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CHARACTERIZATION OF OPTIMAL SATURATED
MAIN EFFECT PLANS OF THE 2" FACTORIAL!
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1. Introduction and summary. For the 2" factorial a treatment design to estimate
the » main effects and the mean with (n+ 1) treatment combinations is known in the
literature as a saturated main effect plan. Let the (n x 1) x n matrix D consisting of
the 0’s and 1°s making up the subscripts of the observations, denote such a plan and
let the (14 1) x (n+ 1) matrix X stand for the corresponding design matrix of —1’s
and 1’s, then optimal (in the sense of maximum absolute value of the determinant
of X'X) designs have been characterized in terms of the information matrix X'X by
many authors, such as Plackett and Burman [6] and Raghavarao [7]. Williamson
[9], Mood [3], and Banerjee [2], among others, have used (0, 1)-matrices to construct
optimal and weighing designs. If the elements of the first row of D are set equal to
zero, then the n x n (0, 1)-matrix used in weighing designs is obtained from the last
rows of D. However, D is not restricted to always include the combination having
all zero levels in this paper. For a summary concerning several aspects of optimal
saturated main effect plans the reader is referred to Addelman’s [1] paper.

The aim of this paper is to characterize the optimal saturated main effect plans in
terms of D’D rather than X’'X. A major consequence of this is that all theory
available for semi-normalized (—1,1)-matrices is applicable to semi-normalized
(0, 1)-matrices and vice versa. A second major consequence is that the normal
equations for saturated main effect plans need not be obtained as they are readily
derivable from the D matrix.

2. Relation between the (— 1, 1)-matrix X and the (0, 1)-matrix D. The equation
system relating the expected value of the observations for the (n+41) treatment
combinations and the (n+ 1) parameters (» main effects and the mean) of a saturated
main effect plan of the 2" factorial may be written compactly as:

(2.1 Xp=E(Y)

where X is a square (—1, 1)-matrix of order n+1, f is the (n+ 1)-column vector of
parameters with the mean as its first element and the remaining components being
the main effects, and Y is the (n+ 1)-column vector of observations taken at (n+1)
treatment combinations. Note that putting the mean as the first component in f
implies that the first column of X consists of + 1’s. Such a matrix is termed a semi-
normalized (— 1, 1)-matrix.

Now let X be a square semi-normalized (— 1, 1)- matrix of order n+ 1 and perform
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column operations on X by postmultiplying X with the matrix G and calling the
resulting product X*, i.e.

(2.2) XG=Xx*

where G is the (n+1) x (n+ 1) upper triangular matrix:

Here 1 is an n-column vector of 1’s, 0 is an n-column vector of 0’s and I'is an nxn

identity matrix.
The following theorem may be easily verified.

THEOREM 2.1. i .

(a) X* =[1: D], where 1 is an (n+1)-column vector of +1’s and D is the
(n+1)xn (0, 1)-matrix, the rows of which are the treatment combinations at which
the observations Y were taken. (In other words, the effect of G on X is identical to
setting all —1’s equal to 0 and leaving all + 1’s unaltered in X.)

(b) |G| = 27"
1 1,
(C) G_1 =[ ............ 1...
OnXI 2Inxn
(d) X=Xx*G™!

(€ |X* =27"X]or|X|=2"|X*|
(f) Equation (2.1) may be rewritten as: X*G~'f = E(Y)

where o = n+1.
Zyxyr = =L 42D 1y Lt 1y x4
Z=aJan_ZDr,tX(n-l-I)J(n+l)xn_2JnX(n+l)D(n+1)Xn+4D;tX(n+l)D(n+1)xn
Here Jis a matrix of + 1's of appropriate dimensions.

THEOREM 2.2. If ||X*|| denotes the absolute value of |X*| then ||X*||<27"
(n+1)*"* D with equality holding when X is a Hadamard matrix.

ProoF. The proof of this theorem follows immediately from the (e) part of
Theorem 2.1 and from Hadamard’s theorem mentioned in Muir and Metzler ([4]
page 761).

Theorem 2.2 leads to an important conclusion concerning (0, 1)-matrices, a class
of matrices celebrated in combinational mathematics (e.g. see Ryser [8]). In the
class of all semi-normalized square (0, 1)-matrices the maximum absolute value of
the determinant of a matrix of this class is at most 27"(n+1)}®*1 with equality
holding when the (0, 1)-matrix is obtained from a semi-normalized Hadamard
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matrix by setting all —1’s equal to 0. Hence given any semi-normalized (—1, 1)-
matrix X of order n+1 of a saturated main effect plan we see immediately that ||X||
is maximum when ||X*|| is maximum (or equivalently ||X’X|| is maximum when
||X* X*|| is maximum) or vice versa. Formally we summarize the consequences of
Theorem 2.2 in the following theorem:

THEOREM 2.3. The study of optimal saturated main effect plans in the sense of
maximum || X|| (or of || X' X||) is equivalent to the study of X* in the sense of maximum
||X*|| (or of || X* X *||). (Note that X is a semi-normalized (—1,1)-matrix and X* is a
semi-normalized (0, 1)-matrix. Also note that X* is the treatment combination matrix
D bordered with a column of + 1’s on the left.)

3. Characterization of optimal plans. Having exhibited. the important relationship
between X and X* above, our purpose in this section is to characterize the
(n+1)x(n) array D (i.e. the treatment combination matrix) itself. The optimal
saturated main effect plans fall into two categories:

(i) Orthogonal plans (or Plackett-Burman patterns) with X'X = (n+1)I, I being
an (n+1)x(n+1) identity matrix. To this category belong all plans for which
(n+1) = 4¢, since for Hadamard matrices to exist (»+1) must be of the form 4z,
except forn+1 = 2.

(ii) Nonorthogonal plans (or Raghavarao weighing designs). Here there are two
distinct cases as given by Raghavarao [7], namely, when:

@) m+1)=4t+2withX'X = (n—-1D)I+2J
®) (n+1)=2t+1 with X’X =nlI+J where I is an (n+1)x(n+1) identity
matrix and Jis an (n+1) x (n+ 1) matrix of +1’s.

The three cases outlined above are characterized in terms of D in three separate
theorems which can be proved using matrix algebra.

THEOREM 3.1. If X'X = (n+ 1)1, then D'D = L(n+ 1)I+%(n+1) J and since (n+1)
must be of the form 4t we have D'D = tI+1tJ.
(The results of this theorem can be deduced from the theorem given by Paley [5]
which proves that n+1 = 47 is a necessary condition for a Hadamard matrix to

exist, apart fromn+1 = 2.)

THEOREM 3.2. If X'X = (n—1)I+2J with (n+1) = 4t+2 then D'D = }(n—1)I+
n+TJ = tI+(t+2)J.

THEOREM 3.3, If X'X =nlI+J with n+1=2t+1 then D'D = }nl+}(n+4)J =
I+ 3t +2)J.

Incidentally, from Theorem 3.1, there follows an important conclusion with
respect to the construction of Hadamard matrices. Since X can be obtained from
X* by setting all 0’s equal to —1’s and X* is nothing else but D bordered on the

*left by a column of + 1’s it follows immediately that when there exists a D satisfying
Theorem 3.1 then there also exists a Hadamard matrix X. Hence the following
theorem is an important equivalence.
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THEOREM 3.4. The construction of a Hadamard matrix is equivalent to the con-
struction of an orthogonal main effect plan (i.e. a D such that Theorem 3.1 is satisfied).
(Again note that a problem concerning (—1,1)-matrices has been reduced to a
problem concerning (0, 1)-matrices.)

4. Discussion. Instead of considering only saturated main effect plans, one may
also consider other saturated and unsaturated ones in the context of Theorem 2.1
and derive conditions on the resulting D to yield classes of optimal plans. This
extension is under investigation.

5. Acknowledgment. We appreciate the suggestions of a referee, which made the
paper more concise.
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