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CONVOLUTIONS OF STABLE LAWS AS LIMIT
DISTRIBUTIONS OF PARTIAL SUMS!

By J. DAvVID MAsoN?

University of California, Riverside

0. Summary. Let {X,} be a sequence of independent random variables and let
Y,=B,"'Y" ,X,—A, be a sequence of normed, centered sums such that, for
appropriately chosen normalizing coefficients (B, — o0) and centering constants,
{Y,} converges in law to a nondegenerate limit distribution G. B. V. Gnedenko
asked the following question: What characterizes the class of limit distributions
{G} when there are r different distribution functions among those of the random
variables {X,}? .

Let 2, denote this class of distribution functions. As is well-known, 2, is the
class of stable distributions. V. M. Zolotarev and V. S. Korolyuk [8] have shown
that 2, consists solely of stable distributions and convolutions of two stable
distributions. It was thought that O. K. Lebedintseva [4] had shown that this was
true for r > 2 (with two replaced by less than or equal to r) with the added hypothesis
that one of the r possible distribution functions of the summands X,, belongs either
to the domain of attraction of a stable distribution, or to a domain of partial
attraction of only one type. However, V. M. Zolotarev and V. S. Korolyuk [8] gave
an example that showed that O. K. Lebedintseva’s theorem did not completely
settle the matter. However, A. A. Zinger [7] gave a necessary and sufficient con-
dition on the Lévy spectral function of G in order that G be in £,. His theorem
shows that Lebedintseva’s result is incorrect.

In this same paper, A. A. Zinger proved a theorem that gives a necessary con-
dition on the distribution functions of the summands X, in order that G be a con-
volution of r distinct stable distributions. Here we expand Zinger’s theorem to
obtain a necessary and sufficient condition that G be a convolution of r distinct
stable distributions. Some related results are also obtained.

1. Main results. In this section, we state results connected with B. V. Gnedenko’s
conjecture on limit distribution functions of normed, centered sums of sequences of
independent random variables when there are r different distribution functions
among those of the sequence. The proofs are given in Section 3.

A distribution function F being in the domain of attraction of a stable distribu-
tion of characteristic exponent «, denoted by Fe 2(«), means that if {X,} is a
sequence of independent identically distributed random variables with common
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distribution function F, then there exist a sequence of positive constants {B,},
called normalizing coefficients, with B, — oo, and a sequence of real numbers {4,},
called centering constants, such that the limiting distribution of B, (X + ---
+X,)—A, is a stable distribution with characteristic exponent a. Lamperti [3]
essentially proved the ““if”” part and Tucker [5] proved the ‘“‘converse” part of the
following useful lemma.

LemMA 1. If FeD(x), 0 < a < 2, and if {B,} is a sequence of normalizing coeffi-
cients for F, then there is a measurable slowly varying function L defined over (0, o),
which must be asymptotic to a non-decreasing function when o =2, such that
B, ~ n*"'L(n). Conversely, if L is a measurable slowly varying function over (0, ),
and if 0 < o < 2, or if & = 2 and L is a measurable slowly varying function asymptotic
10 a non-decreasing function, then thereis an F e D(a) such that {n®” ' L(n)} is a sequence
of normalizing coefficients for F. ’

For the rest of this section, we will let {X,} be a sequence of independent random
variables such that the distribution function of X, is one of Fy, -, F,, with r = 2,
for all n. We also assume that there exist normalizing coefficients {B,} and centering
constants {4,} such that B,”'(X;+ -+ +X,)—A4, converges in law to a non-
degenerate distribution function G.

For each positive integer, let n(n) denote the number of random variables among
X, +, X, which have F; as their distribution function, 1 £ i < r. We assume that
nyn) —» oo as n — oo for each i.

THEOREM 1. If F,e D(A), 1 SiZr,withO <Ay < <A L2, ifthereisak <r
such that lim sup,_, ,(n,(n)/n) = s, > 0 and lim,(n(n)/n) = 0 for i < k, then G is the
convolution of not more than k stable distributions with characteristic exponents in
the set {Ay," ", A}

Zinger ([7], Theorem 3) has proved the following theorem.

THEOREM (Zinger). If G is a convolution of r stable distributions with characteristic
exponents A; such that 0 < A, < -+ < A, £ 2, then under some permutation of the
indices of the F’s, we have Fie 9(1,), 1 Si <.

Now, in the statement of our principal theorem, two other conclusions are added
to the conclusion of Zinger’s theorem, which together are not only necessary but also
sufficient.

THEOREM 2. Let {X,} be independent random variables with distribution functions
among {Fy,***, F,} such that lim,_, ,n(n) = oo for all i. Let {B,} and {A,} be such
that 0 < B, — 0 and B,” '(X;+ -+ +X,) — A, converges in law to G, where G is a
non-degenerate distribution function. Then, G is a convolution of r stable distributions
with characteristic exponents A, **, A, (0 < Ay < +*+ < A, £ 2), if and only if

() F;€2(4;) for 1 £i £ r, (possibly requiring a permutation of the indices of the
F’s);
# (li) limn—' oonr(n)/n = 1;
(iii) lim,, , B(, n(n))/B(j, nj(n)) = Py, with 0 < P;; < oo, for all i,je {1, ",r},
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where {B(i,n)} are normalizing coefficients for F;, 1 < i < r. Further, in this case, the
normalizing coefficients {B,} can be chosen to be normalizing coefficients for F,.

2. Further results and some examples. One might question whether or not the
existence of a non-degenerate distribution function forces #n,(n)/n to converge. The
following example shows that this need not occur.

Let 0 < 1, <1, £2. Let F, and F, be symmetric distribution functions defined
by, fori=1,2,

F(x)=1—x"%  x>2%"
=4 0Zx<g2M7

Let #{ } denote the number of elements in the set defined within the braces.
Define a function e( +) on the positive integers as follows:

e(l)=1, e2)=2, andfor n>2
eny=1 if e(n—1)=2 and #{i:1Zin—1,e(i)=1}/(n—-1)=14,
=1 if e(n—1)=1 and #Hi:1<i<n—-1,e()=1}/(n—-1)<4$,
=2 if e(n—1)=2 and #i:1<i<n—-1,e()=1}/(n—-1)>1,
=2 if en—1)=1 and #{i:1Zis<n—1,e(i)=1}/(n—-1)=4%

In other words, e(n) is 1 until the proportion of ones assigned reaches £, then e(n)
is 2 until the proportion of ones reaches 4 at which time e(n) becomes 1 again and
we repeat the process.

Let {X,} be a sequence of independent random variables such that Fy = F,
for all n. Then limsup,_, , n,(n)/n = % and liminf,_ , n,(n)/n = 1.

Let B, = (n,(n))* " for all n.

According to Gnedenko and Kolmogorov ([2], 124, Theorem 4), in order to
show that there exists {4,} such that B,”!(X,;+ -+ +X,)—4, converges in law
to a stable distribution with characteristic exponent 4,, it is sufficient to show that,
for any x > 0,

(i) ny(n)F(—B,x)+ny(n)Fy(—B,x) - x™H
(i) ny(n)(1=F(B,x))+ny(n)(1—Fy(B,x)) = x~*,
(iii) lim,_ ¢, limsup,. . D,(¢) = lim,_,, liminf,_, , D,(¢) =0,
where
D,(e) = Z?:  n(n){ .[|x| <e x? dF (B, x) —(j|x| <eXdF(B, x))z}.

By the definition of B,, we have that n,(n)/B,** — 1 and n,(n)/B,* < (n/2)! ~ */*
- 0.

Hence, for x > 0, n,(n)F,(— B,x)+n,(n)F,(— B,x) - x~*' as n —» co. Therefore,
(i) holds, and by the symmetry involved, (ii) also holds.
* To show that (iii) holds, we note that f|,, <eXdF(B,x) =0, for i =1,2. An easy
calculation shows that lim,_, , D,(e) = 24, e*~%(2—1,)" 1.
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Another question we ask is: given 0 < 1; <+ < 4, <2, does there exist a
sequence {X,} of independent random variables containing r distributions such
that, for some sequences {B,} and {4,}, B,”'(X,+ * +X,)— A4, converges in law,
as n — o0, to a convolution of stable distributions with exponents 4,,- -, 4,? Zinger
([7], 620-621) has suggested a method to generate more general examples. Follow-
ing his suggestion we define r distribution functions by

F(x)=|x|™" for x< —27%47,
=} for |x|g27%7,
=1-x"% for x227%"

For n a positive integer, define B, to be the smallest positive solution of y* + - --
+yt=n. )

For 1 i< r—1, let n(n) =[B,*], and let n(n) =n—Y':{ n(n), where [a]
denotes the integral part of the real number a. Since n,(n) is integer-valued, non-
decreasing, and Y, n(n+1)—=Y ;- n(n)=n+1—n=1, we have that exactly
one of the n(n)s increases by one when the argument increases from z to n+ 1. Let
e(n) be the index i such that n(n) increases when the argument goes from n—1 to a.

Let {X,} be a sequence of independent random variables such that Fy,_is F,.

In order to show that, for appropriately chosen constants {4,}, B, '(X;+ -
+X,)— A, converges in law to a convolution of r stable distribution with charac-
teristic exponents 4,, - * -, A,, it is sufficient to show that, for x > 0,

@) Zf:l n{(n)F(—B,x) —~ Zf: 1 X_M,
(ii) Z;: 1 ni(n)(1=Fy(B,x)) - Zf= X7
(iii) lim,_ ¢, limsup,., D,(¢) = lim,_ ¢ liminf,_  D,(¢) =0
where
D,(e) = Zf= 1 ni(n){ lel <e x? dF{(B,x) “(.f|x| <X dFy(B, x))z}-
For 1 £i=<r—1,n(n)/B,* - 1 asn— co. Letting {a} denote the fractional part
of the real number a, we have that

n(n)/Bl = (Xi=y {B,"} +[B, " ]/B,".

The right-hand side is bounded above by (r+[B,* ])B,” * and is bounded below
by [B,*]1B, ~*; both of which converge to unity as n — co. This establishes (i) and
(ii).

It can be shown that lim,_,, D,(¢) = Y 7-; 24,67 *(2—1;)'. Hence, (iii) holds
and the posed question is answered in the affirmative.

V. M. Zolotarev and V. S. Korolyuk [8] gave an example that shows that the
limit distribution being stable does not imply that at least one of the distribution
functions F, and F, of the summands belongs to the domain of attraction, or even
the domain of partial attraction, of any distribution. However, there are some
errors in their example: ¢, should be ¢, and ¢, should be ¢, ; #, should be [#/3] and
n, should be 2[n/3]+3{n/3}.
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Zinger [6] gave an example when r = 3 and the limit distribution is neither a
stable distribution nor a convolution of any number of stable distributions.

We will conclude this section with three theorems and their corollaries. For the
rest of this section we assume that {X,} is a sequence of independent random
variables such that the distribution function of X, is one of Fy, -, F,, and F;e 2(4;)
for 1£igr with 0<i; <1, <A;=---=<1,=<2. We also assume that there
exist sequences {B,} and {4, } such that B,” (X, + ‘- + X,)— 4, converges in law
to a non-degenerate distribution function G.

THEOREM 3. If, for some ne(0,1—A,/A,), limsup,.(ny(n)jn'™") =s,, with
0 < s, < o0, then G is a stable distribution with characteristic exponent 1,.

It can occur, even though each of the r distribution functions F,, - -+, F, belongs
to the domain of attraction of a stable distribution.with characteristic exponent
from the set {4,,°--,4,}, that the normalizing coefficients are not normalizing
coefficients for any distribution function in the domain of attraction of a stable
distribution with characteristic exponent from the set {4,,---,4,}. This follows
from the following Corollary and Lemma 1.

COROLLARY TO THEOREM 3. If, for somene (0,1 —21,/2,),lim,_, ,(n,(n)/n'~") =s,,
with 0 < s, < o0, if, for i>1, lim,_ (n(n)/n)=s,>0, then G is a stable dis-
tribution with characteristic exponent A, and B, ~ n*~'L(n), where J = /(1 —n) and
L is a measurable slowly varying function defined over (0, ).

THEOREM 4. If there exists n > 1—2A[4, such that lim,_, ,(n,(n)/n* ") = s,, with
0 < s; < 00, and if limsup,., (n,(n)/n) = s, > 0, then G is a stable distribution with
characteristic exponent A,.

COROLLARY to THEOREM 4. If there exists n > 1—A[4, such that lim,_, (n,(n)/
') = s, with0 < s, < 00, and if lim,_, (n(n)/n) = s; > 0 for all i > 1, then G is
a stable distribution with characteristic exponent J., and normalizing coefficients of F,
can be used for the sequence {B,}.

THEOREM 5. If n (n)[n*/*2 - s, with 0 < s, < 00, if ny(n)/n — s, > 0, then

(i) G is a stable distribution with characteristic exponent A, if and only if
L,(n)/L(n*"*2) 5> 0asn — oo;

(ii) G is a stable distribution with characteristic exponent 1, if and only if
L,(n)/L (n*'*?) - 00 asn — o0;

(iii) G is a convolution of two stable distributions with characteristic exponents
Ay and 2, if and only if L,(n)/L,(n*'/*2) is bounded away from zero and infinity.

We should note that there are many assumptions made before (i), (ii) and (iii) of
Theorem 5. In particular, not all distribution functions in 2(4,) and 2(4,) can be
paired and satisfy the hypothesis of Theorem 5. For example, Tucker [5] gives an
example of two non-decreasing slowly varying functions L; and L, such that
limsup, ., , L{(x)/L,(x) = co andliminf,_, ,, L,(x)/L,(x) = 0. LetL,’(x) = L,(x**/*).
" Then L,’ is a slowly varying function. Also, lim sup, _, ,, L,'(x*/*3)/L,(x) = o and
liminf, ., , L, (x*/*2)/L,(x) = 0. By the converse of Lemma 1, there are F, e 2(},)
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and F, € 9(A,) such that {n*"'L,'(n)} and {n*>"'L,(n)} are normalizing coefficients
for F, and F,, respectively. If a sequence {X,} of independent random variables
exists such that Fy, is either F; or F,, and if there are normalizing coefficients and
centering constants so that the normed, centered sums of the X s converge in law,
then we must have either n,(n)/n**/*2 - 0 or oo as n —» co. Otherwise, Theorem 5
would apply, which obviously would be a contradiction to our choice of L," and L,.

3. Proofs.

ProoF oF THEOREM 1. Let X(i,m) be the mth random variable in the sequence
{X,} whose distribution function is F;, for 1 <i < r. Then, for each i, there are
constants {B(i,n)} and {A(i,n)} such that

[BG, )]~ '[X(i, D+ -+ +X(i, n)] - A(i, n)

converges in law to a stable distribution with characteristic exponent 4.

By Lemma 1, for each i, there exists a measurable slowly varying function L;
defined over (0, o0) such that B(i, n) ~ n*™'Ly(n).

Let {m(j)} be an increasing sequence of positive integers such that lim_, ,,(n,(m(}))/
m(j)) exists and is equal to s;, with s, > 0,for1 < i <r.

Let
L { nmG) P L(nm(G)) |
fl'( )" <(m(j))li/,1k> L,,(m(])) , for 1 é l é k—1.

Now, select an increasing sequence {j(p)} of positive integers such that
lim,, , fi(j(p)) exists and isequal toa;, for 1 < i < k— 1. Itis possible that some a; may
be 0. Let a(p) = m(j(p)) for all p. Then, for i > k, B(i, n(a(p)))/B(k, na(p))) - 0
asp — oo.

Let

.oy n{a(p)) \'"*Linfa(p))) ,
76 ”((a(p»“/*k) Lia(p) = oF !Sisk-tL

Thenlim,_, . f(i,p) = o, 1 S i < k—1.
The proof will be concluded by considering three exhaustive cases.

CASE 1. a; < oo foralli. Thenfor1 <i < k—1, we have

B(i, na(p)) _

BT~ s T (A p) - s A, as p— oo
B(k, n(a(p))) *

We observe that
X,+--~+X,,(,,, o
B(k,n(a(p)))  B(k,n(a(p)))
_ X(k, D)+ - + X(k, n(a(p)))
~ Bk,n(a(p))
B(i,na(p)) [ X(i, D+ -+~ + X(i,n(a(p))) .
B((k, nk(a(p))){ BinGapy) CGndae) }

Yi=1 B(i,n(a(p))) - A(i, n(a(p)))

— A(k, m(a(p)))

+ Yotz



CONVOLUTED STABLE LAWS AND LIMIT THFOREMS 107

We see that the right-hand side of the above equality converges in law to a
convolution of not more than k stable laws with characteristic exponents in the set
{41, "+, 4}. Hence,

X+ +Xap
B(k,n(a(p))) Bk, nk(a(p)))

converges in law, as p — o0, to a convolution of not more than k stable laws with
characteristic exponents in the set {4, * -, 4, }, including 4,.

Since B[ X+ *** + Xu(p] — Aagpy converges in law, as p — oo, to G, we have
that G is of this same type, which establishes the theorem for Case 1.

= Yi=1 B, n(a(p)A(i, n{a(p)))

Cask 2. For exactly one je{l,"*-,k—1}, a;=00 and a; < oo for ie{l, ",

k—11{j}.
Then, forie {1, -, k—1}\{j},

B(i,n(a(p)))/B(j,n{a(p))) ~ f(i, plf(j,p) >0, as p— co.
Also,
B(k, ny(a(p)))/B(j,n(a(p))) ~ s '[f(j,p) =0, as p—co.
Continuing as in Case 1, but dividing by B(j, n;(a(p))) instead of B(k, m,(a(p))),
and noting that fori > &,
B(i, ni(a(p))) _ B(i, n{a(p)))/B(k, m(a(p))) _
B(j,n(a(p))) " B(jn ni(a(p))/B(k, n@@)

as p — o0, we can conclude that G is a stable distribution with characteristic ex-
ponent A;€ {4,, - -, A,}. This establishes the theorem for Case 2.

Case3. a;, = o0 for se{l,---,u} with u=2 and o;<oo for ie{l, -,

k—1 }\{ib ) iu}'
Assume i; <+ <1, Let {p(j)} be an increasing sequence of positive integers
such that lim ., ., 1 (i5, p(/))/f (i,, P(j)) exists and is equal to §,, for | S s S u—1.

(i) If B, < oo for all s, then, for ie {iy, ", i,—, },
B(i, n(a(p())) _ G, p())
B(i,, n; (a(p(j))))  f(iw p()))
Forie{l, - k—1}\{i, ", i,},
B(i, nfa(()) _ fGi,p0)_
B(iyy n @)~ G pG)

since o; < oo and «;, = c0. Also

Bl maO)) s
CORNCE0) RETON0)

—Pﬂi<00.
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As at the end of Case 2, fori > k,
B(i, n(a(p(j)))/B(i,, ni (a(p(j)))) = 0, as j— co.

Continuing as in Case 1, but dividing by B(i,, n; (a(p())))) instead of B(k, n,(a(p)))
and summing the Xs to a(p(j)) instead of a(p), we can conclude that G is a convolu-
tion of not more than u < k stable distributions with characteristic exponents in the
set {4, Ai,} < {4 Al

(ii) If exactly one of the Bs, say ., is infinite, then, for ie {i}, -, i, }\{i,},

B(i, na(()))) _ £, p(If G 0 (D) 0

B(iy, n; (a(p()))  f(is PGDIf s p()))

FOI‘iG{l,"‘,k—l}\{il,"‘,i“}, .
B(i, n(a(p(MN/B(is ni,(a(p())))) ~ f (i, p(IIf (is p())) = O,
since o; < oo and a;, = 0.
Again B(k, n(a(p(j)))/B(is, n; (a(p())) ~ s if (is p(j)) = O.
Asin (i), fori > k,
B(i, ni(a(p())))/B(is, n; (a(p(j))) = 0, as j— 0.

Now continuing as in (i), except dividing by B(i, n; (a(p(j)))), we can conclude
that G is a stable distribution with characteristic exponent 4; € {4, -, 4,}.

(iii) If more than one of the fs, say f,,," -, f,,, is infinite, then repeat the above
process by forming the ratios f(i, a(p(j)))/f(i.,,, a(p(j))) for i€ {i,, *,i,,_,}. Con-
tinuing this process as long as necessary, we will eventually arrive at one of two
possible stages.

Stage 1. We have a subset {f(vy,*)," . f(v,*)} of {f(1,*), . f(k—1,")} with
t = 2 and a subsequence {p''(j)} of {p(j)} such that, forie {v,, - *,v,_,},

lim;, o f (i, a(p"(D)/f (v, a(p"()))

exists and is finite.

Then, for ie {1, -, k—1}\{vy, -, v}, fi," )¢ {f(vy,"), " *.f(v,,*)} for one of the
three following reasons:

(i) o; < 03

(ii) there exists an f(z,-)e {f(1,*), - *,f(k—1,+)} and there exists a subsequence
{p'(j)} of {p(j)} containing {p"'(j)} such that

lim;, o, f(i, a(p’G)/f (z,a(p'(j))) is finite and
lim;, o, f(vi, a(p' (DN (2, a(p'()))) = ©0;

(i) lim;, ., f (v, a(p’(G)))/f(i,a(p'(j))) = o, for some subsequence {p'(j)} of
{p(j)} containing {p"(j)}.

~Ineach of these three cases, we have

lim;, o f (i, a(p"(DN/f (v, a(p"(j))) = 0.
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Hence, forie {1, -, k—1}\{vy, -, v,},
B(i, n(a(p"(7))))/B(v, n, (a(p"()))) =0 as j— co.

Clearly, for i > k, we also have convergence to zero.

Continuing as always, we can conclude that G is a convolution of not more than
t < k stable distributions with characteristic exponents in the set {4,, '*,4,} <
{ll’ R lk}'

Stage 2. Wehave asubset {f(vy,*), ", f(v,, )} of {f(1,*), ", flk—1,-)} with t = 2
- and we have a sequence {p’(j)} of {p(j)} such that for some iy € {vy,"**,v,_}

limj, o f (i, a(p’G)/f (0, a(p'())) = o0
andforie {v,, -, v,_y ]\{ix} i
lim;, o f (i, a(p"(ON/f (v, a(p'(j))) exists and is finite.

As in Stage 1, we have for ie{l, -, k—1}\{vy, - -,v,}, lim;, /G, a(p'(j)))/
Sflx,a(p'(j))) = 0. Hence, forie {1, -, k—1}\{vy," ", v,},

B(i, ni(a(p'(j))))/B(isx, n; (a(p'(/)))) >0 as j— oo.

Clearly, for i > k, the above convergence holds.
Since, forie {vy, ", v, }\{is}

limj, o, f(i, a(p'(D)If (i4s a(p'(j))) = O,
we have
B(i, n(a(p'(j))))/B(i4, n; (a(p'(/)))) >0

asj— oo.

Therefore, we can conclude that G is a stable distribution with characteristic
exponent 4; € {A,, ", 4,}.

We have finally exhausted all cases and established the theorem in each of
these. []

For the proof of Theorem 2, we need the following lemma.

Lemma 2. If Y, -, Y, are independent stable random variables with the charac-
teristic exponent of Y; being o; and0 <oy <+ <o, £2,ifay, " ",a,, by, ", b, are
constants such that a,Y,+ -+ +a,Y, and b, Y, + - -+ +b,Y, have the same distribu-
tion function, then a; = b; for all i.

Proor. Let Z; =a,Y,+ - +a,Y, and Z,=5b,Y,+ -+ +5,Y,. Also, let Z/,
i=1,2, be random variables such that F,,=F,  and (Z,,2,), (Z,,Z,") are
independent.

Let ¥ be the logarithm of the characteristic function of Z, —Z,’. Using the
canonical representation of the logarithm of a stable distribution ([2], 164), we have
Y(t) = ay|t|+ - +a,|t|* and Y(t) = b, [t + - +b,|t|*, forall 1.

" Since a,, -, a, are distinct, |#[**, -+, |¢|* are linearly independent, hence, a; = b;
foralli. []
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PROOF OF SUFFICIENCY PART OF THEOREM 2. Let X(i,m) be the mth random
variable in the sequence {X,} whose distribution function is F;, for 1 £ i < r. Then
for each i, there are constants {B(i,n)} and {A(i,n)}, with B(i, n) — co as n — oo for
all i, and there is a random variable Y; such that the joint distribution function of

X(@i, )+ +X(i,n)
B(i,n) B

A(i, n), 1is r}

converges in law to {Y,,--+, Y,}, where Y, has a stable distribution with charac-
teristic exponent 4;, and where Y, - - -, Y, are independent.
We observe that

X+ +X, 1 . .
B(r,n,(n)) _B(r, n(n)) i; B(i, n(n))A(i, n(n))

X(r, 1)+ 4 X(r, m(n)) r=1 B(i, n(n))
- B(r, n,(n)) — A )+ L )

B(i,n{(n))

Since normalizing coefficients for a distribution function are unique up to a
positive constant factor (see, e.g. Feller [1], Lemma 1, 246), Theorem 2 (iii) implies
that, for any choice of normalizing coefficients for the F;s, B(i, ni(n))/B(r,n(n))
converges to apositive, finite constant, for 1 <i < r—1. Hence, by the argument
used at the end of Case 1 in the proof of Theorem 1, we have that G is the dis-
tribution function of a linear combination of Y, -, Y,, with each Y; needed. []

— A(i, ni(n))} .

PROOF OF NECESSITY PART OF THEOREM 2. We now assume that G is a convolution
of r stable distributions with characteristic exponents0 < 4, <--- < 4, 2.

By Zinger’s Theorem, Theorem 2 (i) holds.

By Theorem 1, ni(n)/n—0 as n— oo for 1 i< r—1, hence, n(n)/n—1 as
n — o0, i.e. Theorem 2 (ii) holds.

Now we will show that Theorem 2 (iii) holds also. Let X(i, n), B(i,n), A(i,n) and
Y, be as in the proof of the sufficiency. Then by Lemma 1, for each i, there exists a
measurable slowly varying function L; such that B, ~ n*~ 'Lin).

Hence,for1 £i<r—1,

B(i,n(n)) n(m)\" ' Ly(ny(n))
B(r,n(m) " \n™ ”') L(n)

For 1 £i £ r-1, wedefine
. ny(n) M_lLi("i(”))
g(i,n) = (n).;/lr> L,(n) .

In order to conclude the proof of the necessity, we need to show that lim,_, ,g(i, n)
exists and is positive and finite,for1 £ i < r—1.
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Let a, = lim inf,_, ,g(i,n) and b; = lim sup,_,,g(i,n) for 1 i = r—1. We will
first show that b; < oo for alli.

Suprosz not. Then there is a k such that b, = co. Select an increasing sequence
{m(j)} of positive integers such that lim;_, ,g(i,m(j)) = b/, for 1 i = r—1, with
b, = o0.

If b’ is the only infinite one among b,’, -+, b, _, then, by the argument in Case 2
of the proof of Theorem 1, we can conclude that G is a stable distribution with
characteristic exponent A,. This contradicts G being a convolution of r distinct
stable distributions.

If several of the b’s, say b}, ", bj,, are infinite, then, by an argument analogous
to the one used in Case 3 of the proof of Theorem 1, we can conclude that G is a
convolution of not more than u < r stable distributions. Again, we have a contia-
diction.

Therefore, b; < oo for all i.

Next, we will show that a; > 0, for all i.

Suppose not. Let k be such that g, = 0. Select an increasing sequence {m(j)} of
positive integers such that lim;_, ,,g(i, m(j)) = &/ for 1 £i<r—1, with g’ =0 and
a; < oo forall i. Then

B(i, n(m(j)))/B(r,n(m()))) ~ g(i,m(j)) > a/ as j— 0,

for 1 < i < r—1. As in the proof of the sufficiency, this implies that G is the distri-
bution function of c¢{a,/Y,+ * +a&/Y,+ - +a_ Y.+ Y,} for some ¢ >0.
Since @’ =0, G is a convolution of not more than r—1 stable distributions,
which contradicts our hypothesis of r distinct stable components. Therefore, a; > 0
for all i.

Finally, we will show that a; = b; for all i.

Suppose not. Let k be such that @, < b;. Select increasing sequences {m(j)} and
{m'(j)} of positive integers such that lim i+edg(m(j)) = b, andlim i»0d(@m (1) =
a/forl1 £i<r—1,withd,/ =b, and g’ = a,. Then,for1 Sisr—1,

B(i, n(m(j)))/B(r,n(m(j))) ~ g(i,m(j)) > b; as j— oo,
and
B(i, n(m'(j)))/B(r,n(m'(j))) ~ g(i,m'(j)) > a; as j—> .

Hence, there exist constants d; > 0 and d, > 0 such that G is the distribution func-
tion of both d, {b,' Y+ ‘-~ +b,_, Y,_+Y,} and dy{a,'Y;+ -+ +a._ Y, + Y}
By Lemma 2, d,b; = dya;/,and 1 i <r—1, and d, = d,. Hence, a,’ = b,, which
implies a, = b,. We have the desired contradiction which shows that lim,_, ,g(i, n)
exists and is positive and finitefor 1 < i S r—1. 0

To complete the proof of Theorem 2, we need to show that {B,} can be chosen
*as normalizing coefficients for F,. We have shown that there exists a constant d > 0
such that B, ~ dB(r,n(n)). Hence,
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~ Ar—1 n(n) Ar” Lr(n(nr(n)/n))
By~ dn ( ) L =7

~ dn*"" L(n).

Therefore, B, ~ dn* ™" L(n). [)

Proor oF THEOREM 3. Let {X(i,n)}, {B(i,n)} and {A(i,n)} be as in the proof of
Theorem 1. Then, by Lemma 1, for each i there exists a measurable slowly varying
function L; defined over (0, o) such that B(i, n) ~ n*~ "L (n).

Also, as in the proof of Theorem 1, select an increasing sequence {m(j)} of
positive integers such that lim;., ,(n,(m(j))/m(j)'~") =s; and, for all i>1,
lim;., o (n(m(§))/m(})) = s;say.

Since ne€(0, 1 —1,/4,), we see that for all i > 1, B(, ni(m(])))/B(l ny(m(j))) —» 0 as
j — o0. Hence, the distribution function of
XA, 1)+ + X1, n,(m())))

B(1,ny(m(j)))

—A(1,n,(m(j)))+ 2 5—((11%(%((1])'))7))

{ B mm())) A(i, n(m(J)) )}

converges to a stable distribution with characteristic exponent 4,. Therefore, G is a
stable distribution with characteristic exponent ,. []

PrOOF OF THEOREM 4. Notation is as usual. Then, there exists a sequence {m(j)}
of positive integers such that lim; ., , (n,(m( /))/m(j)* ~") = sy, lim;., . (ny(m(j))/m(j)) =
s, and, for all i > 2, lim,, ,,(n;(m(j))/m(j)) = s; say. Then

B(L,ny(m()))) 5™ m(j) AL (m(j) ! TP
B(2,n,(m()))) 52727 'm(j)*2 "' Ly(m()))
asj— oo, sincen > 1—A4,/A, implies that (1 —#)/A, —1/4, <O.

Since ;7' —2,7! <0 for all i > 2, we also have that, for all i > 2, B(i, n,(m(})))/
B(2,n,(m(j))) - 0asj— oo.

Therefore we can conclude that G is a stable distribution with characteristic

exponent 4,. [J
The proofs of the Corollaries to Theorems 3 and 4 are obvious.

-0

PROOF OF THEOREM 5. Note that
B(2,n,(n))/B(1,ny(n)) ~ 5, "5, "4 T Ly(m)| Ly (n*/32).

(i) Ly(n)/L,(n**'*?) > 0 as n — oo implies that B(2, n,(n))/B(1,n,(n)) = 0as n — co.
Since 4,7'—1,7! <0, for all i > 2, we have that there exists a sequence {m(j)} of
positive integers such that, for all i > 2, B(i, n(m(j)))/B(1,n,(m(j))) = 0 as j— 0.
This concludes (i).

(ii) L,(n)/L,(n**"**) > o0 as n— oo implies that B(1,n,(n))/B(2,n,(n)) -0 as

n— 00. For all i > 2, there exists a sequence {m(j)} of positive integers such that
B(i, n(m(j)))/ B2, n,(m(j))) —» 0 as j — oo. This concludes (ii).
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(iii) Let a = lim inf,_, ,L,(n)/L,(n*/*?) and b = lim sup,_, ,L,(n)/L,(n*/*?). We
first wish to prove that b < co. Suppose to the contrary that b = co. We have a < oo.
Then select a sequence {m,(j)} of positive integers such that

Ly(my())/Ly(my(j)**?) > 0

as j— oo. Hence, B(l,n,(m(j)))/B(2,ny(my(j))) >0 as j— co. For all i>2,
B(i, n(m(j)))/ B2, n,(m(j))) — 0 as j — oo. Therefore, G is a stable distribution with
characteristic exponent 1,. However, since {L,(n)/L,(n*'/**)} does not converge to
00, we can also select a sequence {m,(j)} of positive integers such that

Ly(my())/Ly(ma()**) > a < o0

as j —» 0. Hence, B(2,n,(m,(j)))/B(1,n,(my(j))) — 5,** ~s,"*a"" as j— co. For all
i> 2, B(i,n(my(j)))/B(1,n(my(j))) = 0 as j —» co. If a = 0, then G is a stable distri-
bution with characteristic exponent 4,, and if @ > 0, then G is a convolution of two
stable distributions with characteristic exponents 4, and 1. If @ # b = o0, there are
two possible combinations: (i) b = co and a =0, (ii) b = o0 and 0 < @ < co. Under
(i), we have a contradiction since b = oo implies that G is a stable distribution with
characteristic exponent A,, while a = 0 implies that G is a stable distribution with
characteristic exponent 4,. Also, we have a contradiction under (ii) since 0 < a < ©
implies that G is a convolution of two stable distributions with characteristic
exponents A, # 4,.

Therefore b < co. We next show thata > 0.

Suppose to the contrary thata = 0. We have 0 < b < oo. Selecta sequence {m(j)}
of positive integers such that L,(m(j))/L,(m,(j)*/**)—>0 as j— co. Hence,
B(2, ny(my(j))/B(1,ny(m,(j))) > 0asj— co. Foralli > 2,

B(i, ni(m())/B(1, ny(my(j))) > 0

as j— oo. Therefore, G is a stable distribution with characteristic exponent 4,.
However, we can also select a sequence {m,(j)} of positive integers such that
La(ma()/Ly(ma(i)*") > b as j=> co. Hence, B(,na(ma())/B(1,m,(ma(j)) ~
5,727 's, 7% 7"b, as j » o0, which is positive and finite. For alli > 2,

B(i, n(my()N)/B(1, ny(my(j))) - 0

as j — oo . Therefore, G is a convolution of two stable distributions with charac-
teristic exponents A, and 4,. Again, we have a contradiction since 4, # 4,.

Therefore, 0 < a < b < 0. Hence, we can select a sequence {m(j)} of positive
integers such that L,(m(j))/L,(m(j)*'/*?) - a, as j — oo, which is positive and finite.
As above, this implies that G is a convolution of two stable distributions with
characteristic exponents A, and 4,. This concludes (iii). (]
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