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1. Summary and introduction. The purpose of this paper is two-fold: (i) to develop
the asymptotic distribution theory of the normal theory likelihood ratio test
statistic for the (multivariate) general linear hypothesis problem when the parent
distribution is not necessarily normal and (ii) to develop the theory of the multi-
variate analysis of covariance based on general rank scores. The problem (i)
extends the distribution theory of the likelihood ratio statistic developed by the
authors in [9] for the multivariate general linear hypothesis problem (for a class of
simple alternatives) to the more general case where one has also to deal with a set
of concomittant variables, and the problem (ii) extends the results of the authors’
earlier paper [8] on the rank order theory of the univariate analysis of covariance
to the corresponding multivariate case.

Let Zka = (ka Xka); [where Yka = (Y,(‘;), o (p)) and Xk (X(l)a Ty le:g))’ D,
g=1],a=1, -, n, be n, independent and identlcally distributed random vectors
(ii.d.r.v.) having a (p+g)-variate continuous cumulative distribution function
(cdf) Gy(2), ze RP*%, for k =1, -+, c. It is assumed that Z,,, - -, Z,,_are mutually
independent. Let us denote by F,‘)(x) the (marginal) joint cdf of X,,, and let
F®(y|x) be the conditional cdf of Y,,, given X,, =x,k=1,-,c. As in the
univariate theory (cf. [8, 10]), we assume that

(1.1) FMx)=-=F"Y%x), xeR1
and frame the null hypothesis as
(1.2) Hy:F,\¥(y|x) =+ = F(y|x).
We may note that under the usual additive model, viz.,
(1.3) Fk(Z)(y l X) = F(z)(y—"k I x), T = (Tk(l)» T Tk(p)),
k=1,::-, ¢, the null hypothesis H, in (1.2) implies that 7, = -+ =1,. We are

interested in the set of alternatives that (1.2) does not hold, which under the model
(1.3) implies that not all 7,, k = 1, - - -, c are identical.

The problem of multivariate analysis of covariance (MANOCA) can be viewed
as a special case of the general linear hypothesis problem, considered in Anderson
(1958, chapter 8). Two problems arise in this context: (i) how the likelihood ratio
(L.r.) test behaves when the parent distribution is not necessarily normal, and (ii)
how the multivariate generalizations of the tests considered in [8, 10] compare with
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the normal theory L.r. test. The purpose of the present investigation is to study these
problems thoroughly.

2. The normal theory Lr. test for the general linear hypotheses. In this section we
shall study the asymptotic distribution theory of the normal theory L.r. test for the
general linear hypothesis problem when the parent cdf’s are not necessarily normal.
The MANOCA problem will be studied subsequently as a special case of the general
linear hypothesis problem. For simplicity of presentation, we first consider the case
of non-stochastic regression variables. Later on, the results will be generalized to
stochastic regression variables.

2.1. Non-stochastic regression variables. Consider the following model:
.1 Y, = BX,+e,, a=1,,N,

where e,, - -, e, are i.i.d.r.v.’s distributed according to the cdf F(e),eeR?; B is a
p %X g matrix of unknown regression constants, and X,,« =1, -+, N are known
(non-stochastic) g-vectors. We partition g as

2.2) B=1[B:8.]

where B; is of the order p x ¢q,,i =1, 2 and ¢, +¢, = q. The problem is to test the
null hypothesis

2.3) Hy:B,=0
against the alternative H, : f; # 0. We introduce the following notations:
24 Ay=Y0-1X.X//N,  Cy=Y]_ Y, X/IN,
(2.5 Vy=D2e=1&X//N,  Wy=3i,e¢e//N, Sy=3i Y, Y/N.
Note that
(2.6) Cy = BAN+Vy, Sy=BANB +BVN' +VNB +Wy.
We partition Vy, Cy and Ay as follows:
(2.7 Va= [VNI’VNZ]’ Cy= [Cm, szz],
(28) AN = <AN1 1 AN12>
AN21 AN22
where Vy; (Cy;) is of the order p x ¢; and Ay;; is of the order ¢; x g;, for
Lj=1,2.

Then the normal theory L.r. test is based on the statistic [cf. Anderson (1958),
page 188)]

(2.9) Ay = {|Zal/|Eu}""?
where
(2.10) £0=Sy—BvAyBY; By = Cy Ay~ = [By1, Brzl,

(2.11) 20; = SN—ﬁﬁz Aysa ﬂﬁﬂ Bﬁz = Cy, A;zlzo
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Anderson (1958, Chapter 8) has shown that when the underlying cdf F(e) is
non-singular multivariate normal, 2log Ay has asymptotically a chi-square distri-
bution with pq, degrees of freedom (df). We shall show that the above result holds
even when F is not necessarily normal. This will follow as a special case of the more
general theorems considered below.

We shall say that {X, - -, Xy} satisfies the generalized Noether condition, if

(2.12)  max, gig [max; ¢, on | X0 {X0=1 [X.P1?}7*] 50 as N oo,

where X, = (X, -+, X,®), a = 1,--+, N. We define the covariance matrix of
F by

(2.13) T = E(e,e,;) and assume that 0 < |Z| < co.
Also, we assume that )

(2.14) limy.,Ay=A

exists and is positive definite, where A is defined by (2.4) and (2.8).

THEOREM 2.1. Under the assumptions (2.12)-(2.14), N*(By— B) has asymptotically
a multinormal distribution with means zero and dispersion matrix £ ® A~ !, where
® stands for the Kronecker product of two matrices.

Proor. Using (2.4), (2.6) and (2.10), we obtain that
(215) ﬁN=CNAN_1 =ﬁ+VNAN_l.

We now consider an arbitrary linear combination of the elements of N*(8y— ),
say,

(2.16) Zy= N%Z{;l Z?’:l d;j [ﬁNij_ﬁij]‘
We denote by D = ((d;;)). Then, by (2.15) and (2.16), we have
(2.17) Zy=N*tr[VyA,~'D’]
which, by (2.4), equals

(2.18) N7EY N {tr[e,X,/Ay~'D]}.

Let us denote by g, y = N7 *X/Ay"'D’, a =1, -+, N. Then, we have from the
preceding two equations

(2.19) Zy= ZL L tr [eaga,N] = Zg=1 Zyg, say.
We definej, = (1, -, 1)’,‘J,, = j,ip - Then, it follows that
(2.20) V(Zy,o) = tr[Zg,,5 9an ] a=1,---,N.

By virtue of (2.14), it is easy to check that for any fixed D,g,y,a =1, ", N,
satisfy the generalized Noether condition (2.12). And this implies that

(2.21) max; <, <n{V(Zn)/V(Zy)} >0 as N - 0.
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Furthermore, it is easy to check that

(2.22) V(Zy) = tr[EQ 3= 192 921)] = O(D),
by virtue of (2.12), (2.13) and (2.14). The proof of the asymptotic normality of Zy
then follows as an application of Theorem 2 in Gnedenko and Kolmogorov [1954,
page 128], the conditions of which can be shown to hold in the present content.
This completes the proof.

Let us now define

- By, B,
(2.23) At =< )
B,y Ba

where By; is of the order ¢; x g;, i, j = 1, 2. Then, we have the following.

COROLLARY 2.1. Under the assumptions of Theorem 2.1, Ni(By,—B,) converges
in law to a pq,-variate normal distribution with zero means and dispersion matrix

E ® Bl 1.
Consider now the sequence { Hy} of alternative hypotheses
(2.24) Hy: B, =Bvn=N"*A; A= (L)

where ;i =1, --,p,j = 1,--,q,) are all finite. Denote

(2.25) A11.2=A11—A12A2_21A21 = ((ars.2) r,s=1,""4y,
where A;; is the limit (as N — c0) of Ay;;; i,j =1, 2 [cf. (2.8) and (2.14)]. Also, let
! = ((¢")),and

(2.26) A= Z;P= 1 Z}’: 1 qul= 100108, 5 Ay Ajs:

LemMmA 2.1. Under {Hy} in (2.24) and the conditions of Theorem 2.1,
NByi Ani1.2 By, has elements all bounded in probability, as N - co, where
Anirz =Apnn —AN12A§212 Apnay.

PRrooF. It follows from Corollary 2.1 that under (2.24),

2.27) |N*By;;—Ay| is bounded in probability, as N — oo,

for all i=1,---,p,j=1,""-,¢,. Also, a typical element of NBni Anii2 By is
Y4 Y4 (N*Byi)ays. o(N*By ). Using (2.25) and (2.27), the result follows [].

THEOREM 2.2. Under {Hy} in (2.24) and the conditions of Theorem 2.1, 2log iy
[where Ay is defined by (2.9)] has asymptotically a non-central x2-distribution with
pq, df and the non-centrality parameter A,, defined by (2.26).

Proor. It is well known [cf. Anderson (1958, page 190)] that
(2.28) £, =Z0+Bvi Avira By

where £, and £, are defined in (2.10) and (2.11) respectively. Thus, by Lemma 2.1,
we have

(2.29) £,=20+N"'Qy; Qy = ((gni) = NByi Ani1.2r Bw
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where by Lemma 2.1, gy;(i=1,--+,p,j=1, -+, q;) are all bounded, in proba-
bility. Also, we may note that by (2.6) and (2.10),

(2.30) £o = [By—BIANIBy— B]1— 2By AN[By—B1+2BVy + Wy,

where Ay, Vy, Wy and By are defined by (2.4), (2.5) and (2.10). Now, by Theorem
2.1, the first two terms on the right-hand side of (2.30) converge, in probability, to
null matrices. Also, by (2.5), E(Vy) = 0 and

(2.31) E(Vy ® V)= N"1Ay®@E > 07" a5 N - oo.

Thus, Vy —,0. Since B is a matrix of finite elements (By, — 0 but By, has finite
elements), BVy — , 0. Finally, by Khinchin’s law of large numbers (on the i.i.d.r.v.’s
epa=1 N)Wy=N"'Y"_  ee >, L
Thus,

(2.32) £0-,5,

and hence, by (2.13), £, is finite and positive definite, in probability. Let 29.7 be
the cofactor of the (i, /)th element of £, for i, j =1, - - -, p. Then by (2.29), we have
by standard determinant expansion

(2.33)  |E,|=|Ea+N"'Qy| = [Sal + N7 Y0 Y2y S dnij+ O, (N7?)
= linl {L+N"1YP, Z_’;=1 &Qiquij+Op(N~2)}

where _

Zn~1 = ((6'911) )’ 6'9” = 2Qij/lz:nl, i,j= 1, p
Using (2.9) and (2.33), we get after simplications that
(2.34) 2logiy=Y", Zf: 1 6Qiquij +O0, (N~ D)

=NYP,>"h, DY NP Y NﬁirﬂstaNrs 2t 0,(1),
as by (2.13) and (2.32) £, —», X", Since the matrix 4y,, , ® X' converges to
[By; ® 17, [cf. (2.14) and (2.25)], as N - oo and N*E{By, | Hy} > A,, the rest
of the proof follows from (2.34), Corollary 2.1 and the well-known results on the
asymptotic distribution of quadratic forms associated with multinormal distri-
butions. ]

2.2. Stochastic regression variables. We now extend the model (2.1) to the case
of stochastic regression variables. We assume that Z, = (Y,, X,),« =1, -, N are
ii.d.r.v.’s distributed according to a (p +q)-variate cdf G(z) having the mean vector
# = (#y, #y) and the dispersion matrix

r — <r1 1 rl 2) .
r21 r22
We denote the marginal cdf of X, by F)(x), xe R? and the conditional cdf of Y,,

giyen X, =X, by
(2.35) F2(y|x) = F®(y— Bx).
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Then
(2.36) Iy,=T,-Ty, rz_zlrzl
is the conditional dispersion matrix of Y, given X, = x. Denote
(2.37) Lij+pn; =X, i,j=1,2.
It follows from (2.9), (2.5) and the Khinchin law of large numbers that as N — oo,
(2.38) Ay -, Cy—,X1;, and Sy-,X;,.
Let now

z z
e R
where X;; ,, is of the orderg; x g;; i, j = 1, 2, and define
(2.40) Vit2 =Zi122—E12.22 23222 2122
Then, using (2.38), it follows that as N — oo
(2.41) Ayiiz V112 =((Vs-2));
where Ay, , is defined in Lemma 2.1. Finally, let us define
(2.42) T =((29).

Then, proceeding as in the proof of Theorem 2.1, we arrive at the following result.

THEOREM 2.3. Under (2.36)-(2.42), N*(By—B) has asymptotically a multinormal
distribution with means zero and dispersion matrix T, , ® X35.
Let us now define

(2.43) A;.* =)0 Zﬁ": 1 Z‘i“= 12451 ?2ij)’rs 2 A4 }‘js

where 4;;, v, and v,, . , are defined by (2.24), (2.42) and (2.40) respectively.
Modifying Corollary (2.1) and Lemma 2.1 in the light of Theorem 2.3, we
arrive at the following:

THEOREM 2.4. Under {Hy} in (2.24) and the conditions of Theorem 2.3, 2log Ay
has asymptotically the non-central chi-square distribution with pq, df and the non-
centrality parameter A * defined in (2.43).

2.3. Mixed model. We now consider the model (2.1) when some of the regression
variables are stochastic and the remaining non-stochastic. In this case we have to
proceed as in Section 2.2 with the necessary modifications from Section 2.1. For
brevity of presentation, the details are omitted.

3. Asymptotic theory of the normal theory Lr. test for MANOCA. We define
Zyy,oo=1,",n,k=1,--+,c as in Section 1, and the conditional cdf of Y,
given X, = x, asin (1.3). Then, under (2.35), we have the model

@3.1) E(Yi, | Xio = X) = 7+ BX, k=1,--,c,
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where 7., ‘- -, 7, are non-stochastic. Thus, (3.1) corresponds to the mixed model in
Section 2.3. We now consider B to be a nuisance parameter (matrix). We desire to
test the null hypothesis

3.2) Hyity =" =1,
against the sequence of alternatives { Hy} where
(3.3) Hy:t, =ty = N30, k=1,-,c,

and 0,, k=1, -+, ¢ are vectors with real and finite elements. We introduce the
following notations:

B4 Yi=n""2k Y% k=1,-,c; Yy=N"'YiimY;

(35 Sy=NT'Yi % (Y~ Y)Y~ Y0, '

(3‘6) SN* =N"! ZI‘£=1 Z:k=1 (Yka“Y)(Yka“ ?),,

B7 Ay=N""35o 20 X X

(38) Cy=N"'Yi Y r (Y= YoXi Oy =N Y0 (Yia— DX
Finally, let

(3.9 By =CyAy™! and By*=Cy*4y~ L

Then, the normal-theory Lr. test statistic for the MANOCA problem is based on
the statistic

(3.10) Ay = {|Sw— B An Bw'|/|Sh* — Bv* Aw By [}

the null hypothesis in (3.2) is rejected when Ay exceeds a critical value Ay ,.
From the results of Section 2, it follows that under H, in (3.2), 2logdy has
asymptotically the y2-distribution with p(c— 1) df. Hence,

(3.11) limN_.wZIOglN,e= Xi(c-—l),s’

where x7, is the upper 100e%; point of the y*-distribution with 7 df.
We define the dispersion matrix of Z,, by £* (of the order (p+g) x (p+¢)). We
write

(3.12) Z* — (Ell le)
' Z21 Z22

where X, (X,,) is the dispersion matrix of Y,,(X,,) and X;, is the covariance
matrix of (Yy,, X,,)- Let then

(3.13) X2 =211‘21222-21221 =((Uij-2))a
and let
(3;«14) 21—11.2 = ((oiljl.2) )-

From the theorems of Section 2, we then arrive at the following.
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THEOREM 3.1. Assume (1) limy_ /N =p,:0 <p, <1, k=1, ", ¢, and (ii) T*.
defined in (3.12), is positive definite. Then, under (3.3), 2log Ay [where Ay is defined by
(3.10)] has asymptotically the non-central y>-distribution with p(c—1) df and the
non-centrality parameter

(3.15) AA=Z£=1Pk(0k—é)Enz(0k 0)'; 9=Z§=19k0k-

4. Rank order tests for MANOCA. In this section we generalize the rank order
tests for ANOCA considered in [8,10] to the multivariate problem under con-
sideration. For convenience of presentation, we shall use, as far as possible, the
notations employed in [8].

Let us denote the sample point Zy* = (Z,,, ", Z,,_) where Z,, = (Y,,, X;o) - Zp*
is a matrix of order (p+¢) x N. Ranking the N elements in each row of Zy* in
ascending order of magnitude, we get a (p+¢) x N rank matrix

F Q) (1) (1) 1)
S{...s(h sy ...sgnc
(p) » ») (
S¥ S SE Scﬁ)c
@1 Ry = (1) (1) (1) (
RYY ... Ry, .. Ry ~-~chc)
(4) (@ @ '(a)
R(] qum . Rc‘{ . Rc‘rlv(‘ J

where S{J(R{)) is the rank of Y,)(X{Y)) among the N observations on the ith (jth)
Y-variate (X-variate);i=1,--, p(j = 1, - -+, ¢). We define the rank order statistics

4.2) S\ =Y EN(SED/ s i=1,-,p, k=1,",c;
(4.3) T = X1 EN* (R s, J=1g, k=1

where the E,(«) and Ey*“)(a), a = 1, - -+, N are the general rank scores satisfying
the conditions of Section 4 of [8]. Define also

(4.4) ENY = Y2 EflaiN.  Ex* = Y0 EXBIN,
fori=1,"--,p,j=1,""",q
(4.5) vy = NTYEC, Y EVOSD)ENI(SY) — ENVE,Y
fori,j=1,--,p;V,, = ((vij11));
(4.6) V.22 = N7V 5o, Y0 EV*O(RO)EV*O(RY) — Ey*PE )
fori,j=1,-"-,q;V,, = ((Uij~22))'
@) vy =N Y EyO(SE)EI(RY) — EyPE
fori=1,"-,p;j=1,"",4;V,, = ((v;.,,)) and let
(4.8) V= (V“ V”).

Via Vi,

Let 2y be the permutational (conditional) probability measure generated by the
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N! conditionally equally likely permutations of the column of Ry; for details, the
reader is referred to [6]. Then as in [6], it follows that

4.9) E(S®—Ey®|2y) =0, i=1,,p, k=1,
(4.10) E(T®~Ey*®|2y) =0, i=1,,q k=1,,¢
(4.11) Cov (S, SN} 2w) = (3N —n vy 11/m(N=1),

(4.12) Cov(T{R, Ti) | Zw) = (3N = m)vy; . 22/m(N = 1),

(4.13) Cov (S®, T | 2x) = (30 N =m)vy;. 12 /(N —1)

where §,, is the usual Kronecker delta. Proceeding again as in [8], we obtain the
adjusted mean rank scores for the ¢ samples as

(4.14) Sy* = Sy—Fy+V,; VA [Ty—Ey*],

where V,, and V,, are defined by (4.6) and (4.7) respectively, and

(4.15) Sy=((S¥)),  Sy*=((S5x¥)) are p x c matrices,
(4.16) Ey = ((Ey®)), i.e.the ithrow has all the c elements Ey®,
(4.17) Eyv* = ((Ex*?)), i.e. the ithrow has all the c elements E*®,
(4.18) Ty = ((T{)) isoftheorder ¢ x c.
Further, let

(4.19) Viias =V =V, V5iVi,.

Then, the proposed test statistic is
(4.20) ILy= ZI‘;=1 ny Sﬁ,‘k Vi .lzz S;Vk,k >

where Sy, is the kth column of Sy* k=1,---,c. Note that when p =1, the
statistic (4.20) reduces to the statistic considered in the corresponding ANOCA
problem [8]. As in [8], the permutation distribution of £, will not depend on the
underlying unknown cdf when the null hypothesis holds, and hence the permu-
tation distribution of £ leads to a conditionally distribution-free test of H,. The
small sample test procedure can thus be based on the exact sample permutation
distribution of #y. However, in view of the excessive labor involved in this process,
we consider the large sample procedure.

5. Large sample permutation test based on .SFN Let EyO(a) = Jy(a/N+1),
i=1,-,p, and Ey*O(a) = Jy*(a/N+1), i =1, - -+, ¢ where the functions Jy®
and JN*(" satisfy the conditions of Section 4 of [8]. Furthermore, we assume that

5.1 0<poSpy®=n/N=<1—p,<1; forallk=1,--,c,
. and py < 1/c. Then, we have the following

THEOREM 5.1. Under the above assumptions the statistic £y defined by (4.20) has
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asymptotically, in probability, (under the permutation measure Py, the chi-square
distribution with p(c— 1) df.

The proof of this theorem follows along the lines of Theorem 4.1 of [8] with
adaptations from Theorems 4.1 and 4.2 of Puri and Sen (1966).

By virtue of this theorem, we have the following large sample test procedure:

If £y > xg(cﬁl),e reject Hy, in (1.2), otherwise accept H,, where y;, is defined
just after (3.11).

To study the power properties of this test, it is necessary to study the uncon-
ditional distribution of £ under suitable sequences of alternatives. This in turn
requires the study of the joint asymptotic distribution of the statistics Sy* or
equivalently of Sy and Ty. This has been studied in detail by Puri and Sen (1966)
(Section 5) when G4, -+, G, are arbitrary. Here we shall specifically consider the
asymptotic distribution of Sy* under the following sequence of alternative
hypotheses {ky} defined by )

(5.2) ky:t, = 1y = N™0,, k=1,---,c
where 0, = (0,4, **+, 0y,), k = 1, - -+, c are c real p-vectors. Also, we assume that
(5.3) limy, o, pv® = p® =0< p® < 1, k=1,---,c.

Let G(Z) denote the common distribution of Z,, = (Y,,, X,,) under the null hypo-
thesis; and let Gy, -+, Gp,y be the marginal cdf’s of the p Y-variates corresponding
to the joint cdf G. We assume that the marginal distributions are absolutely
continuous, and the following integrals exist :

(5.4) B = f : %J‘“(G{f]’) 4G i=1,,p;
where JO(u) = limy_, o Jy®W), i=1,--,p. Also let J*D(u) = limy_, , Jy*P(u),
Detie

(5.5) Viie1n1 = J(l) [J(i)(u)]z du—p?;p; = jé J(u)du

5.6 11 = 0 {20 JOGEDIOGR) AGEER — ity

where Gy; ;; is the marginal cdf of the i and jth Y-variate, corresponding to the
[, jl
cdfG,i#j=1, -, p.
5.7) Vii .22 =I(§ [J*Ow)]? du — p;*?; ™ =§(1)J*(i)(u)du;
’ i=1,",q
(5.8) Vijo22 = [ Lo [ L0 S*AGEP TGP dGE T — 11y

where Gf; and Gf};; are the marginal cdf’s of the ith and (i,j)th X-variates
corresponding to the cdf G; i # j = 1, : - -, g. Furthermore, let

(5.9 Vijo12 = Ifow jfooo J(i)(GE?]))J*U)(GEKj(]Y)) dGE'E,"}ﬁ"’” — i pi*
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where G;*{™ is the joint distribution of the ith Y-variate and jth X-variate corres-
pondingto thecdf G;i=1,---,p,j=1,""",q.

Finally, denote

(510) V=(v,11 VIZ); vrs=((vij-rs)); r,s=1,2,
Vi2 "_2_2

and

(5.11) V11.2=V11—"12V2_21V1'2'

Then, we have the following

THEOREM 5.2. Under the conditions of Section 4 of [8], (5.2), (5.3) and (5.4), the
statistic &y defined by (4.20) has asymptotically the non-central chi-square distri-
bution with p(c — 1) df and non-centrality parameter

(5.12) Ay =Zlf=1pk('lk—ﬁ)"1_1l.2('lk—ﬁ)l
where
(5.13) 'lk=(’7k1"”a71kp); 71ki=0kiB(i)9 i=1,-,p; k=1,--,c

and1 = Yo 1 Pty
The proof is a multivariate generalization of Theorem 5.1 of [8] and can be
accomplished along the lines of Theorem 6.1 of Puri and Sen (1966).

REMARK. It is of interest to note that the convergence of the distribution of £y
is based on the covergence of the distribution of the statistics Sy and Ty. Actually
the above theorem and the theorems considered in [6, 7, 8, 11 and some of the
references cited therein] deal exclusively with the convergence of the distributions
of the rank statistics to the appropriate normal distributions. It is, however, not
known whether such a convergence is accompanied by the convergence of the
corresponding moments, say of means and covariances. This result will follow if
N?* times the higher order terms in the Chernoff-Savage theorem, or its generaliza-
tions considered in the references cited above, all converge in mean square to zero.
This is not true in general. For bounded scores (J'(x) bounded), this will of course
be true. But for unbounded scores this result is not generally true. However, if, in
addition to the stated conditions on the score functions J(x) and J*®(u), we as-
sume that JPw)=J,Dw)—-J,Pw), and J*Pw)=J,*D(u)—J,*P(u) where
J.D(u) as well as J,*D(u), k = 1, 2 are nondecreasing in u, then the convergence of
the covariances of the rank order statistics to the corresponding covariances of the
asymptotic normal distribution can easily be established by proceeding exactly as
in Theorems 2.1 and 2.3 of Hdjek (1968). However, this does not guarantee the
convergence of N*E(T{)) or that of N*E(S{?). But recently Hoeffding (1968)
has shown (under conditions less restrictive than Chernoff and Savage, and more
testrictive than Hajek (1968)), that this convergence also holds (even for general
alternatives, i.e. not only for (5.2)). For brevity, we omit the details.



98 PRANAB KUMAR SEN AND MADAN LAL PURI

6. Asymptotic efficiency of the proposed tests. It follows from Theorem 3.1 and
Theorem 5.2 that the asymptotic (Pitman) relative efficiency (A.R.E.) of the test
based on #y with respect to the normal theory Lr. test is equal to

(6.1) Ep 0= AglA;,

where A, and A, are defined in (3.15) and (5.12), respectively. Since the A.R.E.
(6.1) depends on the matrices v, 2, £11.2, P K = 1, -+, ¢ and the shifts 6, -, 0,
we do not get a single numerical value, as in the corresponding univariate problem
(cf. (6.2) of [6]). This feature is common to other multivariate problems (viz, [5, 8]).
Two interesting results are worth mentioning in this content. First, the MANOCA
test considered in this paper is asymptotically at least as efficient as the MANOVA
test, considered in Puri and Sen [7]. Second, the MANOCA test based on normal
scores statistics is asymptotically as efficient as the normal theory Lr. test for
normal alternatives. These we consider below. .

If we totally disregard the concomitant variates and consider rank order tests
based only on the statistics S,(J,’,‘, i=1,-+:,p, k=1, ¢, the results of [7] are
directly applicable. The corresponding test-statistic in this situation reduces to

(6.2) =-‘chNo = Zlf: 1 nk[SN,k - EN],VI—II [SN,k - EN]’

where Ey = (EyV, - -+, E'?"") and Sy, is the kth column of Sy, defined by (4.15),
k=1,---,c It follows from Theorem 6.2 of [7] that under the sequence of alter-
natives {Hy} in (5.2), Z° has asymptotically a non-central y*-distribution with
p(c—1) df and non-centrality parameter

(6.3) Ag’o = Zlf: 1 pk("k_ﬁ)’vl_ll("k_ﬁ)’

where v;; and 1, are defined by (5.10) and (5.13) respectively. Now, the A.R.E.
of the MANOCA test (&) with respect to the MANOVA test (£,°) is given by

(6.4) ey g0 = Ag[Ago;

which also, like (6.1), depends on @, , - - -, 0, as well as on the parent distribution G.
We shall show that (6.4) is bounded below by 1, uniformly in 6, -+, 0, and G.
To prove this, we use the well-known result by Courant [cf. Bodewig (1956)] on
the ratio of two quadratic forms. This leads [by virtue of (5.12) and (6.3)] to

(6.5) info,, v, 082,90 = Chin ["1_11.2 Vi1l = Crax [V1_11V11.2]’

where C,;n(Crax) stands for the minimum (maximum) characteristic root of the
matrix under: parenthesis. Thus, by (5.11), we have

(6.6) Crnax [V1—11"1 1.2] = Crnax ["1—1l {"1 17 V12 "2_21 "21}]
= Cpax [Iq,—"ﬁl{"lz "2_21"21}] =1

as vi' {v;2 V55 v,,} is positive semidefinite. Hence, from (6.5) and (6.6), we obtain
that

6.7 infy, ... 9,800 =1, uniformlyin G.
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This clearly establishes the superiority of the MANOCA test over the corres-
ponding MANOVA test.

Now, if the parent cdf G is non-singular multinormal, and we use the normal
scores [ie., JOw)=® 'w):0<u<l,i=1,,p, J*Pw)=0"'u):0<u<]l,
i=1,--+,q, where ®(x) is the standard normal cdf], it can be easily shown that
n,=0,k=1,--, ¢ and v=X* where v and £*, », and 0, are defined by (5.10),
(3.12), (5.13) and (5.2) respectively. Hence, from (3.15), (5.12) and (6.1), we have

(6.8) eg@) =1 forall ¥

where Z(®) stands for the normal scores MANOCA statistic.

Let us now consider the rank sum test for MANOCA. Here we select
EN?@)=a/(N+1), 1Sa <N, i=1, -+, p; Ey*P@)=0o/(N+1), ISa<N,
i=1,:+,q. Then the corresponding test &£y reduces to the rank sum Zy(R) test.
In this case B; =jg[2i](x)dx, i=1,",p; vy ,=1/12 for r=1, i=1,--,p or
r=2i=1,4¢

Vijo11 = jfp pr G[i](x)G[i](y) dG[i,j](x’ »—%
Vij-22 = j:opjfp GEE](x)GE'.f](y) dGF;,j](x, »—%
v 12 = [ 25§ 5 GG () AGE (%, ) — %

In general, it is difficult to obtain simple bounds for v g, ; unlike in the univariate
case (cf. [8]). However, if the underlying distribution is normal, then v;;., =
(2m)~* sin™'4p;;.,; Where p;;.,, are the elements of the product moment correlation
matrix of Z,,. The matrix £* in (3.12) has the elements o;;.,, which can be written
as the product of the corresponding standard deviations and the correlations
Pij-rs- Thus the minimum and the maximum characteristic roots of y,, , Tito
can be shown to depend on the p;;.,, and j'gfi](x)dx. For some simple special
cases, these values may be computed.
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