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ON THE CONSTRUCTION OF ALMOST UNIFORMLY
CONVERGENT RANDOM VARIABLES WITH GIVEN WEAKLY
CONVERGENT IMAGE LAWS!'

By MICHAEL J. WICHURA
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1. Introduction. Let S be an arbitrary metric space, with distance function d, and
let & be its Borel g-algebra. Denote by 2(S) the class of all probability distributions
on (S,%). A net (P,),r of probabilities P,e2(S) is said to converge weakly to a
probability Pe 2(S) if P(f) = lim, P,(f) for each real-valued bounded continuous
function f on S; here P(f) = [fdP, P(f)= [fdP,. Let 2(S) denote the sub-
class of 2(S) consisting of those probabilities P for which there exists a separable
subset of S'in & of P-probability one. 2,(S) includes the so-called tight probabilities
i.e. probabilities P such that sup {P(K): K compact} = 1 ([5] page 29). The chief
result of this paper is stated in the following.

THEOREM 1. Let (S, d) be a metric space and let (P,),.r be a net of probabilities
P,e P(S) converging weakly to a probability P e P(S). Then there exists a probability
space (Q, B, n) and B-S measurable, S-valued functions X and X (y €I') defined on Q
such that the distributions pX ~' of X and uX,” " of X, are respectively P and P(y€T)
and such that X, converges to X almost uniformly.

One sometimes ([1], [8]) has occasion to consider the weak convergence of
probability distributions P, which are defined only on certain sub-g-algebras of &,
and it is therefore of interest to know that the requirement in Theorem 1 that the
P, belong to 2(S) can be weakened. To make this precise, let us say that a net
(2,),er of probabilities P, defined on sub-g-algebras o7, of & converges weakly to a
probability Pe 2(S) if lim, P,(f) = P(f) = lim, P,( f) for each real-valued bounded
continuous function f'on S; here P, and P, denote respectively the upper and lower
probabilities associated with P, :

P(f) =inf{P/(g): f < g, P(g) defined}
P(f) = sup{P(9): fZ g, P,(g) defined}

(for equivalent formulations of this definition see Theorem 1 of [8]). It is clear that
this definition of weak convergence reduces to the usual one if all the &, equal &.
Let &, denote the sub-g-algebra of & generated by the open balls of S. We then
have the following extension of Theorem 1:

THEOREM 2. Let S,<, and &, be defined as above and let (P,),.r be a net of
probabilities P, defined on c-algebras o/, containing &, and contained in &, which
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converges weakly to a probability Pe P(S). Then there exists a probability space
(Q, B, ) and S-valued variables X and X (y €T') defined on Q such that:

1) X is B—% measurable, X, is B—sf, measurable (yel)
(2) HX_I =P, .qu—l = y(yer)
3) X,— X almost uniformly.

We remark that it is consistent with all the usual axioms of set theory to assume
that 2,(S) = 2(S) (see [2] page 252). In this sense, the requirement in Theorems 1
and 2 that Pe 2,(S) can be replaced by the trivial one that P e 2(S).

In the construction used to validate Theorems 1 and 2, Q is the product space
Sx [],erS,, where each S, is a copy of S, # is a o-algebra which contains the
product c-algebra & = .5” X [ [yer,» 1 is the prolongatlon to (2, %) of a mixture
of product probabilities on (Q, o), and X and X, are the canonical projections of
Q onto S and S, (yel'). When I is countable and S separable, one has # = «.
Other constructions have been used to validate special cases of Theorem 1. Working
with sequences (for which almost uniform convergence is equivalent to almost sure
convergence by Egoroff’s theorem) instead of nets, Skorokhod ([7], Theorem
3.1.1) has proved Theorem 1 for S separable and complete; in his construction
Q = [0, 1], the unit interval, 4 is the o-algebra of its Borel sets, and u is Lebesgue
measure. Again working with sequences, Dudley ([3], Theorem 3) has proved
Theorem 1 for S separable; in his construction, Q is a countable product of copies
of §x[0, 1], & is the product g-algebra on Q, and u is a mixture of product
probabilities on (Q, %). For applications and other constructions of almost surely
convergent processes which are of interest in the theory of weak convergence, see
the survey paper by Pyke [6].

2. Proof for I countable and S finite. The simplicity of our construction is
obscured in the general case by several technical considerations; in order to illus-
trate the general idea we will in this section prove Theorem 1 under the assump-
tions that I is countable and S is finite. To this end, let (S,, &,) be a copy of
(S, &) for each y, and let (Q, B) = (Sx[[,er Sy & X[ ,er ;) be the product of
the measurable spaces (S, &) and (S,, &,)(yel). Let the canonical coordinate
mappings X and X,(y €I') be defined on Q by

4) X( (39(50)061“)) =59, Xy( (S, (SO)OeI")) = sy(yel").

The required measurability properties clearly hold.
Let k:y — k(y) be any function from I to {0, 1, 2, -+, co} such that

) lim, o k(y) = o0

(k(y) should be thought of as a measure of the largeness of y and later will be
_ further specified). For 1 = k < oo, set

(6) Uk=ny:k(y)gk{Xy=X}-
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Observe that each U,e4 since I' is countable and that X, — X uniformly over
each U, in view of (5).

Let Q,(yel') be any family of probabilities on (S, &). It later will be further
specified. Letting d, denote the probability giving mass one to the point se S, let

(7) :uj,s = 6s X l—[ysl'.uj,s,y

(1 £j < o0, se8) denote the product probability ([4] page 166) on (Q, #) whose
components are respectively: d,, defined on (S, &), and

Auj,s,y = Qy lf 0 é k(y) <ja
= d, if  j=sk(y) = oo,

defined on (S,, &,). Clearly p; X ' =0, p; X,”" =p;,,; moreover, since I
is countable, u; (U,) =1 for j < k. Next, define probabilities pu;(1 <j < 00) on
(©, #) by
(8) Hj= ZseSP{s}tuj.s'
Clearly y; X' = P,

wX," =0, if 0=k(y) <j
and u(U) =1if j< k.

Finally, let (w,); <4<+ be any sequence of numbers w satisfying

9) w20,  Ywe=1,  Y,ow<1(1=k< o) and put
(10 W= 1<;<xxW(0 =Lk < o0).

Note wy = 0, w_, = 1. Define the probability ¢ on (Q, ) by

an H= Wik

Clearly uX ' =P

(12) pX, ™! =y P+(1— w40, and
(13) HU,) 2 o (1 £ k < ).

Since lim,.,, w, =1, (13) implies that X, —» X almost uniformly with respect
to u. To complste the proof in this special setting it suffices, in view of (12), to
show that the weak convergence of P, to P implies the existence of k(y)’s satisfying
(5) and probabilities Q, satisfying

(14) P, = oy P+(1 —0y))Q,
for all yeT'. Now if k(y) = oo, there exists a Q, satisfying (14) if and only if
(15) P,=P,
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and then any Q, will do. On the other hand, if 0 < k(y) < oo, we see, after setting
(16) Qi,s,y = P7{5}+(wk/(l —wk))(Py{s}—P{s})

(17) n1k.y = minsssqk,s,ya

that there exists a probability Q, satisfying (14) if any only if m,,,, =0 and
Y sesdryysy = 1. and then one must take

(18) Qy = ZSGS qk(y),s,y 6s'

We note that ) (.54 ,, = 1 for all k(0 < k < o) and that m, , = 0. Thus it suffices
to show that (5) is satisfied and (15) holds for k(y) = oo if we put

(19) k(y) = sup{j 2 0: m;, = 0}.
Now since P, — P, we have
(20) P,{s} - P{s}

for each se S(/;5, being a continuous bounded function on the discrete space S).
Hence lim, . g ;, = P{s} for each s€ S, 1 £ k < oo} this, together with the fact
that g, =0 if P{s} =0, implies that g, , is ultimately nonnegative for each
k (1 £k < ). Thus since S is finite, there exists for each £ an index y,eI” such
that my , = 0 for all y = y(k). Since m, , =0 implies k(y) = k, (5) is satisfied.
Next, if k(y) = oo, we have (recall } (. 5qy.,, = 1)

(21) 0 < P{s}+ (@ /(1—w))(P,{s} —P{s}) = |

for each seS and arbitrarily large k; since w,/(l—w,)— oo, it follows that
P,{s} = P{s} for each seS, i.e., that (15) holds. This completes the proof of
Theorem 1 for I' countable and .S finite.

3. Proof of Theorem 2 in the general case. Let P, P(yel), &, ¥, and
o/ (yel') be as in Theorem 2. Let ¥(P) = {Ce&: P(boundary of C) = 0} be the
class of P-continuity sets. We recall ([5] page 50) that €(P) is an algebra and that
for each se.S, the open ball

(22) {t:d(t,s) <r}e%(P)
for all but at most countably many values of r. The following lemma shows that
the analogue of (20) holds for sets Ce%(P) (confer T'1.1 of [8]):
LEMMA 1. In the present context, C €% (P) implies
lim, P, (C) = P(C)= lim, . P(C).

PRrOOF. Let F be a closed subset of S. Since the continuous bounded functions
Sfuis > max ((1—nd(s, F)), 0) decrease to the indicator function of F, the weak
convergence of P, to P implies that limsup, P,(F) < limsup, P,(f,) = P(f,) | P(F).
The dual relation for open sets is seen to hold by taking complements; thus for
any Ce¥ we have

(23) P(C) £ lim inf, P (C) < lim sup, P.(C) < P(C),
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where C (resp. C) denotes the interior (resp. closure) of C. When Ce%(P), the
extreme members of (23) are equal. []

We shall need a sequence of ““finite approximations” to S. For this, choose and
fix any two numerical sequences (A;); <x <o, and (&,); <x<o such that

(24) A >0, lim A, =0
(25) >0, Y& <oo.

Letting d(C) = sup{d(y, z):y, ze C} denote the diameter of a subset C of S, we
then have

LEMMA 2. In the present context, there exist positive integers n(1 < k < ) and

disjoint subsets C,,, ... n(0=m;<n; 1 <j=k)ofS suc‘h that
(26) Conpoeooimes = 20 <mezne Comu e+ e 1o

27 MaXg <, <n;01 <)<k MAX1 <y <y A(Cny, o m) S Di
(28) Zogmjgnj,1§j<kp(cm| i 10) = Bk
(29) Copo oo i €EP)NFo(0=m; < n;, 1 Sj<k).

PrOOF. Let E be a separable subset of S such that P(E) = 1 and let {s,,n = 1} be
acountable dense subset of E. In view of (22), there exists for each n = 1 an open ball
in S, call it E,, centered at s, with radius greater than A, but less than A,, such that
E,e%(P). Since the union of these balls covers E and hence has P-probability
one, there exists a positive integer n; such that P(u,<,, E,) Z 1—e¢;. Setting
Con = En, _21§m<mlcm(l smysng),Co=8—VU,<n B, = S~ 1 <my < Comp» WE gEL
S = ZO§m1§n1Cm1’ max, SmysSny d(cml) é Al, P(CO) é €15 CO! Cl, T Cnl G%(P)ﬁyo
The proofis completed by induction on k. []

Let []«(1 £ k < o0) be the finite partition of S whose members are the C,,, ... ,,
and put [ [, = {S}. Choose and fix numbers w, satisfying (9) and define w, by (10).
For0 £ k <, Ce] [, and y €T, set (confer (16), (17), and (19))

Ghc.y = PAC)+(P(C)— P(C) /(1 —d,))

(30) My, = Milg e, ik,
k(y) = sup {j = 0: m;,, 2 0}.

In view of (29) and Lemma 1, the convergence of P, to P implies (see the argument
following (20)) that

(31) lim, . k(y) = oo.
For y such that 0 £ k(y) < oo, put (confer (18))
(32) 0, = Yce gy, dkan.ca Py O,

where P,(- [ C) denotes the probability on (S, &,) obtained from P, by conditioning
on the occurrence of the event C. It is easy to see that Q, is itself a probability on
(S,,2,) and that (confer (14))

(33) Dy (y) (ZCE Mi(y) P I OP(C) +(1 —ay))Q, = P,
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Now for each yel, let S, be a copy of S, and let (Q, ) =(Sx[],.rS)
& x|, ere,) be the product of the measurable spaces (S, %) and (S,, L )(yel).
Let C, , denote the element of [ |, containing se S, and let (confer (7))

(34) Vi =0 X [V
be the product probability on (Q, /) whose components are respectively: d,,
defined on (S, %), and

Viey =0, if 0= k(y)<j,
=P, |Cyp if  JSk(y) < oo,
=0, if  k(y)= oo,

defined on (S,, «,). For each j, the mapping s — v; (4) is a random variable on
(S, %) whenever A € o is a cylinder set with a finite-dimensional base (since for each
yel, each of the finitely many C in [],,, belongs to &), and hence ([4] page 74)
this mapping is a random variable for each 4 € o/. Thus ([4] page 76) we may define
a probability v; on (Q, %) by the formula (confer (8)) v; = {sv;.sP(ds). Finally
(confer (11)), define the probability v on (Q, «7) by

(35) V= Yigi<m WiV
Once again, let the coordinate mappings X and X, (yeI') be defined on Q by (4).
We have

LEMMA 3. In the present context,

(36) X is o — % measurable, X, is of — o, measurable (yeI')
(37) VX' =P '
(38) vX, ! =P (yel).

PRrOOF. Relations (36) and (37) follow directly from the definitions. For (38),
observe that
VX, "' = oy Qe Py OPC)) +(I =)@,  if 0= k(y) < oo,
=P restrictedto ./, if k(y) = o0.

In view of (33), (38) holds when 0 < k(y) < co. It remains to show that (38) holds
when k(y) = oo ; the argument here is similar to, but more complicated than, that at

(21). Put

(39) Dk"_‘ZOémjénj,l§j<k21§mk§nkcml,~-',mk(kg 1); D=llmlnkak
and observe that (28) and (25) imply
(40) P(D) = 1.

Let %, be the sub-algebra of &, made up of sums of members of [], and put
€ = Uiz 1% since (in view of (26) )
(41) ¢, cb,ccb b 1S
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% itself is a sub-algebra of . Let 6{&)ND (resp. &,NnD,S ND) be the trace on
D ([4] page 19) of a{%) (resp. #,, &), and let &, denote the Borel g-algebra of D.
In view of (24), (27), and (39), each open subset of D is a union, necessarily count-
able, of sets of the form Cn D with Ce%; it follows that & ,c6{¥nD) = 6{C>ND.
Since D, belongs to €,, we have De (%), and since ([5] page 5) &¥p = FND, we
have

(42) Ded,AD=PAD = S pcal¥).

In view of (41) and the additivity of P and P,, the condition k(y) = co implies (see
(30) and (21)) that for each Ce% the inequalities 0 < P(C)+(P,(C)—P(C))
(w,/(1 — ;) = 1 hold for arbitrarily large values of k; since lim, _, ,, w,/(1 — w,) = o0,
it follows that P, and P coincide over %, hence over 6{%, and hence, in view of
(42), over o/,nD. But then, in view of (40), we have Py(D') = P(D) =1, so that P
and P, coincide over «/,. This completes the proof of the lemma. (]

Now put A, = 0 and set (confer (6) and (24))

(43) Uy = ny:k(y)gk {d(Xy’ X) = Ak(y)}'

The U, need not belong to & in general, although they will if I is countable and S
is separable (so that d(X,, X) is «/-measurable (confer [5] page 6)). For any subset
Q. of Q, let v¥(Q) = inf {v(4):Q.cAe/} denote the outer probability of Q-
under v.

LEMMA 4. In the present context,
(44) X,— X uniformly over each U,
(45) lim,_, , v¥(U) = 1.

Proor. We get (44) from (24), (31), and (43). For (45) put E, = inf,,5,D,(1 =
k < o), where D,, is defined by (39). Suppose that U,cAe/. Then there exists
([4] page 81) a countable subset I'; of I' such that 4 depends only on X and the X,
with yeI"; it follows that

Nyeraumze {dXy, X) S Ay} =4

(the set on the left need not belong to «/). Thus for j £ k we have (confer (34) and
(27))

v(A) = [sv; (An{X = s})P(ds)
2[5 Vi Nyera iz 14X, 8) £ Axiy D P(ds)
= P(E,).

By (35), W(A) = Y ;< ,w;v(4) = w, P(E}); it follows that v¥(U,) = w,P(E,). But (28)
implies P{E;) Z 1=} 2 4&m; (45) now follows from (9) and (25). ]

“We note that the U, increase with k. In view of Lemmas 3 and 4, to complete the
proof of Theorem 2 it suffices to establish
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LEMMA 5. Let (Q, s/,v) be any probability space and let (U,),», be an increasing
sequence of subsets of Q of outer probabilities v¥(U,). Let # be the ag-algebra
generated by o and the U\(1 < k< o). Then v may be prolonged to a probability n
on (Q, B) such that

(46) wU) =v*(Uy)

foreachk.

Proor. Put B, =U,—U,_(1 £k <), put B, = (supU,)°, and choose
B, *e o such that v(B,*) = v*(B)(1 £ k £ ©). According to [4] page 43, %
coincides with the class of sets of the form ) ,4,B,, where A, €</ ; moreover the
formula

47) ﬂ(Zk Ay B) = Zk IAkfk ‘!V

defines a probability x4 on (Q, %), whose restriction to (2, /) is v, provided that
each f, is a nonnegative, &/-measurable random variable vanishing off of
B*(1 £k £ )andthat) , f, = 1.

Let f; be the indicator function of By*—J;<;B;*(1 £ k = ) and define u by
(47). Then

(48) wUy) =”(Zj§kBj)=Zj§kIfjdv= v(Uj§kBj*)'
Since |J ;< B,* is an &/-measurable set containing U,, we have
(49) V(Uj;k Bj*) = V*(Uk)~

On the other hand, suppose U,c A€, so that B;= A4 for j < k. Then each B;*,
and hence also |J;<,B;*, is contained in 4 up to a v-equivalence. It follows that
v(4) = v(U; <, B;*) and that

(50) V*(Uk) = v(Uj§k Bj*)'
Together (48), (49), and (50) imply (46). [
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