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1. Introduction. Patil [4] and [5] has investigated problems of existence of
minimum variance unbiased (MVU) estimators of parametric functions for the
univariate and multivariate power series distributions (PSD) in terms of the
number theoretic structure of their respective ranges. A uniform technique of
obtaining the MVU estimators, when they exist, has also been provided. We
propose to present here certain additional investigations in this area. Introduction
of the D and E sets helps develop an interestingly neat picture of the seemingly
complicated structural situations and problems. We shall use essentially the same
notation and terminology as in Patil [4] and [5]. The next section provides supple-
mental notation and terminology and quotes certain results that will be used in the
text.

2. Notation and terminology. (i) Let /, denote the s-fold cartesian product of
the set / of nonnegative integers with itself. In general, let [ [{-, 7, denote the car-
tesian product of the ssets T, T, -+, Tj.

(ii) Let A = I, and B < I;. A is called a basis for B if the n-fold sum of A defined
by n[d] = {}}-,a;,a,€4} is equal to B for some n. In such a case, # is called an
order of the basis A for B.

(iii) Let T= [[{=4 T}, T; = I. The displaced set D(T) is defined as D(T) =
T— {(min(T,), min(7},), -+, min(T;)) }. Thus, D(T) is the difference between T
and the singleton {(min(T,), min(7}), -, min(Ty))}. It is clear that D(T) =
D(Hf=1 T) =n.§=1 D(T)).

(iv) For an arbitrary subset T of I, and xel,, D.(T) denotes the difference set
T—{x}.

(v) Let T I,. aeT is called a lower boundary point (Ibp) of T if there is no
xeT,x # a, such that the ith components satisfy the inequality x; < a;, for
i=1,2,---,s. The lower boundary (LB) of T is defined to be the set consisting
of the Ibp’s of T and is denoted by LB(T). It is clear that, if LB(T)3a # be LB(T),
then a; < b; and a; > b; for some pair i # j.

(vi) Let 0e 4 < I;. Then, the Kvarda-Schnirelmann density d(4) of the set 4
is defined to be

glb A(R)

T RIM®

where the glb is taken over all finite subsets R of I, excluding {0} and the empty set,
with the property that if re R, xel, and x;<r;, i=1,2, -+, s, then xeR and

d(A)
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568 G. P. PATIL AND S. W. JOSHI

where B(R) = the number of elements other than the null element (origin) in
BAR. 1t is clear that 0 < d(4) £ 1 and that D(4) = 1iff4 = I;. Also, when s =1,
the Kvarda-Schnirelmann density is identical with the Schnirelmann density
(Kvarda [2] and Schnirelmann [7]).

(vii) KVARDA’S THEOREM (Kvarda [2]). If a is the Kvarda—Schnirelmann density of
A < I, and o« > 0, then there exists an integer n > 0 such that n[A] = I.

(viii) An s-variate random vector x with probability function

p(x; 0) = a(x)] [6,%/f(6) xeT

is said to have the s-variate PSD with range T < I, and the series function f(0) =
Y a(x)[]6;*, where the coefficient function a(x) >0 for xeT. [ ] stands for the
product on i =1,2,---,s and the s-dimensional parameter space Q consists of
the parametric vectors 6 = (6, 0, , - - -, 6,) with nonnegative components for which
f(0) is positive, finite and differentiable.

3. Univariate power series distributions. To begin with, we offer an alternative
interesting proof to Theorem 2 of Patil [4].

THEOREM 1. A necessary and sufficient condition for the parameter 8 of a PSD
with range T to be MVU estimable is that the displaced set D(T) be a basis of 1, i.e.,
n[D(T)] = I for some n.

Proor. We know from the Lemma in Patil [4] page 1051 that a necessary and
sufficient condition for the parameter 6 of a PSD with range T to be MVU
estimable on the basis of a single observation is that D(T) = I.

Now, the sample sum z = ) /_; x; is a complete and sufficient statistic for 6 and
has a PSD with parameter 0 and range n[T]. Therefore a necessary and sufficient
condition for the parameter 6 of a PSD with range 7 to be MVU estimable on the
basis of a random sample of size » is that D(n[T]) = I. But, ‘

D(n[T]) = n[T]—{min(n[T])} = {3 }- 1 x;—min (n[T]), x;€ T}
= {37 x;—n-min(T), x,e T} = {} - [x;—min(T)], x;e T}
= n[(T)].
Hence, the statement of the theorem.

THEOREM 2. If the parametric function g(0) admits a power series expansion in 0,
a sufficient condition for g(0) to be MVU estimable for a sample size n is that the
parameter 0 of the PSD be MVU estimable for the sample size n.

PRrOOF. Since 6 is MVU estimable for the sample size n, D®[T]) =1, i.e.
n[T1+ {1} = n[T] and, therefore n[T]+ {r} = n[T] for arbitrary positive integer r,
since, n[T]+ {k} = n[T]+ {1} + {k—1} and 4 < B implies A+ {k} = B+ {k}.

Thus, it follows that the index-set of the product g(0)£,(6) is a subset of n[T], the
index-set of the series function f£,(0) = [f(0)T" of z=)7-, x;, the sample sum.
Hence, the statement of the theorem follows from Theorem 4 in Patil [4].
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REMARK 1. The condition in Theorem 2 that g(0) admit a power series expansion
cannot be replaced by a weaker condition that g(6)f,(6) have a power series
expansion. For example, consider the case when the series function f(0) =
0>+60%+---, for 0<O<1, g(0) =1/ and n=1. Here, 0 is actually MVU

estimable for every n; whereas, g(0) is not for any n.

REMARK 2. That MVU estimability of 6 is not a necessary condition for MVU
estimability of g(0) having a power series expansion is shown by the example,
when the series function f(0) = 0> +0*+0%+---, for 0 <0 <1, g(0) = 6 and
n = 1. It is clear that, while 62 is MVU estimable for every #, 0 is not for any n.

ReMARK 3. If T is finite, then neither 6 nor a power series function g(6), and in
particular the series function f(6), is MVU estimable for any sample size. An
interesting example, when T is infinite but f(6) is not MVU estimable for any sample
size, is given by T = {1, 2, 2% 2% ---}. We have g(6) = f(f) and W[g(6)f,(6)]=
(n+1)[T] is not a subset of n[T]= W[f,(0)] for any finite n. To prove this, we
note that 2"*1—1=1424--+2"e(n+1)[T], but ¢n[T], because of the unique-
ness of the representation of a number as a polynomial in 2 with nonnegative
coefficients.

THEOREM 3. The parameter 0 of a PSD with range T is MVU estimable for
n = [[1/a]], where [[m]] denotes the smallest integer not less than m and, where,
o = d(D(T)).

ProoF. The proof is clear from the following two theorems of the additive
number theory. (i): A necessary and sufficient condition for a set A of nonnegative
integers to be identical with 7 is that d(4) = 1. (ii): If d(4) = « > 0, then d(n[A]) =
inf (na, 1), (Mann [3]).

4. Multivariate PSD’s with cartesian products for the range.

THEOREM 4. For i = 1,2, -+, s, a necessary and sufficient condition for the para-
meter 0; of the multivariate PSD with range T = [[}=1 T;, T, = I, to be MVU
estimable is that the set D(T}) be a basis of 1, i.e. n[D(T;) ] = I for some n.

ProoF. Without loss of generality, let i = 1. Next we note that
n[T]=[[i-.n[T].
Also, we have from Theorem 4 in Patil [5] that
6, isestimable <n[T]+{(1,0,0,--,0)} =n[T] for some n.

<>@[T]+{IDX][-. T < [[i=1#[T]

< n[T]+{1} = n[T]

<D(n[T\]) =1

<n[D(T)] =1

Hence the statement of the theorem.
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THEOREM 5. A necessary and sufficient condition for the parametric function
[1i=10; of the multivariate PSD with range T = ||i=; T;, T; < I, to be MVU
estimable for a sample size n is that the 0;s are individually estimable for the sample
sizenfori=1,2,-+,s.

PrOOF. We have from Theorem 4 in Patil [5] that for sample size n
[Ti=16; isestimable <n[T]+{(1,1, -, 1)} =n[T]
& [T- [ T1+{1}) < -1 n[T]
<n[T;]+{1} = n[T;] for i=1,2,-"+,s.
<Dn[T)) =1 for i=1,2,""-,5.
<n[D(T)]=1 . for i=1,2,-,s.
Hence, the present theorem follows in view of the preceding Theorem 4.

THEOREM 6. If the parametric function g(0) admits a power series expansion in
0,,0,, ", 0, a sufficient condition for g(0) to be MVU estimable for a sample
size n is that the parametric function [ [i=, 0, of the multivariate PSD with range
T=[]i=1T:, T; = I, be MVU estimable for the sample size n.

Proor. For sample size n,

[T;=106; isestimable = n[T;]+{1} < n[T;] for i=1,2"-,s.
= n[T]+{r;} = n[T}]
for arbitrary r,el for i=1,2,---,s.

=[[i-1 ([T1+{r}) = [Ti-1 n[T]
for arbitrary r;el.
91—_[‘1?:1 n[Ti]+(r1’ rZ’ T, rs) < H1§=1 n[Tt]
for arbitrary (ry, 1,5, ", Fy).
Thus it follows that the index-set of the product g(8)- f,(0) is a subset of n[T], the

index-set of the series function f,(8) = [f(0) ]". Hence, the statement of the theorem
follows from Theorem 7 in Patil [5].

THEOREM 7. The parametric function of a multivariate PSD with range T =
[Ti=1 T, Ty = 1, is MVU estimable for n = max;[[1/«;]], where [ [m]] denotes the
smallest integer not less than m and, where o; = d(D(T3)), i = 1,2, "s.

Proor. Follows from Theorem 5, Theorem 4 and Theorem 3.

THEOREM 8. A necessary and sufficient condition for the parametric function
[1i=16: of a multivariate PSD with range T = [[i=1 T, T; < I, is MVU estimable
is that the displaced set D(T) be a basis of I, i.e. n[D(T)] = I.
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Proor. Since [[i=; 0; is estimable, we have from Theorem 5 and Theorem 4,
that

D(n[T])=1 for i=1,2,-"-,s.
[[i=1d([T]) = 1.

But, by definition, [[i=; D(n[T}]) = D([[i=1nIT:]), which, in turn, =D(n[T]),
since n[T] = n[[[}=1 T:] = [[{=1n[T;]. Thus D(n[T]) = n[D(T)] = I,. Hence, the
statement of the theorem.

REMARK 4. The statement of Theorem 8 is interesting in that it raises the question
of defining a density for “multivariate” sets, in general, on the lines of the Schnirel-
mann density defined for “univariate” sets. While the question seems to be still
open, by and large, in the literature of the additive number theory, the concept of
the Kvarda-Schnirelmann density and the associated Kvarda’s theorem as quoted
in Section 2 are adequate for our present purpose. Thus, we do have also a multi-
variate analog of Corollary 4 in Patil [4] as follows:

COROLLARY 1. 4 sufficient condition for the parametric function [[i=,0; of a
multivariate PSD with range T = [[i=1 T;, T; < I, to be MVU estimable is that the
Kvarda—Schnirelmann density of the set D(T) is positive.

5. Multivariate PSD’s with arbitrary range. For the multivariate PSD with no
restrictions on its range T, Patil [5] has discussed the MVU estimation in terms of
additive number theoretic structure of suitably constructed ‘“‘univariate” sets. In
this section, we attempt to obtain results which are of a more constructive nature
and thus enjoy more of the operational and practical value. The main result of this
section is contained in Theorem 10 which is a generalization of Theorem 1 to the
multivariate PSD’s. We start with Theorem 9 which corresponds to the Lemma in
Patil [4] page 1051.

THEOREM 9. A4 necessary and sufficient condition for the parameters 0,,0,, -+, 0,
of the multivariate PSD to be MVU estimable on the basis of a random sample of
size 1 is that E, = D (T)nI; = I, for every ae A = LB(T).

PrOOF. From Theorem 4 in Patil {5], we have that, 6; is MVU estimable on the
basis of a single observation, if and only if, xe T =>x+e;eT,i= 1,2, -+, s, where
e; is the ith basis vector (0,0, -+, 1,0, -+, 0).

Now, suppose that xe T =>x+e;eT for i=1,2, -, s. Then, given aec4 < T,
we can prove by induction that a+re T for every re I;. Hence, I, = D (T).

Conversely, suppose that I, = D,(T) for all ae4. Now let xeT and let an
lbp aeA4 such that ;< x;, i=1,2,---, s. Then x—ael,. This implies that
x—a+te;el,c D(T),ie.,x+eecTfori=1,2,--,5.

Thus I, = D(T) for all ag 4, if and only if, xe T =>x+e,eTfori=1,2, -, s.
Hence the Theorem.

The following lemma which is interesting in itself also shows that the criterion
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I, = D,(T) in the last theorem needs to be applied only to a finite number of
points a.

LemMA 1. 4 = LB(T) < I contains a finite number of points.

PrOOF. For s =1, 4 = {min(7T) }, a singleton. Assuming that the result of the
lemma is true for 1,2,---, s—1, we will show its validity for s. To begin with,
define A[x;] = {x,:(x;, x;)e4 = LB(T) = I,}. Clearly, x, el,iff A(x,] = I,_, for
arbitrary 1 <r <s. Also, we observe that, x #y, X =(x;,X,)ed and y=
(x4, y2)€d c Liffx, #y,, x,eLB(4[x,]) and y,eLB(4[x,]) < I,_, for arbi-
trary 1 < r <.

Toshowthat 4 = LB(T') < I,isfinite, letae 4. It is clear that

A= (Ur UirAir)U{a}

where, i, = (i; <i, <+ <i)isasubsetof (1,2, -, s),1 < r<s,implying that the
unions are finite in number, and where, with {i; <i, < *"i, <i, ;< ' <i} =
{1,2,---, s}

A, ={xed:x, Sa,,x, S a;, ,x, S a,, X, ,, > ittty X, > A )

i = i =

To show that 4; is finite, note that (x,,x;,, ", x;) can take at most
[I}=1(a;,+1)—1 values. Consider its typical value (f,¢,, ") =t,. Then
A, = U, A where

> aq;

r+1°

"',xis>a,-s .

ir+1

t, o 4 — — PRPE p—
Ar={xed:x;, =t,x, =1, ", % =1,X

In view of the initial observation, we shall be through if we have LB 47[t,] = I, _,
finite, which is assumed under induction hypothesis for I, where k = 1, 2, -+, s—1.

Now, from Theorem 9 we conclude that 0, 8,, -+, 6, are MVU estimable on
the basis of a random sample of size n iff I, = D,(n[T]) for every be LB (n[T]).
Theorem 11 below provides a necessary and sufficient condition to be satisfied by
Tfor 0, 0,, -, 6, to be MVU estimable. We need the following lemmas.

LeMMA 2. If A = LB(T) < I;and A, = LB(n[T)), then A, < n[A].

PrOOF. For n = 1, the lemma is obvious. Setting up the induction hypothesis on
n=m, we shall show the lemma to be true for n =m+1. Let bed, ., =
LB((m+1D[T]) = (m+ 1)[T] = m[T]+ T so thatb = ¢+a where cem[T] and ae T.
To show that ce 4,, = m[4] and ae 4 and hence b = c+ae(m+1)[4], suppose
that ¢ # 4,,. Then there exists xem|[T] such that x; < ¢; for all i implying that
X;+a; £ ¢;+a; = b, for all i and hence that b¢ A4, ; . Therefore, ce 4,, = m[4] by
induction hypothesis. Similarly it can be shown hataeA.

LemMA 3. If {E;:i=1,2,---,r} are bases for I,, then there exists an integer n,
such that Y ;- n,[E;] = I, where the nonnegative integers n; add up to n.

PROOF. Let the order of the basis E; be m;. Then n =rm with m = max (m;,
m,, -+, m,) has the desired property.
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THEOREM 10. Let A= {a a,, *,a,} =LB(T) <. Let E;= Da;(T)nI,
i=1,2,---,r. For the parameters 0.,0,, -, 0, of the multivariate PSD to be
MVU estimable, it is sufficient that each E; is a basis for I,.

PrOOF. By Lemma 1, 4 is finite. Let 4 ={a;:i=1,2,---,r}. Let bed, =
LB(»[T]). From Lemma 2 and Lemma 3, there exist #» and »,, n,, * -, n, such that
b=>i_,ma; and Yi- n[E]=1I. Thus for cel, we have, c¢=)i;w;,=
iy )iy x;;, where, wienlE], x;€E; and w;=)7.;x; implying that
x;;+a;€T, from which follows Y x;;+)n;a;en[T]; ie., c+ben[T]; ie,
ceDy,(n[T]). Now, the theorem is clear because 6,, ,, - -, 0, are MVU estimable
iff I, =« Dy(n[T]) for every be 4,,.

COROLLARY 2. If the range T of the multivariate PSD is such that the Kvarda—
Schnirelmann density of E,= D,[T)nI, is positive for every aeLB(T), then
0,,0,, -, 0,are MVU estimable.

Proof is obvious from Kvarda’s Theorem and Theorem 10.

LeEMMA 4. Let R, denote s-dimensional Euclidean space. If F;c R,,i=1,2,,r
are such that I, = n;[F;] for positive integers n;, then there exists an integer n such
that I, = Y n,[F;], where Y n; = n.

Proor. Similar to that of Lemma 3.

THEOREM 11. Let A =L1B(T) < I;. For the parameters 0,,0,,--, 0, of the
multivariate PSD to be MVU estimable on the basis of a random sample of size n,
it is necessary and sufficient that, I, = n[Da(T) ] for all a€ A.

PrOOF. To prove the necessity, we first note that I, = Dy(n[T]) for all beA4,.
Now consider an arbitrary ae 4. Since naen[T], there exists a be 4, such that
b < na, implying r+ (na—b)el, = D,(n[T]), where rel,. Therefore, r+naen[T],
ie., re D, (n[T]), i.e., I, = D, (n[T]). Now, it can be verified that D, (r[T]) =
n[DT)], from which the result follows.

To prove the sufficiency, the proof runs analogous to that of Theorem 10, using
D, [T] instead of E;.

REMARK 5. It may be interesting to note that sufficiency of Theorem 10 follows
from the sufficiency of Theorem 11 in view of the fact that I, = n[D,(T)n1,] implies
I, < n[D,(T)]since D(T)n1, = D(T).

With our present approach, it should be interesting to prove a result which can
be independently obtained by Rao-Blackwellization.

The next theorem constitutes this result. Here, the Rao-Blackwellization would
work by considering the conditional expectation of the available MVU estimator
based on a subsample of size n, conditioning being on the entire sample of size
ny 2 n.

THEOREM 12. For the multivariate PSD, if 0,, 0, , - -+, 0, are MV U estimable for a
random sample of size n, then 0,,0,, -, 0, are MVU estimable for a random
sample of size n; = n.
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PrOOF. We have to show that I, = Dy(n,[T] for every be 4, . Let n; =n+r.
First of all, observe that 4, < 4,+4,. Let b=c+d, where ce4, and de4,.
Now, if tel,, teD(n[T]) as a result of the given hypothesis. Therefore,
ten[T]+{d}~ {c+d}  n,[T]— {b} = Dy(n,[T).

In the conclusion, we prove a theorem which generalizes Theorem 2 to the
multivariate PSD.

THEOREM 13. If the parametric function g(0) admits a power series expansion in
04, 0,,: -+, 0, then a sufficient condition for g(0) to be MVU estimable on the basis
of a random sample of size n is that 0, 0,, -, 0, be MVU estimable on the basis
of a random sample of size n.

PrOOF. Let 0,,0,, -+, 6, be MUYV estimable on the basis of a random sample
of size n, and let xen[T], so that by Theorem 4 in Patil [5], x+e;en[T] for
i=1,2,---,s. Then by induction we can easily prove that x+ren[T]. Thus
W[g(0)(,(0)] = W[f,(0)] and the statement of the theorem follows from Theorem
7 in Patil [5].

6. Applications. In statistical ecological work with plant populations or insect
populations, situations can arise (see Rao [6] where observations on the random
vector (xq, X5, ***, X;) with x;e[ are ignored when one or more of the observed
component x;’s are zero. Normally, one prefers to ignore such observations in
view of the difficulty in ascertaining whether the zero-count for the component
arose as a result of the “absence” of, or, as a result of the “total damage’ to, the
species represented by the component.

The multivariate PSD’s like the multivariate negative multinomial, the multi-
variate logarithmic series and the multivariate Poisson with independent com-
ponents have found applications in ecological research. It is quite conceivable that
these distributions truncated in one or more of the “axes” of their ranges would
be suitable, as models, when zero-counts would be under doubt. For the MVU
estimation problems, then, results of this paper, in particular of Section 4 and
Section 5, would apply.
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