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1. Introduction. Probability properties of the measure of the unionof random sets
have theoretical as well as practical importance [4], [5]; e.g., the probability
distribution of the total area hit by bombs or shells is of much interest in gunnery
[6]. The area of a slide covered by particles falling on it has a considerable impor-
tance for particle sampling. Similarly, some properties of distribution functions [2]
as well as the classical occupancy problem of Statistical Mechanics may be formu-
lated as properties of measures of the union of random sets. In the present paper we
derive an asymptotic distribution for these measures and apply the results to the
classical occupancy problem as a special case.

Large sample nonparametric tests for the multivariate case of curve fitting are
also suggested as application of the asymptotic distribution.

2. Preliminaries. As the present paper is inherently based on a previous one [1]
it may be of advantage to summarize the former’s necessary essentials. In [1] it
has been shown that measures of the union of random sets may be treated with
the aid of ““Coverage Spaces’ which were defined as triplets (<7, 4, M) formed by
two probability spaces & = (X, S, P) and # = (Y, T, Q) and a measurable set M
in their product probability space. An experiment of size n was defined as a point
Y=, ", y,) in B". The covered part of X due to the experiment y" was
U,"M(y;) where M(y;) denotes the section of M determined by y,. The “‘vacancy’’,
p(¥y") (the measure of that part of X which is not covered due to the experiment y")
was, thus, equal to P{(),"M’(y;)} where M’ denotes the complement of M. The
coverage space (#, o/, W) where W denotes the image of M under the natural
transformation of &/ x # on # x o was called ‘“The Conjugate Coverage Space
to (o, B, M)”.

It was proved that the kth moment of vacancy for an experiment of size # in any
coverage space is equal to the nth moment of vacancy for an experiment of size k
in the conjugate coverage space. This property of duality will be used in the sequel.

Concerning the choice of a coverage space model for a specific coverage problem,
it is obvious that many coverage spaces may represent the same coverage problem,
and even when &/ is already fixed there still remains a vast class of probability
spaces for possible # spaces. And generally even when 4 is also fixed, there still
remain many possibilities for M. It may also readily be observed that a class of
coverage problems having the space o/ in common may always be represented by
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a class of coverage spaces having in common both &/ and 4, so that the coverage
spaces of the class may differ by M only.

3. Theorem.

Let = (Y, T,Q) be a probability space such that (Y, T) is the Euclidean
N-space with Lebesgue o-field.

Let of = (K, S, P) be a probability space such that K is a subset of Y of finite
positive Lebesgue measure, S the sub o-field of T relative to K and P the Lebesgue

measure on Y normalized to K.
Denote by q(x) the density of the absolute continuous component of Q relative to P
and let Q satisfy the following regularity condition on K:

(1) There exists an Re S with P(boundary of R) =0, q(x) =0 a.e. on K-R, for
which either P(R) = 0, or there exists a sequence of partitions of R,

{Hm} ={(n1m’n2ma“'a7tmm)}5 m = 1,2,"'
such that P(n,;,) > 0, P(boundary of w;,) = 0 for every i and m and such that
(1.1) Q¥ (1) P(sy) = 0 uniformly iniwhen m - co.

Let the sets M, satisfy the following conditions:
2 M,c{x]||x—y|<en'™}, n=1,2,---,  forsomeconstantc.
3 nQ{M, ()} =, . a(x) xeR
@ finLexp (nQ{M,(x,) M, (x;)})— 1] dP(x,)
=by(x,) <b and b,(x) >, 0(xy).

Then, letting an experiment of size n correspond to the nth coverage space and
denoting

(5 Z,(y,) = n*[ p(y,)— Ep(y,)],

the distribution of Z, tends to the normal distribution with mean zero and variance
2
o* where

(6) 0% = [xe” 2™ b(x) dP(x) —[ [ a(x) e "™ dP(x)]*.

REMARK. It is worthwhile to mention that when {M,(x)} is a regular sequence of
closed sets containing the point x ([9] page 106) and nP,{M,(x)} - t(x) then
a(x) = t(x) f(x) a.e. where f(x) is the density of the absolute continuous component
of Q relative to P ([2] page 198).

PrOOF. In order to carry out the proof, estimations of the variance and the fourth
central moment of vacancy as well as an estimation of the limit of a sequence of
tails of multinomial distributions will be required.

LEMMA (a). The variance of vacancy. Let {(£, B, M)} be a coverage space where
& =(X, S, P), =Y, T, Q) and assume

Q) P{x,e X |Q{M(x,) " M(x,)} #0} <h forae. x;eX.
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Denote,
u; = nQ{M(x;)} i=1,2,-"
ug = nQ{M(x;) " M(x,)} i k=1,2,--.
Then for an experiment of size n
a*p(yn) = (1/n) jxzexp (—uy —u,) n(e"*—1)dP?
—(/n)(fxu,e " dP)*+6,/n*+0,h/n
where |0, < (3e+1+4/e*)/e* and |0,| < 2/e. |
PROOF OF (a). Let

(®)

fla,n) =[e (1 —a?*2n)—(1—a/n)"].
Then foranyn=1,2,---and anyg,0<a<n ’
9) |f(a,m)| < n™3e.
This may be shown as follows: For a = 0 and a = n (9) is valid. Now,
of |0a = e (1—a*2n+ajn)+(1—a/n)""*
f |0a = 0=(1—ajn)" = e (1—a?/2n—a®/n®+a3[2n?).
Therefore,
|7(a,n)| < max|e™*(1—a?/2n)— e~ (1 —u?[2n—a®|n* + a®2n?)]
=max|a’—a’2le *n 2 < n" e
As shown in [2], it may be proved that under the same conditions also,
(10) le™*—(1—ajn)"| £ 1/en.
Now applying the theorem cited in the preliminaries we obtain,
a*p(y.) = E[p(y)*] - [Ep(y)]*

SJ L e[ (=S) (-5
X2 n X2 n n

- 2
=f exp[—(ul+uz—u]2)]l:1—(ul+u24u”):ldP2
x2 2n

u,? u,? )
- exp(—ul—u2)<1—~27 1——2_}1— dP2+01'/n
X2
where |0,'| < 3/e+1/e?.

The latter expression for o?p(y,) may also be written as,
o*p(y,) = [x2exp(—u; —u,) (2= 1) dP* = [([xu; e™ dP)*]jn
+(Jxuite " dP)*/(4n*)+(1/2n) [x2 {(uy +uz)* exp [ — (uy +uy)]
—(uy+uy—uqy )’ exp[—(uy +u,—uy,)]} dP*+0,'/n?.
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The last two integrands are bounded by 4/e* and the last one vanishes for
a.e. x; outside the set defined in (7) the measure of which is bounded by 4; there-
fore the integral is bounded by 4k/e?. Hence,

0,2 = (1/n) {Jx2exp [ — (u; +uy)]n(e"*—1)dP*>—(fxu, e™* dP)*} +0,/n*+0, h/n
where |0,| < (3e+1+4/e?)/e? and |6,| < 2/e.

LeMMA (b). The fourth central moment of vacancy. Let {(£, B, M)} be a coverage
space where of = (X, S, P), # = (Y, T, Q), and for which (7) holds, and let corre-
spond to the coverage space an experiment of size n, then

(11) E[p(y.)—Ep(y)]* < a, h*+a, hin+as/n?
where a, , a, and ay are absolute constants.
ProoF. Applying (9), the previous notations, and denoting
A= {(xy, x)€X?|uy, # 0},
A" = {(x,, x,, x;)€ X | at least two out of u, , , uy3 , U, are different from zero},

A" = {(x1, %5, X3, Xg)€X* | at least two out of u,,, Uy3, Uys, Uz, Upy , Usy ATE
different from zero},

we obtain as special cases of the theorem cited in the introduction,
(12)  Ep(y,) = [x(1—uyjny"dP = [ye ™ (1—@2n) 'u,>)dP+06,/n*  |0,| =1,
(13)  E[p(y)]* = jx2[1—(uy+us—uy,)in]"dP?
= [y2exp(—u; —uy) [1—(u; +u,)*2n] dP?

+[alexp(—uy —uy+uy,)—exp(—uy —u,)]dP?

+0,h/n+05/n?, |62| <1, |03| <l1.
E[p(y)]® = jxi‘ [1—0{M(x;) LU M(x2) U M(x3)}]" dp?

= jx’[l—(’h*‘“z +“3)/"]"dP3+3ijx{[l_(u1 +uy—uy,+uz)n]"
—[1=(uy+uy+us)/n]"}dP>+d, [ R(xq,X5,%3) dP>.

Where d, is a combinatorial constant, |R(x1 , X5 x3)| <1 and 4 x X stands for
the Cartesian product of 4 and X. But according to the definition of 4’,
P34’ < 3K, thus

E[p(y)]®> = [xoexp(—u; —uy—u3) [1—(us +uy +u3)*j(2n)] dP?
+3fox[eXP(‘u1—u2+ulz)—exp(—u1—“zj]e_”sdp'?
+3d, h2+3h/(en).
Denoting
Eyp = [4exp(—u;—u,)(e"2—1)dP?,
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we get for the third moment

(14) E[p(y)]* = [xsexp(—uy —uz—u3) [1 = (uy +u, +u3)?/(2n)] dP?

+3E, [xe " dP+3d, h*+3h/(en).

In the same manner we obtain for the fourth moment,

(15)  E[p(yn]* = [xsexp[—us—uy—us—ug) [1—(u; +uy+us +uy)*/(2n)] dP*
+6I,4xx2 (exp(—uy —us+usy)—exp(—u;—u,)]e """ qp*
+6d, h*+6h/(en)

= [xeexp(—uy—uy—uz—ug) [1—(uy +u, +us+u,)?/(2n)] dP*
+6E;, ([xe ™" dP)>+6d, h:+ 6h/(en)

where d, is a combinatorial constant. For the fourth central moment p, we have

Pa = my—4mym; +6mym,>—3m,*

where m;, m,, my, m, are the corresponding moments, so that by combining
(12)~(15) and as a consequence of the moments being bounded by 1, we obtain,

E[p(yn) —Ep(yn)]* = [xeexp(—uy —us—uz—uy) {{1 —(uy +uy+us + ug)®/(2n)]
=41 = (uy +uy +u3)?/2n)][ 1 —u,?/(2n)]
+6[1—(uy +uy)*/2m)][1 —us?/2n)][ 1 —u,?/(2n)]
=3[ —uy?j@m][1 —u,?[(2n)][L —us?/n)][1 — u?/(2n)]} dP*
+E; [x2exp(—usz—uy)(6—4.3+6.1)dP?
+a,h*+a, hin+a,/n?
where a,, a, and a; are absolute constants. As a consequence of the symmetry of
the expression in the u;—s and of the boundedness of the function x2e~* for non-
negative x —s, we obtain
E[p(y)—Ep(y)]* = a, h*+a, hjn+as/n’.
LemMA (). Tails of multinomial distributions. Let P, denote the multinomial
probability:

P,=P,(ng, - 9nk(n)) = (’”/Hfgi n;!) Hf(:{ Dins fg{ n;=n
where p;, 2 0; Y¥) p,. = 1; then
(16) Pn Uf(:} {(nl’ ) nk(n)) I (Inpin_nil > nn,)} é n/nnlz'

ProoF. According to the Tchebyshev inequality, the following inequalities hold
for every i,
Py{(ne, s i) | |0 —mi| > n,'} < mpy(1=pi)in,’
= (n/nnlz)pin(l - pin) é (n/nnlz)pin .
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Therefore,
P, U {(ny,- -, nk(n))i ‘"Pin—"il >n,} = Zli(")Pn{nl’ © s Himy) I I"Pin‘"il >n,'}
S YAP (i *)piy = nin,?.

ProOF OF THE THEOREM. Each of the sets M, may be partitioned into a sum of
three disjoint sets M,,, My, and M, where,

M,, = {(m,m)eM,|meR,m ¢ K—R},
Mg, = {(m,m)eM,|meK—R,m' ¢ K—R},
M,, = M,— My —M,,.

According to this partition we obtain out of the original coverage space (<, %, M,)
the three coverage spaces («, %, M,,), (¢, B, My,) and (<, B, M,,). The cover-
age q(y,) in the original space may be written for any experiment y, as

a(¥s) = 4u(Yn) +q5(¥n) +0g,(y,)

where g¢,, g;, g, are the coverages in the corresponding spaces and 6 is a non-
negative number not exceeding one which may be dependent on y,. Denoting by
Zyn> Zg, and Z,, the random variables defined by (5) corresponding to the three
latter coverage spaces, we shall show that the distributions of Z;, and Z,, tend
to the degenerate distribution with zero as its point of increase. As Z(y,) =
Z(yn)+ Zy(y,)+0Z (y,) it will prove that Z(y,) and Z,(y,) have the same limiting
distribution if any.

For proving the degeneracy it is sufficient to prove that the variances in case
tend to zero when n — 0.

Denoting by H, the set of all points of K with distances from the boundary of R
not exceeding 2¢/n'/Y, we have My, = H, x H, and M,(x,) as well as Mp,(x,)
‘being subsets of the set H,. Now H, tends to the boundary of K whenn— oo as a
consequence of the boundary being closed, Q{Mj,(x;) N My, (x,)} vanishes outside
H,, and (7) holds with 4 = ¢/n. So that according to (8) and using the previous
notations, we have

6% Zpn < fu,xn, €Xp(—ty —uy) n(e"?— 1) dP>+ 0(1/n).
As a consequence of (4) we get
0%Zg, < be/n'+0(1/n) >0 as n— 0.

For proving the assertion concerning Z,,, we observe that according to (2),
M,(x) is included in a sphere centered at x such that for every x the volume of
the sphere is some constant k divided by n. Therefore, we get according to
Lebesgue derivation theorem ([9] page 115) that

limsup nQM,(x) < kf (x) a.e.

where f(x) is the derivative of Q at x (which exists a.e.). But in the case of Z,,,
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M, (x) = K-R and according to Assumption (1) f(x) = 0 a.e. on K~R; therefore,
lim sup nQM,,,(x) = Oa.e. So that

0%Z,, = [x2exp(—u; —uy)n(e">—1)dP*—([xu, e " dP)*+0,/n+0,/n
é j(K—R)z n(e“”— 1)dP2+0/n é jK..R(k/n)n(e'“—- 1) dP+0/n
= [x_pk(e"—1)dP+0/n |6] bounded.

Asn— o0, u; — 0a.e. on K-R, therefore we get as a consequence of conditions (2)
and (4), the Egorov theorem and the Lebesgue dominated convergence theorem [7]
that UZZy,, —0 as n— o0. Now, in case P(R) =0, R may be chosen to be empty
and according to the previous discussion Z,(y,) tend to the degenerate distribution
which is compatible with the assertion. .

In the case where P(R) > 0 and K is replaced by R we obtain a coverage space
for which the random variable Z,(y,) has a constant ratio P(K)/P(R) to the corre-
sponding random variable in the original space (n= 1,2, :--). Therefore it is
sufficient to prove the theorem for the case R = K.

Now, assuming condition (1.1) holds for R = K, let {II,} be a sequence of
partitions for which (1.1) holds. ,

Let m be the number of elements in I, and let K,,,, K,,, ***, K, denote
these elements. Then decomposing M, into the sets M,,, M,,, ***, M,,,, M,, where

Min=Mnn(KimXKim) i=1,2,"'»m
and M,,=M,— U M, then,
q(¥») = 1Y) + 420y +  * + @u(¥n) +09,(Y,)

where g(y,) denotes the coverage for the experiment y, in the coverage space
(4, B, M,,), and 0 < 0 < 1. Similarly

Z(yn) = Z1(Y) + Zo(Y) + "+ Zu(¥n) +0Z,(y,)-

Now, M,, is the union of m sets of the type M, of the previous discussion, so
following the same arguments dealing with Z, we get the conclusion that for m
fixed as well as for m = m(n) tending slowly enough to infinity when n — oo, the
distribution of Z, tends to the degenerate distribution with zero as its point of
increase.

Therefore, without loss of generality M, may be replaced by U7 M, where
m(n) tends slowly enough to infinity when n — co.

Thus the sequence of coverage spaces {(</, #, M,)} was modified by replacing
the sets M, with the corresponding sets |J M, and leaving the spaces o/ and
2% unchanged. Let &, = (Kin, Sins Piiny) and B, = (Kip» Sin> Qiny) Where S,
denotes the sub o-field of S relative to K, , P, is the Lebesgue measure normalized
to K;,, and Q;, denotes the conditional probability of Q given K, . Denoting
Cin= (A, Bin, M;,) and replacing M, by U M,, we have,

p(¥n) = 217 p(Yin) P(Kim)
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where y;, denotes the vector composed of the components of y, which are in K,
and p(y;,) denotes the corresponding vacancy in C,.
Let n(i) denote the number of components of y;, and let

Zin(yim) = (n(D) Y [p(Yin) — EP(Yin) ],
i.e. Z;, denotes the analogue of Z, for the coverage space C;, ; then we have
Z,(y0) = Y1« [nn ()P Zi( i) P(K )
where n(i) is random and P(K;,) arises from the normalization. Now,
Pr(Z,eS) =Y Pr{dm, [n/n()]*Z;, P(Kim)€ S | n(1), n(2)," -+, n(m)}
Pri{n(l),n(2),  -,n(m)};  Y7n()=n.
But according to the construction of the sets M;, (i =1, ---, m), the conditional

probabilities of Z;, (i =1, -+, m) are independent and we have therefore for the
characteristic functions the following relations:

n(e) ZZ"(!) nPr {"(1) ) n(m)} H 1 (Pm(l) [(n/n(l)) P(sz) 9]

where ¢,(6) and ¢,,(0) denote the characteristic functions of Z, and of Z;, corre-
spondingly. Inserting the values for Pr {n(1), n(2), - - -, n(m)} and replacing Q(K,)
with Q,,, and P(K,,) with P, we obtain

n(o) ZZn(l) n n: ! I I 1 (Qn(l)/n(i) !)¢tn[(n/n(l) )%Pim 0]
6(0) = 3 n! [T1 1 Q0 In(D) Dl (n/n(D) ) Py 0] + R,

where the ' denotes that summation is carried out over all complexes (n(1), « - -, n(m))
for which |n(i)—nQ;,| £ n*, and R, stands for the sum of the remaining terms.
But ¢;, being characteristic functions are uniformly bounded; therefore, R, =0
when n — oo as a result of (16). So that in order to prove the theorem it is sufficient
to prove that

¢ 0) = X' n! [T s (Q5In()Nunl (nin(D) ) P - 0]

tends to the characteristic function of the normal distribution.

Now, according to the differentiability properties of the characteristic functions
([7] page 144) ¢(0) = 1+im, 6—m, 0%[2+nus(6*/3!) where m, , m, and p; denote
the first moment, second moment and third absolute moment of the random
variable, while
of the spaces &/, , the fourth central moment of p(y;,) is bounded by a, k2 +a, b,/
n(i) + as/[n())* with h,, = c/(nP;,). The third absolute central moment of p(y;,) is
therefore bounded by ¢, /(nP;,)* + c,/(n(i)nP;,)* + c3/(n(i))* where ¢, , c, and c3
are constants. The third absolute moment of Z; is therefore bounded by,
¢, [(n(D)/n)| P;,1E + ¢, [(n(i)/n)| P;,JF +c5 . So that we obtain for ¢,*(0),

*(0) Z (l’l'/l__[ ') Hm Qn(') m{l _plm[n/("le"Fn’(l)]amn (i) 0 /0
+1y pho+ 12 phL1/(1Q + 1 () ]F + 113 Pl [n/(rQ +n'(D))]*

or
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where n'(i) stands for n(i)—nQ,,, 62, denotes the corresponding variance of
Z:,, and n,, n, and 55 are bounded.
But as |n'(i)| < n* we have for m = m(n) chosen such that Q,, decreases slowly

enough that
(pn*(e) = Z, (n ‘/]__['In ni !) ]__,['ln Qn(l) T {1 P /[(1 + n(l) ('lle) )th]amn ‘(i) 02 /2
+O(PE) +O(P}, Q1)+ O(P;, 04}
where the boundedness is uniform in i and in all the sets {n;} under the summation

sign.

Now the right-hand product in (17) is of the form []7Y) (1 —a;;) and it may be
easily verified by taking logarithms and expanding into-a power series that when
i»o0, 379 a,;—a and max;|a;| >0, then [[7"(1—g,) > e™* But according

to the assumptlons of the theorem and the estimate (8) of the variance of coverage,
the variance ¢,2 of Z, tends to a limit when #n — co. On the other hand,

(18) 0. = Lsay=n (T TT @Y ITT Q"(') 1= 1 [Pl (Qim 7' (D)/1) 0 m
and because of (1.1):
Z P}, < max; Py, Y i Py = max Py, =, 5, 0,
Y. P} =Y P, (P},/Q}) < max;(P},/Q},) < max PE[P},/0:.]F = O,
Y P} J0k, < max;(Ph,/Qm)E — 0.
Therefore, if it will be shown that
(18a) max; |P}, 62 )/(Qim+n'(i)/n)| - 0 and
(18b) 1 P} 62w/ (Qim+1'(i)jn) > lime,”  uniformly.

It will follow that the right-hand product in (17) tends to exp (—lim¢,%6%/2) and
consequently ¢,*(0) tends to the same limit function, which proves the theorem.
In order to prove (18a) we use the following notations,

vy = (n+n'(D)/Qum)Q{M,(x))} j=12
Vig2 = (n+n'()/ Qi) Q{M,(x,)NM,(x,)}.
According to (8), we have for o},
iy = (1P7) [z XD (= 03y = 012)(n Qi+ 1'(D) )42 — 1) dx dx
—(U/PL) [[xi 011 € dxy > +1/(n Qi +1'(D))
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where # is bounded uniformly in m, n, i and n’(i). Therefore, for » sufficiently large
P30/ (Qim+ 1 (D)/n) £ jKZ" nexp (—v;; —v;p)(e"? — 1) dx; dx,
+11 Pl [1(Q+ 1'(D)[m) *].

Now choosing m = m(n) such that both max; P;, and max; Q,,, tend slowly enough
to zero we get as a result of the condition (1.1) that the factor multiplying #,

P2,J[1(Qun+ ' (D)2 ~ F2,/nQ%, = O(L/(nP},)) — 0 uniformly.
The integral on the right-hand side of the inequality (20) may be written as

[k e "dxy [, e 2 n(e"2 = 1) dx,,

(20

but v;; =0, and according to (4) the right-hand side integrand is uniformly
bounded by b; therefore the whole expression is bounded by &P, and tends
uniformly to zero, which proves assertion (18a). In order to prove (18b) it has to
be observed that

Pl Gt ] (Qim+ 1’ (D)[1) = (Pioy 0o Qi) [1 4+ O(1(D) Q)]
= (Plzm aizrno/Qim)[l + 0(1)]

where the boundedness is uniform in i and #»’(i).
So that according to (19) we have

ZE”= 1 Pim aizno/’Qim = Z:"= 1 jKlzm eXp [— nQn ]‘Jn(xl) - "Qn A/In(xZ)]
x n{exp [nQn(lwn(xl) N lwn(xz) )] - 1} dxl dx2
~ 27 1 (ki 1Qn M (x) €Xp (— nQ, M,(X)) dx)* + 0(1)

and as a result of the special structure of M,,, the right-hand side of the equation
is equal to o, up to o(1). We get, therefore, that for every set {n(i)} over which
the summation ' is carried over we have uniformly

21 Pity i | (Qim + 1 (D)/m) = 0,7 +0(1),

which proves assertion (18b) and concludes the proof of the theorem.
DiscussioN. The conditions of the theorem are obviously not necessary ones, as
it is readily seen from the relation of coverage space-coverage problem, also from
the proof of the theorem. For instance, as the measures of the random sets and
their intersections are preserved under measure preserving autotransformations of
Y, it is evident that condition (2) may be replaced by the weaker condition that (2)
should be satisfied for some measure preserving autotransformation of Y. But
while, in this case, there is no real loss of generality, because we may choose for
any coverage problem any suitable coverage space, the situation is different
. concerning conditions (3) and (4). These two conditions may be weakened by
imposing the appropriate conditions on the corresponding integrals rather than
on the integrands. But as the necessary conditions are still not attained it was
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preferred to sacrifice generality for more simplicity in formulation. Concerning
condition 1, the (1.1) part of it is a Lipschitz-type condition which makes sure that
Q(S) should not tend too fast to zero relative to P(S) when S contracts to points
for which the density of Q is equal to 0. This condition is certainly satisfied in
case Q has on K a density bounded from below by a positive number. It is also
readily seen that the theorem remains valid when (1.1) is weakened by demanding
it to hold only approximately, i.e. that there should exist a sequence of positive
hy’s with &, — 0 such that all the boundaries of R, = {xeR | Q'(x) = h,} are of
measure zero, where Q'(x) denotes the density of Q at x. This result is observed
by breaking down the coverage spaces into two parts, such that R,, is the space X’
of the first part, and letting m = m(n) tend slowly enough to infinity. Then the
distribution of coverages in the sequence of the first parts tends to the appropriate
normal distribution, and that of the second parts tends fo the degenerate distribu-
tion with zero as its point of increase. The asymptotic normality follows from the
theorem while the asymptotic degeneracy follows by the same arguments used for
proving the limiting degeneracy of Z; and Z,. Also, as commented by the referee,
the Lebesgue o-field may be replaced in the theorem by the Borel o-field.

4. Applications.

1. The classical occupancy problem. This problem which has special importance
in mechanical statistics deals with the, distribution of the number of empty cells
when balls are thrown independently into a set of cells such that each of the cells
is equally likely to catch each of the balls. Irving Weiss [9] proved that a sufficient
condition for the fraction of empty cells to be asymptotically normally distributed
is one in which the ratio of the number of balls to that of the cells should be kept
constant. A. Rényi [8] has generalized Weiss’ theorem by proving that a necessary
and sufficient condition for a limiting normal distribution is:

nexp[—(N+1)/nJ{1-[1+(N+1)/n]exp[— (N +1)/n]} = oo

where n and N denote the number of cells and the number of balls respectively.
V. P. Cistiakov and L. 1. Viktorova [3] gave sufficient conditions for normal
limiting distribution in cases where the probability of catching a ball may be
different for different cells.

Taking as o/ and as # the Euclidean segment [0, 1) with Lebesgue o-field and
measure; denoting by A4, and by Aj, the interval [i/n, (i+1)/n) in K and in Y
respectively, and taking M, = Y124 4;, x A4},, then the coverage space (<, &, M,)
is a proper coverage space for the Classical Occupancy Problem and p(y,) is equal
to the fraction of empty cells for the cases of Weiss and Rényi. Thus the Classical
Occupancy problem may be treated as a special case of a coverage problem.
Similarly, by taking A4;,=[a;48i41,),0=GpnSa;, < " Say_1,=1, We
. obtain a coverage space corresponding to the case of Cistiakov and Viktorova
(evidently any permutation of the A},’s may be taken for the same problem).
Now the theorem of Weiss as well as the empty cells case of Cistiakov and
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Viktorova are special cases of the theorem in the present paper. For instance, we
have for Weiss’ case,

(I.)W R=K;P=0Q; thus P¥S)/Q(S)=P*S)—0 uniformly
for equi-partitions of R

@w M, = {(x, )| |x—y| £ 1/n}
B)wW nQ{M,(x)}=n-1/n=1
(HW [x nlexp (nQ{M,(x,)NnM,(x,)})— L]dP(x,)

= [ nlexpn(ljn)—1]dx, = e—1

where A;, is that interval which includes x,. Similarly, all the conditions of the
theorem are satisfied for the case of Cistiakov and Viktorova.

2. Multivariate curve fitting. F. N. David has proposed a univariate curve fitting
test based on the Classical Occupancy [4]. As the classical occupancy is a special
case of a coverage problem it is reasonable to assume that better tests may possibly
be obtained when the class of coverages is not confined to the classical occupancy
only. Unfortunately, computations of distributions of coverages are involved
and the difficulties are practically insurmountable, except in a few simple cases.

The theorem proved in the present paper asserts that for large samples the dis-
tribution of coverage is approximately normal for the class of coverage spaces
satisfying some regularity conditions, a property which is also valid for the multi-
variate case. This property may be used for construction of multivariate curve
fitting tests for large samples. Various tests based on coverages may be suggested
which have the advantage of being easily carried out by the aid of a computer and
have also the advantage that the power of the test against any alternative may be
easily computed. The following is an example of such a test.

Let the null hypothesis be that F(x) is the distribution function of a vector x
in the Euclidean N-space where F(x) satisfies the regularity condition (1.1) on
some Lebesgue measurable and bounded set K. Now, given a large sample
X{,X5, ", X,, feed into the memory of a computer the n N-cubes parallel to
the coordinates centered at the x;’s and having sides of length s'. Measure (count)
the ““volume” covered by the union of the cubes. Now the asymptotic volume of
that union is normally distributed with mean given by [2] [ exp [—nvf(x)]dP(x)
and variance obtained from formula (8), where f(x) denotes the density function of
x (which exists a.e. and is equal a.e. to the Radon-Nikodym derivative of the
Lebesgue absolute continuous part of P), v denotes the volume of the covering

! The probability of discriminating between the hypothesis and the alternative becomes small
for too large as well as for too small values of s. In the first case the probability of the vacancy being
1 —nv will be close to 1 for both the hypothesis and alternative, while in the second case the same is
true for vacancies equal to zero. There is a value of s which optimalizes the discrimination between
hypothesis and alternative. Evidently it depends on n. The larger the n the smaller this optimal
value is. s has therefore to be chosen accordingly.
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cube and P denotes the Lebesgue measure. A test of the null hypothesis may, there-
fore, be carried out by comparing the volume covered with the expected volume
according to the corresponding normal distribution scale. Similarly, the power of
the test against any alternative may be computed.

Evidently the cubes may be replaced by ‘“boxes” with sides which may be
different from each other and which may also be functions of x. The test in that case
is carried out in the same manner as the previous one after the proper modifications
of the formulas for the asymptotic mean and variance were made [2].

By a proper choice of the side lengths as functions of x the test may be made
“best”. Similarly, in case the set K is not bounded the test may still be carried out
by suitably transforming K into the unit cube and appropriately transforming F(x).
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