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ERGODIC THEOREMS FOR INFINITE PROBABILISTIC
TABLES!

By A. Paz

University of California at Los Angeles and Israel Institute of Technology

0. Summary. This paper is concerned with infinite-state probabilistic transition
tables, representing the dynamical behavior of a probabilistic automaton and
nonhomogeneous infinite-state Markov chains. Many known theorems are
generalized from the finite-state case to the infinite-state case. A possible appli-
cation to the problem of computing, approximately, products of infinite-state
stochastic matrices is outlined.

1. Introduction and basic definitions. Let P = [p;;] be an infinite (countable)
Markov matrix (i.e., p;; 20,4,j=1,2,--- and Y ;p;; =1,i=1,2,-+-). It is well
known that Markov matrices (finite or infinite) are closed under ordinary multi-
plication of matrices, moreover multiplication is associative for infinite Markov
matrices (as well as for finite Markov matrices). Markov matrices are sometimes
called stochastic matrices and we shall use both terms as convenient.

Our work here is concerned with two notions derived from Markov matrices
and defined as follows:

DEFINITION 1. A probabilistic infinite table (PIT) is a triple (, S, {4(c) } ) where
¥ is a finite set (representing an alphabet) S is a countable infinite set (representing
an infinite set of states) and {A(g) } is a finite set of Markov matrices of infinite
(countable) order (A(o) represents the transition probabilities from state to state
related to the symbol ¢) a matrix A(o) for each symbol g eX.

The PIT as defined above represents a device having a countable number of
internal states and changing its state upon receiving external inputs, one change
with every input symbol ¢ € Z. The change of states is probabilistic and is governed
by the matrix A(o) associated with the input ¢ in a way such that a;;(o)(4(c) =
[a;;(0)]) is the probability of going from state i to state j when input ¢ is received.

NOTATION. If x = ¢, - - - 6, is a word (equals a sequence of symbols) in Z* (equals
the set of all words over ) then A4(x) denotes the matrix A(x) = A(c,)" - A(0}).
It is clear that the entries in A(x) represent the transition probabilities between
states induced by the word x.

DEFINITION 2. A nonhomogeneous infinite Markov chain (NIMC) is a couple
(S, (P;)) where S is a countable set (the states of the system) and (P;) is an infinite
sequence of Markov matrices of infinite (countable) order.
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540 A. PAZ

As in the PIT case the matrix P; represents the transition probabilities from state
to state of the system at time ¢ = i.

NoTATION. The product [ [i=,+; P; is denoted by H,,(n > m). The ij entry in
H,, represents the probability that the system will enter the state j at time t =n
if it was at state / at time ¢ = m.

Note that if all the P;’s are equal or if all 4(g)’s are equal in Definition 1, then
both concepts reduce to an ordinary Markov (infinite) homogeneous chain.

In what follows we shall be concerned with the properties of the matrices A(x)
when /(x) (equals the length of x, or the number of symbols in the word x) grows
indefinitely for PIT’s and with the properties of the matrices H,, when n grows
indefinitely and m fixed for NIMC’s. The two concepts defined above have been the
subject of intense study in the past 15 years (see the references) and many dynamical
systems can be simulated in them. In particular the underlying structure of a
probabilistic automaton is a PIT. Most of the research on PIT or NIMC’s in the
past was devoted to the finite-state case (S finite). On the other hand there is a
tendency, in the last few years, to extend the study of dynamical systems to the

infinite-state case.

Our aim here is to extend some of the results proved previously for finite-state
PIT’s and NIMC’s to the infinite-state case. Some of our results may have appli-
cation to the problem of computing products of infinite-state stochastic matrices
in real time and with the computation error kept under control. The main tools to
be used will be defined in the next section.

2. Functionals over Markov matrices.

NOTATION. If @ is a real number then a* denotes the number a* = max(a, 0)
and a~ denotes the number ¢~ = min (a, 0).

DEFINITION 3. Let 4 = [a;;] be an infinite stochastic matrix. The functional é (4)
is defined as:

0(A) = sup;, ;, SUP Zje(n') (a;,;—ai,;)
where {n’} denotes a subset of the set of natural numbers.
LemMa 1. If A is a stochastic matrix then 0 < 6(A) £ 1 and
o(A) = sup;, ;, Z (ai.j“aizj)+-
ProOF. Straightforward and is left to the reader.
REMARK. If A4 is a stochastic matrix then
) 26(A) = sup;, i, 3| ai,;— ail-

PROOF It fOllOWS from Zjai”-—zjaizj = Othat Z(ailj-—a,-zj)+ = '—Z(ailj_aizj)— .
Thus ) j|a;, ;—a;,;| = 2 (a;,;—a;,,)* and (1) follows by Lemma 1.



ERGODIC THEOREMS FOR INFINITE PROBABILISTIC TABLES 541
DEFINITION 4. Let 4 be an infinite stochastic matrix. The functional y(4) is
defined as
YWA) = inf; ;, Y2 min(a,,;, a,)).

DEFINITION 5. If 4 is an arbitrary matrix (not necessarily square, vectors in-
cluded) then the functional ||4|| is defined as ||4|| = sup; Y’ |a;| (in particular ||4]|
may assume an infinite value).

LEMMA 2. If A and B are arbitrary matrices such that the product AB is defined then
4B < |- ][B]|-

PrOOF. Straightforward and left to the reader.

DEFINITION 6. A stochastic matrix is called constant if all its rows are equal one
to the other.

LEMMA 3. Let A be an infinite stochastic matrix and let A, be the matrix all the
rows of which are equal to the iy row of A then 6(A) = 4 ||A—Ai0|| but for every
& > 0 there is an index iy such that 5(4) < 4 ||4— A4,)|| +e.

Proor. The lemma follows directly from-formula (1) above.

LeEMMA 4. Every stochastic matrix A can be represented in the form A=E+Q .
where E is a constant stochastic matrix and ||Q|| < 26(A).

PROOF. Let E be a matrix 4;, as in Lemma 3 then Q = 4—4,, and ||Q]| =
||4—4,,|| < 26(4) by Lemma 3.

LEMMA 5. Let A+ A,, A, A, be two sets of n matrices such that ||A,|| <1,
|4i]| £ 1 and ||4,— A)|| < e for i=1,--,n and some &> 0. Assume in addition
that the products [ -, A; and [ ]_, A; are defined. Then || [T}, A;—[i=1 4;|| < ne.

PRrOOF. Straightforward and is left to the reader.
LEMMA 6. If A is a stochastic matrix then 6(A) = 1 —7y(A4).
PROOF. Sety;,;,(4) = ) 72y min(ay,;, a;,;) and &, ,(4) = Y%, (a;,;—ay,;)*. Then
by Lemma 1,
o(A) Z 0;,1,(A) = 252 (a;,;—ay,)" = Z]o'o=1[aixj_min (a1,5, ai,)]
=1-Y % mm(a,;, a;,;) = 1 —y;,;,(A).

Thus §(4) = 1—y(4) for the inequality above does not depend on i, or i, . Similarly
0;,1,(A) = 1—79;,;,(4) < 1—79(A4) by the definition of y(4) and the above sequence of
equalities. This implies that §(4) < 1 —7y(A4) as the inequality above does not depend
on i; and i, . It follows that 6(4) = 1 —y(A4) as required.

LEMMA 7. If A and B are stochastic matrices then 5(AB) < 5(A)5(B).

Proor. This lemma has been proved in [7] page 779.
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LEMMA 8. Let A be a stochastic matrix and let & be a nonzero row vector of the
same dimension as A (including the infinite case) such that ||£|| <o and Y ;& =

0(£ = (€)). Then ||£4]| < |[¢]|6(4).

PrOOF. Define the vectors {! = ({;') and {2 = ({;?) as follows:
G =287)1E|l and G2 =20G7/]|¢]l-

Using an argument similar to the one used in the proof of Lemma 3 one can easily
prove that 23 ;&% =Y, |&] = 2Y|¢,7| which implies that both (' and (* are
stochastic vectors with

V) (=0 = 2¢)j¢l

Let B be a matrix of the same order as A such that its first row equals {' all its
other rows being equal to {?. Then:

25(BA) = ZZj(Zk(Ckl _Ckz)akj)+ = Zj|2k(Ckl _Ckz)akj|

by Lemma 1 and using the argument used in the proof of Lemma 3. It follows that
(using the relation (2))
' — 2 CA

ik J ik

But by Lemmas 7 and 1, 6(BA) £ 8(B)8(A) < 8(4) with the consequence that
[|lE4||/||¢|| = 8(BA) < 5(A) as required.

COROLLARY 1. Let A be a matrix HAH < o0 such that its rows have the properties
of the vector ¢ in Lemma 8, and let B be a stochastic matrix, A and B being of the
same order. Then ||AB|| < ||4]|6(B).

&
211ef] %

ProoF. Trivial, using the definitions and Lemma 8.

COROLLARY 2. Let A and B be stochastic matrices of the same order. Then
||[4B—B|| < 26(B). In particular if © is a stochastic vector and { is a row of the
matrix B (n and { of the same order) then ||nB—(|| < 25(B).

ProOOF. ||[AB—B|| = ||(4—DB|| <||4-1||5(B) < (||4]|+]||I|])8(B) = 26(B) by
Corollary 1 with 7 the identity matrix.

REMARKS. (1) The lemmas and corollaries proved in this section will serve as
main tools for the proofs of the theorems in the following sections, some of them
however are of independent interest. All the above lemmas are true in the infinite-
state as well as in the finite-state case. In the finite-state case, however, “sup” is to
be replaced by “max’ and “inf” is to be replaced by “min”.

(2) Many authors, working on Markov chains, have used either the functional
8(A) which measures, in a certain sense, how different the rows of A4 are, or the
functional yp(4) as their main tool. Some writers have tried to establish some
relation between the two functionals (see [1], [3], [6] and [7]). It was a surprise to
find out that the two functionals are connected by the simple relation given in
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Lemma 6, for their definition is quite different. It is to be mentioned, however, that
Dobrushin [1] was very close to the proof of our Lemma 6 here but, as he was
mainly interested in the functional y(4), he did not even define explicitly the
functional 6(4). Dobrushin [1] also proved the inequality 1—y(4B) < (1—y(4))
(1—y(B)) for stochastic matrices 4 and B, which (by Lemma 6) is equivalent to
Lemma 7 here, and proved implicitly the inequality ||£A|| < |[&]| (1 —9(4)) for &
and A4 as in our Lemma 8. This last inequality is equivalent (by Lemma 6) to our
Lemma 8. On the other hand the proofs of Dobrushin are different and seem to be
more complicated than our proofs here.

Before proceeding to the next sections we shall exhibit some uses of the above
lemmas to the study of doubly stochastic matrices, where a doubly stochastic
matrix is a matrix 4 such that both 4 and 4" (equals A transpose) are stochastic.

PrROPERTY 1. Let 4 be a doubly stochastic matrix such that §(4) = O then A4 is of
finite order, say », and all the entries of 4 are equal to 1/n.

PRrOOF. By 8(4) = 0 we have that a;; = a,; = «;. Thus by Y ;a;; = 1 the order of
A is finite (say n). Hence na; = 1 and a;; = a; = o; = 1/n.

PrOPERTY 2. Let A be a doubly stochastic matrix of finite order » such that
d6(A4) < 1, and let E be a square matrix of order » all the entries of which are equal
to 1/n. Then lim,,_,, |4 — E|| = 0.

ProoF. If A is doubly stochastic then so is 4™ for any m (this is easy to prove
and well known). Furthermore it is easy to prove that for any doubly stochastic
matrix B, EB = E where FE is as specified above (this is left to the reader to verify).
Thus ||4™— E|| = ||A"— EA™|| < 26(4™) < 2[5(4)]" - 0, by Corollary 2, Lemma 7
and by the requirement that §(4) < 1.

PROPERTY 3. Let 4 be a doubly stochastic matrix of infinite (countable) order,
then 6(4) = 1.

PrOOF. Assume that §(4) < 1. Then for any 4 > ¢ > 0 there is n with 5(4") =
[6(A)]" < e. As A is stochastic we have also that for any fixed i, there is an integer
k such that
(3) Z.Il('=la('”2> 1—¢

toJ

where ¢ is as above and 4" = [a{}’ ]. On the other hand, for any i, and i we have that
I>h_yai =%, alP| £ 8(A") < & implies, by the previous inequality (3) that

Yk jaP z1-2¢ i=1,2,

ij =

Thus Y2, )% ;a{Y = co. But, as 4" is doubly stochastic, we have also that
2adhoga =35 Y® a) =k, a contradiction. It follows that 5(4) = 1.

3. Nonhomogeneous infinite Markov chains. Considering again the definitions
and their interpretation, and remembering that §(4) and y(4) provide us, in a
certain sense, with a measure of the ‘‘distance” between two arbitrary rows of the
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stochastic matrix 4, we shall distinguish between two cases for the long-range
behavior of a given NIMC.

Case 1. lim,,,6(H,,) =0 for m=1,2,--- where H,,=][[l<p+ P; (sce
Definition 2 and the notation after). In this case the chain is called weakly ergodic.

Case 2. For any given integer m there is a constant matrix Q (see Definition 6)
such that lim,,, ||H,,,— Q|| = 0 in this case the chain is called strongly ergodic.

In addition to the two above distinctions there may be other distinctions as well
(e.g., the matrix Q in the second case may not be constant or the limit, in both cases,
may exist only for some m but not for all m etc.) but, because of their restrictive
nature, those distinctions will not be considered here.

Most of the theorems to be proved here are generalizations to the infinite-state
case of theorems which have been proved previously for the finite-state case (see
[3], [5] and [6]). In the finite-state case, however, a weaker norm for matrices has
been used, namely |4| instead of ||A|| where |4| = max; ;|a;;|, 4 = [a;;]. Also a
weaker measure d(4) has been used instead of §(4) where d(4) = max;max;,;,
|a,| i—ai, 1| It was first necessary to realize that these functionals, d(A4) and ¢ A|”
although definable for infinite-state matrices too, will not suffice and must be
replaced by the functionals §(4) and “| A| ”” to make the generalizations possible.

THEOREM 1. An NIMC is weakly ergodic if, and only if, there exists a subdivision
of the chain into blocks of matrices {H;; , } such that Y . VY(Hy,, ) diverges,

@G =1.

PrOOF. The condition is sufficient, for > % | y(H; ii,+,) diverges implies that for
any jo, llm,,_,wﬂj jo(1— V(H,,l,“)) =0 and using Lemmas 7, 1, and 6 we have
that:

d=([EnP) = O(Hfﬁi'ylﬂ,,,,ﬂ) SIS Hy,, ) =[IEn(—vHy,, )

where i; > m means that the product begins with the first index i; = m. Taking
limits on both sides we get that

lim, ., 6 ((Ii¥n P) S lim, o 6 ([ [},5m Hiyy, ) = 0.
Iflim, ., 6(][}=wP) =0m=1,2, -+, then by Lemma 6
lilnn—*oo 7(]___[7=mPl) = llmn—'m(1~5(npt)) = (1 _hmn—woé(_[lpz)) = 1

Let 0 <& < 1 be a small constant, then it follows from the above inequalities that
a sequence of blocks H;, ,, can be found such that y(H;; ) >e¢ so that

21 y(Hyy,, ) diverges. []

THEOREM 2. A given NIMC is weakly ergodic if, and only if, for each m there is a
sequence of constant Markov matrices E,,, such that 1im,_, ,, || Hypy— Epa|| = 0.

iiy+1

PROOF. Let ¢ > 0 be an arbitrary small number and let i;, i, be two arbitrary
indices. Let H,, = [a;,] E,,, = [e;;] and suppose that n is so big that || H,,,— E,.|| <e.
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Then by (1) we have that '
26(H ) = Ui, 2 @i, 5= i,y S supj, 3 las, ;— e, +sup ) |as,;—ep, | < 2e

(for e;,; = e;,;, E,, being constant). This proves that the condition is sufficient.
That the condition is necessary follows trivially from (1).

THEOREM 3. Let (S, (P,))beagiven NIMC aandlet P, = E;+ R;withE;a constant
stochastic matrix. Then the given NIMC is weakly ergodic ifflim,_, ,, “H"‘” R =

PRrROOF. One proves easily that if P; is stochastic and E; constant then P, E; = E;
and E; P, is constant. Thus (P; — E)(P,—E,) =P, P,—EP,.
Hence, by induction
m R, = [Tl (Pi—E) = [ Pi— En [T P

where the second term on the rlght—hand side is constant. It thus follows that the
condition of Theorem 3 implies the condition of Theorem 2, which implies weak
ergodicity. On the other hand

T2 Pi=En [T 1 Pil| = [|(Pr=E) 17w+ 1 Pil| [P Enl| S Toms 1« P
by Corollary 1 and therefore weak ergodicity implies the condition of our
theorem. [J

The following theorem gives a characterization of strong ergodicity. It also
confirms an intuitive feeling that strong ergodicity implies weak ergodicity.

THEOREM 4. An NIMC (S, (P))) is strongly ergodic if, and only if, for every m
there is a sequence of constant stochastic matrices {E,,,}, and a sequence of stochastic
constant matrices {E,,} such that

(1) limyey o | |Hpw— Epal| = 0 and
(2) lim, o, |[|Epw— En|| = 0.
Proor. If (1) and (2) hold true then

M, -, o, || Hpn— Ep|| < 1im, s o, [|Hppn = Epn] |+ || Esn— En] | = O

But if (1) and (2) hold true then E,, is independent on m. To prove this we note
that P, H,, = H,_,, and P, E, = E, (let the reader verify that if 4 is constant
and B is stochastic then B4 = A). Thus

“Em—l _Em“ é ||Em~1—Hm-l,n||+“PmHmn~PmEmi|
= ”Em~1_Hm—l,n”+|iPm(Hmn'-Em)|| é ||Em—1_Hm—1.n||+“Pm“ ||Hmn_Em||

by Lemma 2. Using now the fact that for any stochastic matrix 4, ||4|| =1 we
conclude that

1B~ Eall S 1By = Bl +11En 1.0 B . [~ B ][ B = ]

Now allowing n to grow indefinitely in both sides of the inequality and using the
conditions of the theorem we have that ||E,_, —E,|| = 0 which is equivalent to
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E,_, = E,,, independently on m. Thus (1) and (2) imply that the chain is strongly
ergodic. Conversely if the chain is strongly ergodic, then, setting Q = E,,, = E,, for

all m and n we have that (1) and (2) hold true.

COROLLARY 3. A strongly ergodic chain is also weakly ergodic. A weakly ergodic
chain which satisfies (2) is strongly ergodic.
Proor. Strong ergodicity implies the condition (1) in Theorem 4, which, by

Theorem 2 implies weak ergodicity. Conversely, by Theorem 2 weak ergodicity
implies (1) which together with (2) implies strong ergodicity by Theorem 4.

COROLLARY 4. Conditions (1) and (2) in Theorem 4 and Corollary 3 can be replaced
by the condition:

(2) i,y o ||[Hpw— Enl| = 0.

PROOF. ||Hpy— Ep|| < ||Hyn— Enal| +||Emn— Enl|- Thus (1) and (2) imply (2).
Conversely setting in (1) and (2) E,,, = E,, for all m and n one sees that (2') implies
(1) and (2).

COROLLARY 5. Condition (2) in Theorem 4 and Corollary 3 can be replaced by
the condition: there is a constant stochastic matrix E such that

(2" lim,- o, ||EH,,—E|| = 0.

PROOF. ||EH,,,—E|| £ ||EH = Hp|| +||Hpn— E|| £ 26(H,) + ||Hu— E|| by
Corollary 2. Condition (1) of Theorem 4 implies that 6(H,,,) — 0 and condition (2)
in that theorem implies that ||H,,—E,|| = ||Hm—E|| = 0 (E,, is independent on
m as proved in the proof of that theorem). Thus condition (2'') holds with E = E,,,.
Conversely if (1) and (2") hold true, then let E,, = E. It follows that:

|| = El| < ||EH = E[|+ || EHopp = Hy| < || EH o= E| +2 6(H pn) = 0
which is condition (2").

THEOREM 5. Let (S, (P;)) and (S, (P;)) be two NIMC’s such that Y ;|| P,— P || < o
then for any ¢ > O there is an integer mgy such that ||H,,— H,.|| < &, for all m 2 mj
and all n > m (H,,, is the product of P;’s corresponding to H,,).

PROOF. Let P,—P,=E; with ||E||=e¢; then H,,=[](P;+E) = Hpy+ Ry
where R,,, contains all possible products of P; and E; matrices. Using the facts that
||Ei|| = e; is finite for all i, ||P,|| =1 for all i (P; is stochastic), and Lemma 2 we
have that

”Rmn” = Zei+Zi,jeiej+Zi,j,keiejek+ +1_[;l=m+1 € = H?=m+1 (1+e)—1.

Note that the e;’s are nonnegative. Now as Y e; < 00, the product [ [}~ +:(1+e;)
converges and therefore for any ¢ there is m with ||R,,,,,|| < & The theorem is thus
proved.

COROLLARY 6. Let (S, (P;)) be two NIMC satisfying the conditions of Theorem 3.
If one of the chains is weakly ergodic then so is the other.
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ProOOF. We must show that lim,_, ., 6(H,,,) =0 m =0, 1---. It suffices to prove
this for m = mqy, me+1, -+ as 8(H,,) £ 6(H - 1)0(H ) < 6(H,,,) by Lemmas 1
and 7. Let & > 0 be a constant and choose mj such that ||H,,,— H,,|| < 4¢ for all
m > my, this is possible by the previous Theorem 5. Let m be a fixed but arbitrary
integer m > m,, and let C%, be the matrix all the rows of which are equal to the i,
row of H,,,. Choose i, such that 6(H,,) < }||H,.,— C,||+ ¢ this is possible for
fixed n by Lemma 4 and if we choose n = m+1 the above inequality will be true
for all n>m as 6(H,,) < 6(Hym+1)0(Hpyi2,) < 6(H,, me1) by Lemma 1 and
Lemma 7. We have thus shown that for any m = m, there is an i, such that for
any n>m, we have that &§(H,,) < 4||H,,—Cis||+%e. Now ||H,,—Ci,| <
|[H i — Ho|| + || Hpn — CiS| | + || Cis, — Cis, || where CI, is the matrix all the rows of
which are equal to the iy row of H,,,. But ||Cy5,—Cp2,|| < ||H,,— H,,.,|| by definition,
||H pw— H,u|| S 3¢ by the choice of m (for any n > m) and, as in the proof of Lemma
3, ||Hyw— Ci%|| < 6(H,,,)- As the first chain is weakly ergodic, there is n > m such
that 6(H,,,) < 3¢ combining all these results together we have that for any m = m,
and ¢ > 0 there is n > m such that 6(H,,,) < 3(3e+3e+4e)+4e = ¢ which proves
that also the chain (S, (P,)) is weakly ergodic. []

ReMARK. NIMC’s in general can be classified according to the following four
types

Type | = Pul| 0 8(H,y,) 0
Strongly ergodic Yes Yes
Weakly ergodic No Yes
Convergent Yes No
Oscillating No No

Where ||H,,,— P,|| - 0 means that for any m there is a matrix P,, (not necessarily
constant) such that lim,_, ,, || H,,,— P,|| = 0. In Corollary 6 it is proved that if two
chains satisfy the conditions of Theorem 5 and one of them is weakly ergodic then
so is the other. It can be proved that the same is true for all the other three types of
chains above.

4. Probabilistic infinite tables. The difference between PIT’s to be dealt with in
this section, and NIMC’s considered in the previous section is that in the PIT
model one studies the set of all possible products of Markov matrices taken from a
(finite) given set of such matrices, while in the NIMC model one investigates a
specific given infinite product of Markov matrices and its possible sub-products.
The approach in this section is closer to the automaton concept where the set of all
words over a given alphabet is studied with regard to the transitions induced on the
states of the automaton by the different words.

The words correspond here to products of Markov matrices which induce a
probabilistic transition between the states of the automaton. The reader is referred
to Definition 1 and the notation after, for the following definitions and theorems.
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DerFINITION 7. A PIT(Z, S, {4(0) }) is weakly ergodic if for any & > O there is an
integer n = n(e) such that 6(A(x)) < ¢ for all words x such that I(x) = n(g) where
I(x) denotes the length of the word x.

REMARK. If a Markov system is weakly ergodic then d(A(x)) — 0 uniformly, the
magnitude of 8(4(x)) depending only on the length of x and not on the specific
symbols contained in x. Such a requirement of uniformity will be too restrictive
for the strong ergodicity and therefore strong ergodicity will not be dealt with for
PIT’s.

Note that A(xy) = A(x)A(y) so that 5(4(xy)) < 6(4(x))8(A(»)) = 6(A(x)) and
therefore if 5(A(x)) < ¢ for all x with I(x) = n(e) then (4(x)) < & for all x with
I(x) = n(e).

THEOREM 6. A PIT is weakly ergodic iff there is an integer k such that 5(A(x)) < 1
for all x such that I(x) = k.

PRrOOF. Necessity follows directly from the definition. To prove sufficiency set
§ = max,=; 6(4(x)) <1 (there are only finitely many words x with I(x) =k
because X is finite). Let n, be an integer such that 6™ < ¢ for a given ¢ > 0. Let x be
a word such that /(x) = kn,, then x = y; - y,,y where [(y;) =+ = I(y,,) =k and
I(y)=0. Thus 6(A(x)) < (A(y1)) "~ 3(A(y,,)) S 6™ <e. It follows that the
system is weakly ergodic.

REMARK. The theorem will remain true even if the alphabet X is infinite provided
the requirement that 5(4(x)) < 1 is replaced by the requirement that there is a real
number & < 1 such that 6(4(x)) < d for all x with I(x) < k.

TueorREM 7. Let (2, S, {4(8) }) and (2, S, {A(0) }) be two PIT’s such that the first
is weakly ergodic and the second is arbitrary. There is € > 0 such that if ||A(a)—
Z(a)” < ¢ for all 6 € X, then the second system is also weakly ergodic.

ProoF. Using Theorem 6, we must prove that there is ¢ such that if ||A(e)—
Z(a)” < ¢ for all eX, then there is n such that 6(A(x)) < 1 for all x with /(x) = n.
Let A,,(x) be the matrix such that all its rows are equal to the iy row of A(x), then
|| A(x)— A;(x)|| < 26(A(x)) as in the proof of Lemma 3. As the first system is
weakly ergodic, there is n, such that 6(4(x)) <% for all x with I(x) = n, i.e.,
||4(x)— A(x)|| < % for all such x and any i, . Let X be a fixed but arbitrary word
with I(X) = no and choose iy so that 8(A(X)) < 4||4(%)—4;,(X) |+4. Such an i
exists by Lemma 4. Finally let ¢ be a number 0 < & < 4n,, and let || 4(o) —A(o)|| <e
for all seX. Then by Lemma 5 we have that ||4(®)—A(®)|| <} (for I(x) =
1,). Thus8(A(X)) < 3 +4 ||A(®) - 4,(®)]| = 1+3(|A() - A®)|| + |4 — 4:,()|| +
|4,,(®) - 2@ < 3+3G +3+3) = 1, for [[4,,()— 4, = [[A®—A®)|| < 3.
‘But ¥ is arbitrary and therefore we have that 6(4(x)) <1 for all x with I(x) = ng
provided that ||4(c)—A(o)|| < 4n, for all c€X, where no is an integer such that
5(A(x)) <% for all x with I(x) = n,. To complete the proof we note that if
8(A(x)) < 1 for all x with I(x) = n, then 6(A(x)) <1 also for all x with I(x) = ny,
as mentioned before.
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THEOREM 8. Let (Z, S, {A(0) }) and (%, S, {A(0)}) be two PIT’s such that the first
is weakly ergodic. For any & > O there is ¢ > 0 such that if || A(6)— A(o)|| < ¢ for all
o€X then ||A(x)— A(x)|| < 6 for all xeZ*. :

PrOOF. By the previous theorem, there is &, such that ||4(c)— A(0)|| < ¢, for
all 0€X, implies that both systems are weakly ergodic. Thus there is ¢, such that
there is ny with both 6(A(x)) £ /6 and 6(A(x)) < 6/6 for all x with I(x) = n, and
the given o. For the number n, above there is &, such that if ||4(c)— A(0)|| < ¢,
then ||4(x)— A(x)|| < 6/6 for all x with I(x) < ng (this follows from Lemma 5).
Let ¢ = min(gy, &,). Then for all x with I(x) < n,, ||A(x)—Z(x)|| <i<o. If
x = yz with I(z) = ny and I(y) = 0 i.e., if I(x) = n, then, using Corollary 2 we have
that:

[|[AGx)— Ax)|| = ||4(y2)— A(y2)|| = IIA(y)A(z)—A(Z)||_+IIZ(y)Z(z)—Z(z)II
+14(2) - A(2)|| £ 20(A(2)) +20(A(2)) + || A@) - A@2)|| < 46 +40+46 = 6. [

ReMARK. Theorem 8 provides an interesting application. Assume that a
PIT (Z, S, {A(0) }) is given together with an initial distribution 7 over the states
and it is required to compute the values of the vector nA(x) for several words x. If
the number of states is countable infinite then it will be impossible to compute the
exact values of the entries of 74(x). Assume now that n4(x) = nd(c,)A4(c,) " - A(ay)
and assume that the system is weakly ergodic. Furthermore let § > 0 be a real
number and let ¢ = &(d) be the ¢ related to that § as in Theorem 8. Then one can
find a new vector n’ having only finitely many non-zero entries, say the first n ones,
and such that ||r—n'|| < e. The product n’4(c,) involves only the first n rows of
A(o,)and therefore one can find another matrix 4'(a,) such that its first #» rows have
non-zero entries only in the first n, columns and such that ||4(c,)—A'(s,)|| <.
Proceeding this way one can replace the product nA4(s,) - A(g,) by the product
n'A'(6,)A4'(a;) - A’(6}) such that the second product involves only finitely many
arithmetical operationsand||n —n'|| < ¢,||4'(6,)— A(o,)|| S &+ ||4"(6,) — A(a)|| <
¢, this implying that ||z4(x)—n'4’(x)|| < 6. An infinite computation can thus be
replaced by a finite computation and the resulting error can be kept under control.
Theorem 8 may also be used for rounding off the entries in the individual matrices
A(o) (in order to simplify the computation, or to make computation possible
when the entries are irrational) and keeping the resulting errorin long computations
under control.

Because of the importance of Theorem 8 one is induced to ask whether the
condition of that theorem is best (i.e., whether it is also a necessary condition for
the theorem to hold true). The answer to this question is negative and the reader is
referred to ([8] page 53) for full comments on this topic. It is also shown, however,
in the above mentioned reference that Theorem 8 is not true in general (i.e., for
PIT with no conditions imposed to them), and the findings of a necessary and
sufficient condition for the consequences of Theorem 8 to hold true is still an open
problem even in the finite case.




550 A. PAZ

REFERENCES

1] DoBruUsHIN, R. L.-(1956). Central limit theorem for nonstationary Markov chains I, II.
Theor. Probability Appl.165-80 and 329-383, (English translation).

[2] HAINAL, J. (1956). The ergodic properties of nonhomogeneous finite Markov chains. Proc.
Cambridge Philos. Soc. 52 67-717.

[3] HaINAL, J. (1958). Weak ergodicity in nonhomogeneous Markov-chains. Proc. Cambridge
Philos. Soc.,54233-246.

[4] KozniewskaA, J. (1958). Ergodicity of nonhomogeneous Markov chains with two-states.
Collog. Math. 5 208-215.

[S] Kozniewska, J. (1962). Ergodicité et stationnarité des chaines de Markoff variables a un
nombre fini d’etats possibles. Collog. Math. 9 333-346.

[6] Paz, A. (1965). Definite and quasidefinite sets of stochastic matrices. Proc. Amer. Math. Soc
16 634-641.

[7] Paz, A. (1966). Some aspects of probabilistic automata. Information and Control, 9 26-60.

[8] Paz, A. and ReicHAw, M. (1967). Ergodic theorems for sequences of infinite stochastic
matrices. Proc. Cambridge Philos. Soc. 63 777-784.

[91 RABIN, M. O. (1964). Probabilistic automata. Sequential Machines, selected papers, ed. E. F.
Moore. Addison-Wesley, Reading, 98-114.

[10] SaryMsakov, T. A. (1961). Inhomogeneous Markov chains. Theor. Probability Appl. 6 196—
201.
[11] WoLrowiTz, J. (1963). Products of indecomposable, apzriodic, stochastic matrices. Proc

Amer. Math. Soc. 14 733-737. '



