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1. Introduction and summary. Let f(y) be a probability density function on the
real line, and F(y) the corresponding distribution function. It is assumed that

) F(y)=0 for y=<0, F(y)>0 for y>0.

Let 6 be a location parameter, and let X = (x,, -, x,) denote a sample of n
independent observations, with each x; distributed according to F(x—6). In this
paper, we study the minimum variance of unbiased estimators ¢ = #(X) of 0, with
special reference to the order, in n, of that variance. For example, if F(y) =
1—e *(y > 0), the minimum variance is »~2 rather than of order n~! as in regular
cases.

We shall state conditions on f(y) which determine this order. One of these is
that f(y) varies regularly at zero with exponent ¢c—1 (¢ > 0) (cf. [3], chapter 8,
sect. 8-9). Under the conditions imposed, the smallest attainable variance order
is n™lif ¢>2, but (F~'(n~1))? if 0 < ¢ < 2. The case ¢ = 2 has special features.
Since F(y) varies regularly with exponent ¢, the minimum variance order will be
n~2°L(n~ ') with slowly varying L (0 < ¢ < 2; also true for ¢ = 2).

When ¢ > 1, the Chapman and Robbins inequality [2] is used to obtain a lower
bound for the minimum variance. For 0 < ¢ £ 4, a new inequality is used; we
then restrict slightly the class of unbiased estimators.

The results carry over, of course, to distributions with F(y) <1 for y <0,
F(y) = 1for y = 0. A generalization to biased estimators (or to mean square error)
is straightforward, but some conditions on the bias function will be necessary.

Some questions recently raised by Blischke et al. [1] are answered by the theorems.

The conditions imposed here may probably be relaxed to some extent.

Notation. K and K’ denote positive, finite constants.

If there exist K and K’ such that K < a(x)/b(x) < K’(|x| < X,), we shall write
a(x) = Qb(x)) (x = 0). The qualification (x — 0) will often be omitted.

2. Theorem 1. Let t = t(X) be an unbiased estimator of 0. If

(i) there is an hy such that H= {h|0 <h <hy} = {h|h#0, f(y) = 0 implies

f(y—h) =0} {h|6+h is a possible parameter value} = #

(i) fEN)f ) = k"1 (910, all k > 0). This defines the constant c.

(iii) f(») is continuous in h < y £ n (n > 0 is fixed, all he H)

(iv) {fO— h)/f(y)—l}(y/h) -0(1) (c#2), =1) (c=2) (all y, Ah=y=n,
all he H; 2> 1 is fixed)

W) 0< limyo 2 [ {f (= I 0) = 1} () dy < o

(vi) —[& y*d(1—F(y))" < oo for m large enough
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and if
(€] G(x) = x*[1.y~f (v)dy then
inf, Vy() = Q(n™") c>2
= QG '(n™))%) c=2
=Q((F~'(n™ 1)) t<e<2.

The proof relies on the following

LemMa 1. If f() satisfies (1) and (i)~(v) of Theorem 1, then for h > 0,

d(h) = [ (F(—m)?[f(y)dy = 1+Q(h?) c>2
= 1+Q(G(h)) c=2
= 1+Q(F(h)) j<e<2.

The proof of Lemma 1 is deferred to the next section.

ProOF OF THEOREM 1. From Chapman and Robbins results in [2], it follows that
3 Vo(t) 2 h*/{(¢(h))"—1} (any he #).

This is true for all ¢, so we can write inf, Vy(¢), and for all he H because of (i).
We insert the following A€ H in (3):

@ h-0(>2), h=G1'(n"Y (=2, h=Fln"H@E<c<2)

and apply Lemma 1. For ¢ > 2, we then have inf V() = Kn~!, while for £ < ¢ < 2,
the denominator of (3) is Q(1), and so

inf, Vy(t) = Kh* = K(G™}(n"1))? c=2
=K(F '(n™Y))? l<e<2.

Next, we find unbiased estimators ¢, with V(¢,) of the desired order. Since
inf Vy(2) £ Vy(t,), the theorem will then be proved. For ¢ > 2, (1) and (iii) imply
the existence of y;, 0 <y, <n, with f(y,) >0 and f(») continuous at y,. If
F(y,) =p, the 100pth percentile {, of the sample is asymptotically normally
distributed, with variance p(1 —p){f(y,)n}~". Since F(y) = F(x—0), E(,) = 0+b,,
and ¢, = {,—b, is unbiased with V(z,) = Q(n~')—the existence of mean and
variance of ¢, and their convergence to 6 and p(1—p){f(y;)n} ! follows from
(vi) (cf. [7].

In [10], the author has constructed an estimator that has the desired variance
order, (G™'(n~1))?, when ¢ = 2.

For the case 4 <c¢ <2, we first note that (ii) implies lim F(ky)/F(y) = k¢
(y—0, all k> 0) ([3] chapter 8, sect. 9, Theorem). When this condition and
(1) are satisfied, Gnedenko [5] has shown that if t, = min(x,, ", x,)—B,,
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where B, is determined by E(t,) =6, and if a,= F~'(n""'), then, as n— oo,
lim P(a,” '(to+B,—0) < y) = 1—exp(—»°) (»>0). Using (vi) and [7], we get
lima,~2¥(to) = lim Vy(a,” (to+ B, —6))
=[5 y?d(1—exp (=)= (|7 yd(1—exp(—¥)))?,
or Vy(t,) = Qa,?) = Q((F~'(n1))?). The proof is complete.

3. Proof of Lemma 1. A regularly varying function (at zero) with exponent
¢—1 is defined by (ii). It can also be characterized by f(y) =y 'R(y) (cf. [3]
chapter 8, sect. 8), where R(y) varies slowly, i.e. (ii) holds with ¢c—1 = 0. The
following property (5) of slowly varying functions follows immediately from the
representation R(y) = a(y)exp ([,e(t)/tdt), where a(y)—>A#0, and &(y)—0
(¥ = 0) ([3] chapter 8, sect. 9, Corollary). For each k > 0, there is a K > 0 such that

® (ufv)* < R(hu)/R(hv) < (u/v)™" O<u<v<K,all heH).
Since (f(r—h))* = =S+ 2 —Nf )+ —h)—f(3))*, we have
o(h) = [ (f(y=h)*/f () dy
(6) = —(I—F(m)+2+ [ {f =W/ =1} () dy
=1+F(h)+1.
The integral [ is divided into
Q) I=[+h+le=L+1L+1;;

A > 1and 5 > 0 must not depend on 4. For I, , we write f(y) = y°~ ' R(y). Applying
(5), we find that I, takes on values in the interval [3* {(1—h/y)*~'**—1}?f(y) dy.
Using the mean value theorem (relying on (iii)) and substituting 1—h/y = t, we
find that thisis (1 < A’ < 1)

® SR [ E = 1) (1 — )" 2 dt.

Because of (ii) and Theorem 1 in chapter 8, sect. 9 of [3], we have, for ¢ > 3,

I, = O(hf (W'h)) = O(hf (h)) = O(F(h)) (if ¢ # 1, (t°~***—1)? is strictly positive

over an interval of positive length, and so we get Q(F(h)) instead of O(F(h))).
For I, , we apply (iv) and the mean value theorem. Then,

L = 3 {f =W =132y~ *f () dy
©) = O(h? [3,y~*f () dy = O(DI
= O()(h*{[y ™ *FO) 1 +2 {3y F(y) dy}).

If ¢ = 2, condition (iv) gives Q(1) instead of O(1). But F(y){3f(»)} ' — ¢, and so
21,y *F(y)dy =2C~ ' [,y ~*f(»)dy, with C near c if 1 is small enough. Thus,
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I o = h*[y 2F(»)]is+2C " '50. If ¢ # 2, the order of I,, follows from this equa-
tion, and so, from (9) and the definition (2),

(10) I, = O(D)Q(F(h) +h?) c#2
= Q(DQ(G(h)) c=2.

As to I, (v) implies I; = Q(h?).
From the last result and from (6), (9) and (10), the lemma follows.

4. Extension to 0 < ¢ < 1. The above proof breaks down at (8) for ¢ < 1. The
inequalities by Kiefer [6] and Fraser and Guttman [4] also give V(¢) 20if c <1
(proved in [8]). Restricting slightly the unbiased estimates to the class 7, including
only those # where Vy(¢) and Vy, ;(¢) have the same order of n for small & (cf.
(12)), we prove .

THEOREM 2. Under the conditions of Theorem 1,

inf, 7 V(1) = AF ' (n™1))%) 0<csi
The proof relies on

LEMMA 2. For all h such that 0+ h is a possible parameter value,
an (L=p)Ve()+pVy14(t) Z K(Q™ ' —p)

where 0= p <1, and Q = [g. {f(X; 0+h)}*{(1=p)f(X; O)+pf(X; 0+h)} ™ dy;
f(X; 0) denotes the n-dimensional density of (x,, -, x,), and p is Lebesque-measure
in R".
ProOF. Applying the Cauchy-Schwarz inequality to
f=0){(1=p)f(X;0)+pf (X;0+m)} 3 (X;0+h)dp = h,

we obtain
{a _P)Va(t)+PVo+h(t)+Ph2}Q = h?,

whence the lemma.
Various generalizations of this lemma, e.g. using Kiefer’s idea [6], are possible.

COROLLARY. If teT, that is, if
(12) K' S Vous)Vi(t) S K(0,00) = K (all n, all |8] < &), then
(13 Vo) 2 Q' = p){1+Kp} .
PRrOOF OF THEOREM 2. In Q, the integration is in effect over & = {X | all x; > 6+h}
={Y|ally,;>h} = AUE—A) = {Y]all y; > hA}U(E—A). Integrating over 4,
we omit pf(X; 6+ h) of the integrand of Q. Then,

Ja2UA=p 7 LA X0+m)2[f(X;6)du = (1—p)" H{[5(f(r—m)*If () dy}".
Rewriting the integrand as before (6) and introducing I, and I5 of (7),

(4 Q=p) {1+ I, +1;+F(Ah)—2F(vh)}"
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(where v =A—1>0). Integrating over E—A4, we omit (1—p)f(X;0) of the
integrand. Then,

feea 2P e af X0+ dp=p~ ' —p” {[5S (—h) dy}"
=p~'(1-(1=F(vh))".

Now, take # =v~'F " (n~!). For 0 < ¢ £}, we know from (10) and the line fol-
lowing it that I, = Q(F(h)) = QF(vh)); I; =Q(h?). Then there is a constant C,
positive or negative, such that

Q= [ +fz-a S A-p {1+ CFOh)}" +p ' {1-(1—-F(vh))"}
S(A-p)tef+pTil—e?).

It will then always be possible to find a p, 0 <p < 1, such-that 0"'—p > K’ > 0.
Thus, for this choice of 4 and p, we find from (11) and (13)

inf, o7 Vo) 2 v72(F~H(n ™))’ K'{1+Kp} ™.

The upper bound for inf Vy(¢) is obtained by means of Gnedenko’s result, as in
the proof of Theorem 1. The proof is complete.

5. Examples and remarks. The conditions of the theorems are easily seen to
be satisfied by the Weibull distribution, F(x—6) = 1 —exp { —(x—0)°} (x > 0), with
known ¢, and the Pearson type ITI distribution, F(x—8) = [37%(T'(c)) 'y~ 'e Y dy
(x > 0) (c known). Condition (iv) is perhaps best checked by a series expansion.
Since in both cases F(y) = Q(»°), F~1(n~!) = Q(n~1/°), and so inf Vy(t) = Q(n~ /%)
for 0 < ¢ <2 (if 0 < ¢ £4: for teT). When ¢ = 2, we have G(y) = Q(—y*logy),
and inf Vy(¢) = Q((nlogn)™!). For ¢ > 2, inf V(1) =Q(n™").

If £(y) >0 only over (0, a), condition (i) is not fulfilled. If a modification as
indicated in [1] page 51 is carried out, the present techniques will give results
similar to the above.

It is interesting to note that the values (4) can be found, approximately, as
(multiples of) the /’s that give the supremum in the right member of (3) (easy for
c#2).

A more discursive presentation of the material of this paper (including a short
remark on ¢ =0) is found in [8]. In [9], the order of G(h) is calculated. The author
is preparing papers on various extensions of the present results.
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