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AN IMPROVED FORMULA FOR THE ASYMPTOTIC
VARIANCE OF SPECTRUM ESTIMATES!

By HENRY R. NEAVE
University of Nottingham

0. Summary. When proving results on the asymptotic behavior of estimates of
the spectrum of a stationary time-series, it is invariably assumed that as the sample
size T tends to infinity, so does the truncation point M, but at a slower rate, so that
M;T™! tends to zero. This is a convenient assumption mathematically in that, in
particular, it ensures consistency of the estimates, but it is unrealistic when such
results are used as approximations to the finite case where the value of M;7T~*
cannot be zero. We derive a formula for the asymptotic variance on the assumption
that M;T~" tends to a constant y; a more accurate approximation to the variance
in the finite case is then obtained by using this formula with y equal to the actual
value of M7T~'. Numerical comparisons are made in the white noise case.

1. Notation and quoted results. The notation used and the conditions assumed
here are those of Parzen (1957), and the formula for asymptotic variance in Section
2is obtained by extending the proof in Section 5 of that paper to allow for a weaker
condition on the bandwidth of the estimate.

We suppose that we have a sample of length 7 from a real-valued time-series x(2).
The time-series may be either continuous or discrete; the former is generally
assumed in Section 1 and Section 2, and the discrete case theory is formed mainly by
simply replacing integrals by summations. The numerical comparisons in Section 5
are based on discrete samples.

The model for the time-series

1.1 x(£) = m(t)+ y()

is assumed, where m(t) is a linear combination of known functions, the coefficients
of which are either known or estimated by regression analysis, and where y(¢) is a
stochastic process with zero mean possessing a finite variance E [l y(t)|2], and which
is wide sense stationary, i.e. the product moment E[y(¢)y(t+v)] depends only on v,
and defines the covariance function R(v). R(v) is assumed to be summable (absolutely
integrable) and continuous; and it follows that y(#)—or x(¢)—has associated with it
the continuous and even spectral density function (or power spectrum) f(w) such that

(1.2) R@) = |2, € f(w)dw
f(w) =(@n)~" {*, e " R(v)dv.
The standard form of estimate of the spectral density is
(1.3) fr¥(w) = Qn)~ ' [T e k(Br v)Ry(v) dv
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where R;(v) is the sample covariance function:

1.4 Ry(v) = T [P Y Yr(t + o)) dt, [p|<T
=0, |2 T
(1.5) Yr(8) = x(t) —myp,

my being the least squares estimate of m(t), By (the bandwidth of the estimate) is a
positive function of T'such that

(1.6) By -0, TBr—-y™ Y, 0=2y<l

as T — oo, and the function k(z) is even, bounded (by x say), square integrable, and
is equal to 1 at z = 0. The classical situation normally considered is where y = 0,
but this restriction is later relaxed.

The important theorem (Theorem 5A, page 339) proved in Parzen’s paper is that

(withy = 0),
(1.7)  limgo,, TBrCov [ fr*(@y).fr*(@,)]
=f2(w1)jfow k*(z)dz {1+4(0, ®,)} (w0, ®,)

where §(w,, w,) = 1 if ®; = w, and 0 otherwise. As a detail, the factor {1+8(0,w,)}
8(w,, w,) should more correctly read {8(wy, w;)+0(wy, —w,)} in the continuous
case and {14(r, |, )} {8(w;, ®;) +(—w;, w,)} in the discrete case.

It is usual for the function k(z) to be chosen equal to zero for |z| > 1. In this case
we write My = By~ '; My is the truncation point of the estimate, so called because
it is sufficient to calculate R;(v) only for |v| < M.

2. Amended formula for the asymptotic variance. We first observe that, due to the
summability of R(v),

Q.1 %0 |2 [ROR@+u)| dvdu < 4,
for some finite 4. For we have [, |R(v)| dv = A,* say, and on squaring this,
[2 2w |[RWR(@,)| dvdv, < A;.

On writing v, = v+, [2o [ 2o [RO)R@+u)| dvdu < 4.
It therefore follows that, given & > 0, there exists a number N(g) such that

2.2) f|v|>n5|u|>n|R(v)R(v+u)| dvdu<e for all n = N(e).

Now in proving our result, we follow through Parzen’s proof to the stage of his
equation (5.18), which gives

(2.3)  limgp g, TBrCov(fr*(@y).fr*(@,)) = limp o, V(wy, @2, Br, T) where
V(wy,®;, By, T) = 1~ 2By [§ duy f152 duy cos wy(uy +u,) cOS @ Uy

2.4)
< k(Bru)k(Bruy+Bpu;) [T rdu Ur(u,uy +us,u)R@Rw +uy)
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and where the function U;(u, vy, v,) is defined as

Ur(u,v4,v,) =0, u < —T+v,,
=1=-T"1(v,+u), —T+v, £ u £ min(0,v,—v,),
2.5) =1—T"'max(vy,v,), min (0, v, —v,) £ u < max(0,v,—v,),
=1-T" (v, +u), max(0,0,—v,) Su < T—v,,
=0 T—v, Zu.

No part of the calculations leading to this stage makes use of the condition that
TBr—0.

We observe that the expression on the right-hand-side of (2.4) is absolutely
integrable. For its modulus is less than

77 2Br [ duy (2 duy - 1+ |k(Bruy)k(Brus +Bruy)| (2o du-1+|R@)Ru+u,)|
since it is apparent from (2.5) that 0 < Up(u, v, +u,,u;) £ 1. Writing z = By u,,
this is

n"2[§ dz[®, duy |k(z)k(z+Bru,)| [2, du [RW)R(u +u,)|
(2.6) =725 dzk*(2) [ du, |2, du|Ru)R(u+u,)| (by Schwarz’ inequality)
Sn724,[§ dzk*(z)=A <

say, from (2.1) and using the fact that k(z) is square integrable.

We next show that the intervals of integration of both # and u, in (2.4) can
effectively be replaced by fixed finite intervals as 7' > oo, i.e. given ¢ > 0, fixed
intervals can be found such that the limit of the multiple integral is affected by less
than e. Firstly, let the interval for u be (—n,, ny) where ny = N(¢4,/44), as defined
by (2.2); the difference between (2.4) and the resulting expression is less than
n” 2 [§k*(z)(4A4)"'eA, dz = }e, using (2.6). To show that the interval for u, can
also be made (—ny, n,), we temporarily adjust the limits of integration for u, to
—ny and T—n,. This causes no difficulty, because integrating with respect to u,
from —n, to 0 and from T—n, to T gives at most n~ 2By 2n,k%A, < ie for
sufficiently large 7. For T > 2n,, the proposed range of integration for u,, i.e.
(—ny,ny) is now always a subset of the given range. The maximum error caused
by using these fixed limits is again less than n~2 [§dz k*(z)(44) ™ 'ed, = }e. On
replacing the original limits of integration for u, (again with maximum error &/4)
we now have that for sufficiently large 7, (2.4) differs by less than 4(g/4) = ¢ from

@ 7" 2By [§ duy [™°,, duy cos (U +u,) cos w, uy k(Bruy)k(Bru, + Bruy)
' 10y du Unp(u,uy +u,up)RUR( +uy).

" By the change of variable z = B, u, and the formula 2 cos 4 cos B = cos (A+B)+
cos (4 — B), thisis equal to
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n~2 (87T dz (", du,
(2.8) “{cos [z(Br™ (@, —wy)) +u; @] +cos [2(Br™ (@, +@y)) +u; @]}
“k(z)k(z + Bruy) [, du Ur(u,u; + By~ 'z, By~ 'Z)R(u)R(u +u,).

The essential difference between Parzen’s proof and this is in the treatment of
the Uy term. In the case covered by Parzen, this tended to 1 and could thus be
deleted from the working. Here, we see that with  and v, now being restricted to
a finite fixed interval and with B, T — y~*, for any z

.9 Ug(u,u;+By ™ '2,Br ™ '2) ~ 1 =(Br T) ™' |z| > 1—y|z].

The remaining few steps in Parzen’s proof may now be reproduced to obtain the
conclusion that limy_,,, TByCov [ fr*(w,).fr*(w,)] is zero if |w,| # |w,|, and
otherwise is

(2.10) TH@)KE)1+8(|, |, [o2])
where
2.11) K@) = [ K(z)(1—y|z|) dz.

A more detailed proof of this result is to be found in Chapter 3 of Neave (1966),
and in Neave (1968b).

3. Some computed values. To see how the factor (1—y|z|) affects the formula,
Table 1 shows the values of K(y) for six values of y (including the classical case of
y = 0) and probably the two best known weighting functions k(z)—those due to
Parzen and Tukey:

Parzen: kp(z) =1-62%+6|z|?, |z =%
=2(1-|z)?, 1|21
=0, |z| =1

Tukey: ki(z) = 3(1+cosnz), lz] =1
=0, || 2 1.

TABLE 1
Values of K(y)
y Parzen Tukey

0.0 0.53929 0.75000
0.1 0.53009 0.73276
0.2 0.52089 0.71553
0.3 0.51170 0.69829
7 0.4 0.50250 0.68106
0.5 0.49330 0.66382
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4. The exact value of the variance in the case of a normal white noise process. In
order to compare the uses of the two asymptotic formulae as approximations to the
true values in the finite case, we now calculate an exact expression for the variance
of spectrum estimates in the case of a normal white noise process, i.e. where the
spectrum f(w) is constant, and the covariance function R(v) vanishes except at
v = 0. Here it is assumed that the mean value of the process is known and taken to
be zero. The spectrum estimate formed from a discrete sample of length T'is

fr¥ @) =)' Y1 _ 1 k(Brv)R(v) cos vw

where
Ry(v) = T Y5 x()x(t+ [o]).
Clearly,
“.1) E[R1(v)] = Rw)(1—T""'[v]) lo]<T

— R(0)5(v,0).
Therefore, since k(0) = 1, we have E[ f;*(w)] = (2n) ' R(0). Next, if 0 < u < v,
E[R7(0)Rr(w)] = T2 321" 3321 E[x()x(t + 0)x(s)x(s + )]
=T72 Z,T;l" TP {RW)R(u)+R(t—s)R(t—s+v—u)+R(t—s—u)R(t—s+v)}

by the theorem in Isserlis (1918), since x(¢) is a normal process. But with R(v) =
d(v, 0) R(0), this gives

@2) T 2R0)YT YT {6(v, 008(u, 0) +5(t, $)0(u, v) +8(—u, 0)0(t —5, )}
= T 2R*(0) {T*5(u, 0)5(v, 0) + (T—v)d(u, v) + T5(u,0)5(v, 0)}.
Now,
E[fr**(o)] =4n72 Y 1 Y= -1 9()g()E[R1(®)R1(u)]

where g(v) is the even function, g(v) = k(B v) cos vw. Writing this in terms of non-
negative summation variables,

E[fr**(0)] = 4n2{4 3 7- 1 =1 9(0)9(W)E[R1(v)R1(u)]
YT OOE[R0RHO] +6%0) E[RAO)]}
=4n 2T 2R¥(0){4Y T, g*(u)(T—v)+0+g*O)T?* +2T)},
from (4.2). So, since g(0) = 1,
Var [ f*(w)] = E[fr**(@)]-E[fr*(@)]
(4:3) = 1n" 2T 2R*(0) {4 Y.7_, (T—v)k*(Brv)cos’ v+ 2T}
=317 2T 'R¥0) YT -1 (1— T~ !|v)k*(Brv) cos® va.



ASYMPTOTIC VARIANCE OF SPECTRUM ESTIMATES 77

Suppose now that k(z) vanishes for |z| > 1; write M7 = By~ ' and ' = M, T™".
Then

(4.4) Var (fr*(w)) = 3n 2R¥O)TM = ' Y ¥\ (1=T M7~ Yo|)k* (oM™ ") cos? va.
Clearly, if M} — oo with " — y, this tends to
1n72R?*(0)y _[”_"m a-y Izl)kz(z) dz
if @ =0 or &, and to half this if 0 < w < =, thus verifying the result of Section 2,
since f(w) = R(0)/2x in the white noise case.

5. Numerical comparisons. The exact expression for the variance (4.4) was
computed for the Parzen and Tukey weighting functions with 7' = 50, 200, and 1000
and y =.2 and .4, and compared with the asymptotic approximations obtained
from (2.10) and the standard result (1.7). A value of R(0) = 2=, i.e. f(w) =1, was
used, so that the exact expression and the approximations for Var [f;*(w)] were
respectively

(5.1 2T YT 4 (1= T ok*(wM 1™ ) cos® v
5.2 yK@)(1 + 8w, 0)+ 6(w, )
(5.3) yK(0)(1 + 6(w, 0)+ é(w, 7))

in 0 < w £ 7. In the white noise situation, both the exact values and the approxi-
mations are symmetrical with respect to w = n/2. Table 2(A-D) gives the values of
these functions for w = nrn/18, n = 0,1, --,9. These tables demonstrate clearly the
superiority of (2.10) over (1.7) as an approximation to the true values.

A more extended investigation of the exact behavior of the variance in finite
cases with various different spectra may be found in Chapter 4 of Neave (1966) and
in Neave (1968a).
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