igfl(ul)dul
= Tlle[F(Pl+1)]—1j3u1PlexP("‘Tl uy)du,
=1-exp(—T,x)Y " Loq;,

where oy = landa; = j (T x)a;_, forj=1,-++, P,.

(1b) I(1) = I (T, Px) = jwfx(ux)dux
= (TP [C(Px+1)] " [P ug ™ exp(— TKuK)duK
=exP(_TKx)Zj=oﬁj,

where B, = land §; = j ~!(Txx)B;-y, forj=1,2,-++, Px

(2a) J(2)=J(Ty, Po; T, Py)

TP|+1 TP2+1
F(P TP +1)Io“zpzexl)( Tzuz)duzfo ulp'exP("Tlul)dul
1 2
'1"2 Py+1 p
=J(T;, P,)~ ( > iLoo; J(T,+ Ty, Py+)),
2 2 T1+T2 Z] 0¥jvx\£2 1 2

where ao = 1, o; = [Ty (T, + T)J[(Py +))/j]e;- for j=1,--+, P,
Each one-dimensional J-integral on the right-hand side may itself be evaluated by
employing the formula (1a) above.

(2b) Ix(z) = Ix(TK 15 PK 1; TK’ PK)
TExprtt Thxtl
{F(PK 1+1)F(PK+1)}IOO Px lexp( TK LUk l)duK .

e ugPxexp(— Tyug)dug

UK -1

TK . Pg-1+1 R
<TK 1+Tx> i%0 B I(Tg—y + Tk, Px_1 +J)),
where o = 1 and B; = [ Te/(Tx+ Tx - )][(Pk-1 +))/j1B;-1 forj=1, -+, Pg.
Each one-dimensional /-integral in the sum on the right-hand side would itself be
computed by employing the scheme in (1b) above.
More generally, when the P’s are all nonnegative integers, we have the following
recursion-reduction formulae:

(Ba)  J(i-D=J(Ti-, Pioys 5 Ty, Py)

'1"2 Py+1
=JxT;'— 9P|'— 9’TP - -~
(T Prosi o P =( )

'Zfioaj-]x(Ti—n Pi_y; 3 T3Py T, 4+ Ty, Py+j),
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where oy = 1 and o; = [T, (T, + T,)][(P,+))/j]o;-, for j=1,2,-- P,.
(3b) T(K=1) =ITi+y, Piy1; 5 Tgs Px)

_ TK—I Pg-1+1
Tx-1+Tx
'Z?’éoﬁjlx(TiH, Py Teogy Progy Ty 1+ Ty, Px_y +)),

where f, = 1 and f; = [Tx/(Tx + Tx- )] [(Px-1+)/j1B;-1 for j=1,2,- -, Pg.

Suppose some of the P;’s, namely P;, P;,,* -, P;,, are not integers but, for each
i, 2P;, is an integer. Then an approximate interpolation procedure is to use the
average of two calculations. In one of these, use the arguments (P;,+3%) in place of
P;,i=1,2,---,r. In the other, use (P;—1%). This procedure is computationally
more practical than a full r-dimensional linear interpodlation procedure which
would require 2" separate evaluations.

In the case of analysis of variance mean squares, the P;’s are necessarily either

integers or half-integers.

REFERENCES

[1] BenNETT, C. A. and FRANKLIN, N. L. (1954). Statistical Analysis in Chemistry and the Chemical
Industry. Wiley, New York.

[2] DANIEL, C. (1959). Use of half-normal plots in interpreting factorial two-level experiments.
Technometrics 1 311-341.

[3] GNANADESIKAN, R. and WiLk, M. B. (1970). A probability plotting procedure for general
analysis of variance. To appear in J. Roy. Statist. Soc. Sec. B 32.

[4] WiLK, M. B. and GNANADESIKAN, R. (1961). Graphical analysis of multiresponse experimental
data using ordered distances. Proc. Nat. Acad. Sci. USA 47 1209-1212.

[5] WiLk, M. B. and GNANADESIKAN, R. (1964). Graphical methods for internal comparisons in
multiresponse experiments. Ann. Math. Statist. 35 613-631.

[6] WiLk, M. B. and GNANADESIKAN, R. (1968). Probability plotting methods for the analysis of
data. Biometrika 55 1-17.

[7] WiLk, M. B., GNANADESIKAN, R. and FReeNy, ANNE E. (1963). Estimation of error variance
from smallest ordered contrasts. J. Amer. Statist. Assoc. 58 152-160.

[8] WiLk, M. B., GNANADESIKAN, R. and HUYETT, MARILYN J. (1963). Separate maximum likeli-
hood estimation of scale or shape parameters of the gamma distribution using order
statistics. Biometrika 50 217-221.

[9] WLk, M. B., GNANADESIKAN, R. and LAUH, EL1ZABETH (1966). Scale parameter estimation
from the order statistics of unequal gamma components. Ann. Math. Statist. 37 152-176.



